Functional and Oxidative Stability of Traditional Kazakh Molded Smoked Ham Affect by Sea Buckthorn (Hippophae rhamnoides) Extract Addition
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
Optimization of Formulation Doses of Sea Buckthorn Powder Extract and Additive “Kf Stabinject 101” to Study Their Synergism at Very Low Application Concentrations
2.3. Determination of Quality Parameters of Traditional Kazakh Molded Smoked Ham from Horse and Camel Meat
2.4. Methods
- Total aerobic plate count (TAPC): an indicator of overall bacterial contamination, representing mesophilic aerobic and facultative anaerobic microorganisms, determined according to GOST R 54354-2011 [49];
- Molds, yeasts, and other spore-forming microorganisms: determined according to GOST 10444.15-94 [50];
- Coliforms: determined in 1.0 g of product according to GOST 31747-2012 [51];
- Salmonella spp.: determined in 25 g of product according to GOST 31659-2012 [52].
3. Results
3.1. Optimization of Formulation Doses of Sea Buckthorn Powder Extract and Additive “Kf Stabinject 101” to Study Their Synergism at Very Low Application Concentrations
3.2. Effect of the Addition of Dry Sea Buckthorn Powder Extract on the Quality Parameters of Traditional Kazakh Molded Smoked Ham from Horse and Camel Meat
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ANOVA | Analysis of variance | 
| AV | Acid value | 
| DNPH | 2,4-Dinitrophenylhydrazine | 
| DPPH | 2,2-Diphenyl-1-picrylhydrazyl | 
| FAN | Free amino nitrogen | 
| FRAP | The transition-metal-chelating activity against ferric (Fe3+) ions—FRAP assay | 
| GA | Gallic acid | 
| GOST R | State Standard of Russia | 
| LoD | Limit of detection | 
| MDA | Malondialdehyde | 
| POV | Peroxide value | 
| RSM | Reflection surface method | 
| SACSS | Sensory-assessed cross-sectional surface | 
| SEM | Standard error of mean | 
| TAPC | Total aerobic plate count | 
| TBARS | Thiobarbituric acid reactive substances | 
| TPA | Texture profile | 
| TPC | Total phenolic content | 
References
- Batyrbek, A.; Chisbiyah, L.A. Exploring the role of traditional food in developing tourism in Kazakhstan. J. Tour. Culin. Entrep. 2025, 5, 51–71. [Google Scholar] [CrossRef]
- Shoman, A.; Chomanov, U.; Serikbayeva, A.; Mamayeva, L.; Tultabayeva, T.; Kenenbay, G. Evaluation of chemical and nutritional value of camel meat originating from Almaty region. J. Phys. Conf. Ser. 2019, 1362, 012163. [Google Scholar] [CrossRef]
- Uzakov, Y.M.; Kaldarbekova, M.A.; Kuznetsova, O.N. Improved technology for new-generation Kazakh national meat products. Foods Raw Mater. 2020, 8, 76–83. (In Russian) [Google Scholar] [CrossRef]
- Djenane, D.; Aider, M. The one-humped camel: The animal of future, potential alternative red meat, technological suitability and future perspectives. F1000Research 2024, 11, 1085. [Google Scholar] [CrossRef] [PubMed]
- King, D.A.; Hunt, M.C.; Barbut, S.; Claus, J.R.; Cornforth, D.P.; Joseph, P.; Kim, Y.H.B.; Lindahl, G.; Mancini, R.A.; Nair, M.N.; et al. American Meat Science Association guidelines for meat color measurement. Meat Mus. Biol. 2023, 6, 12473. [Google Scholar] [CrossRef]
- Mortazavi, S.M.H.; Kaur, M.; Farahnaky, A.; Torley, P.J.; Osborn, A.M. The pathogenic and spoilage bacteria associated with red meat and application of different approaches of high CO2 packaging to extend product shelf life. Crit. Rev. Food Sci. Nutr. 2023, 63, 1733–1754. [Google Scholar] [CrossRef]
- Abilmazhinova, N.; Vlahova-Vangelova, D.; Dragoev, S.; Abzhanova, S.; Balev, D. Optimization of the oxidative stability of horse minced meat enriched with dihydroquercetin and vitamin C as a new functional food. Comp. Ren. Acad. Bulg. Sci. 2020, 73, 1033–1040. [Google Scholar] [CrossRef]
- Kozhkhiyeva, M.; Dragoev, S.; Uzakov, Y.; Nurgazezova, A. Improving of the oxidative stability and quality of new functional horse meat delicacy enriched with sea buckthorn (Hippophae rhamnoides) fruit powder extracts or seed kernel pumpkin (Cucurbita pero L.) flour. Comp. Ren. Acad. Bulg. Sci. 2018, 71, 132–136. [Google Scholar] [CrossRef]
- Bobko, M.; Mesárošová, A.; Mendelová, A.M.; Bobková, A.; Demianová, A.; Poláková, K.; Lidíková, J.; Árvay, J.; Kolesárová, A.; Jurčaga, L. Sea buckthorn (Hippophae rhamnoides Hergo) as potential natural antioxidant for meat industry. Int. Food Res. J. 2024, 31, 1351–1361. [Google Scholar] [CrossRef]
- Bukarbaev, K.M.; Abzhanova, S.A. Use of sea buckthorn extract in meat products. In Proceedings of the XLV International Scientific-Practical Conference “Advances in Science and Technology”, Moscow, Russia, 15 June 2022; Research and Publishing Center “Actualnots.RF”: Moscow, Russia, 2022; pp. 44–46. Available online: https://xn--80aa3afkgvdfe5he.xn--p1ai/AST-45_originalmaket_N.pdf (accessed on 10 October 2025). (In Russian).
- Utyanov, D.A.; Kulikovsky, A.V.; Knyazeva, A.S.; Kurzova, A.A.; Ivankin, A.N. Methods for reducing the formation of heterocyclic aromatic amines in meat products. All Meat 2021, 2, 58–63. (In Russian) [Google Scholar] [CrossRef]
- Vilas-Franquesa, A.; Saldo, J.; Juan, B. Potential of sea buckthorn-based ingredients for the food and feed industry—A review. Food Prod. Proc. Nutr. 2020, 2, 17. [Google Scholar] [CrossRef]
- Vilas Franquesa, A. Development and Characterization of Products Derived from Sea Buckthorn (Hippophae rhamnoides) Berries. Ph.D. Thesis, Autonomous University of Barcelona, Bellaterra, Spain, 2021; 493p. Available online: https://hdl.handle.net/10803/673768 (accessed on 10 October 2025).
- Danielski, R.; Shahidi, F. Phenolic composition and bioactivities of sea buckthorn (Hippophae rhamnoides L.) fruit and seeds: An unconventional source of natural antioxidants in North America. J. Sci. Food Agric. 2024, 104, 5553–5564. [Google Scholar] [CrossRef]
- Papuc, C.; Diaconescu, C.; Nicorescu, V.; Criveanu, C. Antioxidant activity of polyphenols from Sea buckthorn fruits (Hippophae rhamnoides). Rev. Chim. Buchar. Origin. Ed. 2008, 59, 392. [Google Scholar] [CrossRef]
- Kubczak, M.; Khassenova, A.B.; Skalski, B.; Michlewska, S.; Wielanek, M.; Skłodowska, M.; Aralbayeva, A.N.; Nabiyeva, Z.S.; Murzakhmetova, M.K.; Zamaraeva, M.; et al. Hippophae rhamnoides L. leaf and twig extracts as rich sources of nutrients and bioactive compounds with antioxidant activity. Sci. Rep. 2022, 12, 1095. [Google Scholar] [CrossRef] [PubMed]
- Rop, O.; Ercişli, S.; Mlcek, J.; Jurikova, T.; Hoza, I. Antioxidant and radical scavenging activities in fruits of 6 sea buckthorn (Hippophae rhamnoides L.) cultivars. Turk. J. Agric. For. 2014, 38, 224–232. [Google Scholar] [CrossRef]
- Ko, M.S.; Lee, H.J.; Kang, M.J. Antioxidant activities and whitening effects of extracts from Hippophae rhamnoides L. J. East Asian Soc. Diet. Life 2012, 22, 812–817. (In Korean) [Google Scholar]
- Papuc, C.; Diaconescu, C.; Nicorescu, V. Antioxidant activity of sea buckthorn (Hippophae Rhamnoides) extracts compared with common food additives. Rom. Biotech. Lett. 2008, 13, 4049–4053. [Google Scholar]
- Fang, R.; Veitch, N.C.; Kite, G.C.; Porter, E.A.; Simmonds, M.S. Enhanced profiling of flavonol glycosides in the fruits of sea buckthorn (Hippophae rhamnoides). J. Agric. Food Chem. 2013, 61, 3868–3875. [Google Scholar] [CrossRef]
- Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Bobak, Ł.; Nowicka, P. Anti-oxidant and anti-enzymatic activities of sea buckthorn (Hippophaë rhamnoides L.) fruits modulated by chemical components. Antioxidants 2019, 8, 618. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.S.; Negi, P.S.; Ramteke, R.S. Antioxidant and antibacterial activities of aqueous extract of Seabuckthorn (Hippophae rhamnoides) seeds. Fitoterapia 2007, 78, 590–592. [Google Scholar] [CrossRef]
- Negi, P.S.; Chauhan, A.S.; Sadia, G.A.; Rohinishree, Y.S.; Ramteke, R.S. Antioxidant and antibacterial activities of various seabuckthorn (Hippophae rhamnoides L.) seed extracts. Food Chem. 2005, 92, 119–124. [Google Scholar] [CrossRef]
- Raman Chawla, R.C.; Rajesh Arora, R.A.; Shikha Singh, S.S.; Sagar, R.K.; Sharma, R.K.; Raj Kumar, R.K.; Ahuja, P.S. Radioprotective and antioxidant activity of fractionated extracts of berries of Hippophae rhamnoides. J. Med. Food 2007, 10, 101–109. [Google Scholar] [CrossRef]
- Geetha, S.; Ram, M.S.; Singh, V.; Ilavazhagan, G.; Sawhney, R.C. Anti-oxidant and immunomodulatory properties of seabuckthorn (Hippophae rhamnoides)—An in vitro study. J. Ethnopharm. 2002, 79, 373–378. [Google Scholar] [CrossRef]
- Anchidin, B.G.; Lipșa, F.D.; Manoliu, D.R.; Ciobanu, M.M.; Ciobotaru, M.C.; Gucianu, I.; Boișteanu, P.C. Enhancing antioxidant capacity in functional meat products through infusion with sea buckthorn oil to combat inherent antioxidant deficiency. Sci. Pap. Ser. D Anim. Sci. 2024, 67, 366–380. [Google Scholar]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Du, R.; Wang, K.; Puguan, K.; Wang, C.; Liu, Y.; Wang, L.; Wang, L. Sustained-Release Application of Porous Starch/Gum Arabic Microencapsulated Sea Buckthorn Essential Oil in Yak Meat Preservation. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5403113 (accessed on 10 October 2025).
- Papuc, C.; Durdun, N.; Nicorescu, V.; Papuc, C.; Crivineanu, D. The effect of sea buckthorn polyphenols upon discoloration and lipid peroxidation of pork and beef ground meat during refrigeration. Sci. Works Univ. Agronom. Sci. Vet. Med. Buchar. Ser. C Vet. Med. 2010, 56, 136–144. [Google Scholar]
- Wojtaszek, A.; Salejda, A.M.; Nawirska-Olszańska, A.; Zambrowicz, A.; Szmaja, A.; Ambrozik-Haba, J. Physicochemical, antioxidant, organoleptic, and anti-diabetic properties of innovative beef burgers enriched with juices of açaí (Euterpe oleracea Mart.) and sea buckthorn (Hippophae rhamnoides L.) berries. Foods 2024, 13, 3209. [Google Scholar] [CrossRef]
- Bobko, M.; Kročko, M.; Haščík, P.; Tkáčová, J.; Bučko, O.; Bobková, A.; Čuboň, J.; Češkovič, M.; Pavelkova, A. The effect of sea buckthorn (Hippophae rhamnoides L.) berries on parameters of quality raw cooked meat product. J. Microbio. Biotech. Food Sci. 2019, 9, 366–369. [Google Scholar] [CrossRef]
- Salejda, A.M.; Tril, U.; Krasnowska, G. The effect of sea buckthorn (Hippophae rhamnoides L.) berries on some quality characteristics of cooked pork sausages. Int. J. Nutr. Food Eng. 2014, 8, 604–607. [Google Scholar]
- Mesárošová, A.; Lidíková, J.; Bobková, A.; Kročko, M.; Mendelová, A.; Tóth, T.; Nedomová, Š.; Vörösová, D.; Bobko, M. Effect of sea buckthorn (Hippophae rhamnoides var. vitaminnaja) extract on spoilage of pork sausages. J. Microbio. Biotech. Food Sci. 2024, 13, 10420. [Google Scholar] [CrossRef]
- Bukarbayev, K.; Abzhanova, S.; Baibolova, L.; Zhaksylykova, G.; Kulazhanov, T.; Vasilenko, V.; Jetpisbayeva, B.; Katasheva, A.; Sabraly, S.; Yerzhigitov, Y. Effect of hemp protein and sea buckthorn extract on quality and shelf life of cooked-smoked sausages. Foods 2025, 14, 2730. [Google Scholar] [CrossRef]
- Makangali, K.; Konysbaeva, D.; Zhakupova, G.; Gorbulya, V.; Suyundikova, Z. Study of the effect of sea buckthorn seed powder on the production of smoked meat products from camel and beef meat. Period. Tche Quim. 2019, 16, 130–139. [Google Scholar] [CrossRef]
- Kolev, N.; Balev, D.; Dragoev, S.; Popova, T.; Petkov, E.; Dimov, K.; Suman, S.; Salim, A.P.; Vlahova-Vangelova, D. Male layer-type birds (Lohmann Brown Classic Hybrid) as a meat source for chicken pâtés. Appl. Sci. 2025, 15, 6702. [Google Scholar] [CrossRef]
- Khan, A.W. Extraction and fractionation of proteins in fresh chicken musclea. J. Food Sci. 1962, 27, 430–434. [Google Scholar] [CrossRef]
- ISO 660:2020; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/75594.html (accessed on 10 October 2025).
- Shantha, N.C.; Decker, E.A. Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J. AOAC Int. 1994, 77, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J. Agric. Food Chem. 1994, 42, 709–712. [Google Scholar] [CrossRef]
- Moraru Manea, A.I.; Cocan, I.; Dumbrava, D.G.; Poiana, M.A. Effect of fruit powders as natural alternatives to sodium nitrite on lipid oxidation in clean-label salami. Foods 2025, 14, 2262. [Google Scholar] [CrossRef]
- Vassilev, K.; Ivanov, G.; Balev, D.; Dobrev, G. Protein changes of chicken light and dark muscles during chilled storage. J. Eco-Agric. Tour. 2012, 8, 263–268. [Google Scholar]
- Mercier, Y.; Gatellier, P.; Renerre, M. Lipid and protein oxidation in vitro, and antioxidant potential in meat from Charolais cows finished on pasture or mixed diet. Meat Sci. 2004, 66, 467–473. [Google Scholar] [CrossRef]
- Vardakas, A.; Kechagias, A.; Penov, N.; Giannakas, A.E. Optimization of enzymatic-assisted extraction of bioactive compounds from Olea europaea leaves. Biomass 2024, 4, 647–657. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Dinkova, R.; Heffels, P.; Shikov, V.; Weber, F.; Schieber, A.; Mihalev, K. Effect of enzyme-assisted extraction on the chilled storage stability of bilberry (Vaccinium myrtillus L.) anthocyanins in skin extracts and freshly pressed juices. Food Res. Int. 2014, 65, 35–41. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory Evaluation Techniques; CRC Press: Boca Raton, FL, USA, 1999; p. 416. ISBN 978-1-0030-4072-9. [Google Scholar] [CrossRef]
- GOST R 54354-2011; Meat and Meat Products. General Requirements and Methods of Microbiological Testing. Federal Agency for Technical Regulation and Metrology (Rosstandart): Moscow, Russia, 2011. Available online: https://www.russiangost.com/p-72038-gost-r-54354-2011.aspx (accessed on 10 October 2025). (In Russian)
- GOST 10444.15-94; Food Products. Methods for Determination Quantity of Mesophilic Aerobes and Facultative Anaerobes. Federal Agency for Technical Regulation and Metrology (Rosstandart): Moscow, Russia, 1994. Available online: https://www.russiangost.com/p-21387-gost-1044415-94.aspx (accessed on 10 October 2025). (In Russian)
- GOST 31747-2012; Food Products. Methods for Detection and Quantity Determination of Coliforms. Federal Agency for Technical Regulation and Metrology (Rosstandart): Moscow, Russia, 2012. Available online: https://www.russiangost.com/p-65997-gost-31747-2012.aspx (accessed on 14 October 2025). (In Russian)
- GOST 10444.15-94; Food Products. Methods for the Detection of Salmonella spp. Federal Agency for Technical Regulation and Metrology (Rosstandart): Moscow, Russia, 1994. Available online: https://www.russiangost.com/p-68638-gost-31659-2012.aspx (accessed on 10 October 2025). (In Russian)
- Kolev, N.; Vlahova-Vangelova, D.; Balev, D.; Dragoev, S. Quality changes of cooked sausages influenced by the incorporation of a three-component natural antioxidant blend. BIO Web Conf. 2022, 45, 01006. [Google Scholar] [CrossRef]
- Kolev, N.D.; Vlahova-Vangelova, D.B.; Balev, D.K.; Dragoev, S.G. Stabilization of oxidative processes in cooked sausages by optimization of incorporated biologically active substances. Carp. J. Food Sci. Technol. 2022, 14, 180–188. [Google Scholar] [CrossRef]
- Bayır, H.; Şimşek, B.İ.; Bayır, Y. Hippophae rhamnoides L. botanical, medicinal, traditional, and current use of plant and fruits: A review. New Trend. Med. Sci. 2024, 5, 35–44. [Google Scholar] [CrossRef]
- Nazir, F.; Salim, R.; Bashir, M. Chemical and antioxidant properties of Sea buckthorn (Hippophae rhamnoides). Pharma Innov. J. 2017, 6, 173–176. [Google Scholar]







| Experience Number | Independent Variables | Dependent Variables | ||||||
|---|---|---|---|---|---|---|---|---|
| Encoded Values | Natural Values | Y1 | Y2 | Y3 | Y4 | |||
| Z1 | Z2 | X1, % | X2, % | AV, mg KOH/g | POV, meq O2/kg | TBARS, mg MDA/kg | Sensory-Assessed Cross-Sectional Surface | |
| 1 (Control) | - | - | 0 | 0 | 7.3 | 13.5 | 1.20 | 4.0 | 
| 2 | −1 | −1 | 0.025 | 0 | 7.1 | 13.0 | 1.15 | 4.1 | 
| 3 | −1 | 0 | 0.025 | 0.05 | 7.0 | 12.8 | 1.00 | 4.3 | 
| 4 | −1 | 1 | 0.025 | 0.1 | 6.8 | 12.5 | 0.95 | 4.2 | 
| 5 | 0 | −1 | 0.05 | 0 | 6.5 | 12.5 | 1.00 | 4.3 | 
| 6 | 0 | 0 | 0.05 | 0.05 | 6.3 | 12.3 | 0.91 | 4.5 | 
| 7 | 0 | 1 | 0.05 | 0.1 | 6.0 | 12.0 | 0.85 | 4.4 | 
| 8 | 0.5 | −1 | 0.075 | 0 | 4.0 | 7.2 | 0.60 | 4.6 | 
| 9 | 0.5 | 0 | 0.075 | 0.05 | 3.1 | 6.1 | 0.37 | 4.8 | 
| 10 | 0.5 | 1 | 0.075 | 0.1 | 2.9 | 5.8 | 0.32 | 4.7 | 
| 11 | 1 | −1 | 0.1 | 0 | 3.5 | 6.8 | 0.50 | 4.5 | 
| 12 | 1 | 0 | 0.1 | 0.05 | 2.6 | 5.0 | 0.26 | 4.6 | 
| 13 | 1 | 1 | 0.1 | 0.1 | 2.5 | 4.8 | 0.23 | 4.7 | 
| Name of the Parameters | Y1 | Y2 | Y3 | Y4 | 
|---|---|---|---|---|
| AV | POV | TBARS | Sensory-Assessed Cross-Sectional Surface | |
| The number of observations | 13 | 13 | 13 | 13 | 
| The arithmetic mean | 5.046154 | 9.561538 | 0.718462 | 4.438462 | 
| The standard error | 0.537875 | 0.984986 | 0.097236 | 0.068443 | 
| The median | 6 | 12 | 0.85 | 4.5 | 
| Fashion | - | 12.5 | 1 | 4.3 | 
| Standard deviation | 1.939336 | 3.551417 | 0.350591 | 0.246774 | 
| Sample variance | 3.761026 | 12.61256 | 0.122914 | 0.060897 | 
| Excess | −2.01967 | −2.09749 | −1.65423 | −0.88279 | 
| Asymmetry | −0.19393 | −0.24254 | −0.16501 | −0.32806 | 
| Interval | 4.8 | 8.7 | 0.97 | 0.8 | 
| Minimum | 2.5 | 4.8 | 0.23 | 4 | 
| Maximum | 7.3 | 13.5 | 1.2 | 4.8 | 
| The amount | 65.6 | 124.3 | 9.34 | 57.7 | 
| Coefficient of variation, % | 10.66% | 10.30% | 11.53% | 1.54% | 
| Designation | Coordinates of Stationary Points | Response Values | |||
|---|---|---|---|---|---|
| Encoded Values | Natural Values | ||||
| Z1 | Z2 | X1—Amount of Sea Buckthorn Powder Extract, % | X2—Amount of Additive “Kf Stabinject 101”, % | ||
| Y1max | - | - | 0 | 0 | 7.3 | 
| Y1min | 1 | 1 | 0.1 | 0.1 | 2.5 | 
| Y2max | - | - | 0 | 0 | 13.5 | 
| Y2min | 1 | 1 | 0.1 | 0.1 | 4.8 | 
| Y3max | - | - | 0 | 0 | 1.2 | 
| Y3min | 1 | 1 | 0.1 | 0.1 | 0.23 | 
| Y4max | 0.5 | 0 | 0.075 | 0.05 | 4.8 | 
| Y4min | - | - | 0 | 0 | 4 | 
| Name of the Variable | Fischer’s Criterion (F-Criterion) | Probability of a Null Hypothesis for the F-Criterion (p) | Coefficient of the Regression Equation | Student’s Criterion (t-Criterion) | Probability of the Null Hypothesis for the Coefficient of the Regression Equation (p-Level) | 
|---|---|---|---|---|---|
| The coefficient of the initial value | 35.22619 | 2.967 × 10−5 | 8.36410256 | 18.0066 | 2.97432 × 10−9 | 
| X1—amount of sea buckthorn powder extract | −53.83931624 | −8.07135 | 1.08929 × 10−5 | ||
| X2—amount of additive “Kf Stabinject 101” | −4.58974359 | −5.90201 | 0.388260005 | 
| Name of the Variable | Fischer’s Criterion (F-Criterion) | Probability of a Null Hypothesis for the F-Criterion (p) | Coefficient of the Regression Equation | Student’s Criterion (t-Criterion) | Probability of the Null Hypothesis for the Coefficient of the Regression Equation (p-Level) | 
|---|---|---|---|---|---|
| The coefficient of the initial value | 26.40222 | 0.000102 | 15.45897 | 16.05722 | 1.81 × 10−8 | 
| X1—amount of sea buckthorn powder extract | −97.3402 | −7.04067 | 3.54 × 10−5 | ||
| X2—amount of additive “Kf Stabinject 101” | −6.10256 | −5.57864 | 0.57563 | 
| Name of the Variable | Fischer’s Criterion (F-Criterion) | Probability of a Null Hypothesis for the F-Criterion (p) | Coefficient of the Regression Equation | Student’s Criterion (t-Criterion) | Probability of the Null Hypothesis for the Coefficient of the Regression Equation (p-Level) | 
|---|---|---|---|---|---|
| The coefficient of the initial value | 46.13984 | 8.93 × 10−6 | 1.348205 | 18.1028 | 4.67 × 10−6 | 
| X1—amount of sea buckthorn powder extract | −9.41197 | −8.8004 | 4.06 × 10−6 | ||
| X2—amount of additive “Kf Stabinject 101” | −1.87949 | −4.30377 | 0.043971 | 
| Name of the Variable | Fischer’s Criterion (F-Criterion) | Probability of a Null Hypothesis for the F-Criterion (p) | Coefficient of the Regression Equation | Student’s Criterion (t-Criterion) | Probability of the Null Hypothesis for the Coefficient of the Regression Equation (p-Level) | 
|---|---|---|---|---|---|
| The coefficient of the initial value | 18.63184 | 0.000424 | 4.023077 | 52.16974 | 1.62 × 10−13 | 
| X1—amount of sea buckthorn powder extract | 6.153846 | 5.556985 | 0.000242 | ||
| X2—amount of additive “Kf Stabinject 101” | 1.307692 | 4.548015 | 0.152659 | 
| Parameter | Control Sample | Experimental Sample | ||
|---|---|---|---|---|
| L*–1d | 47.00 c ± 0.20 | 48.52 b ± 0.23 | ||
| L*–30d | 48.98 ab ± 0.19 | 50.20 a ± 0.19 | ||
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Interfactor interaction | |
| <0.001 | <0.001 | 0.247 | ||
| a*–1d | 21.30 a ± 0.29 | 17.60 c ± 0.14 | ||
| a*–30d | 19.73 b ± 0.20 | 14.19 d ± 0.40 | ||
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Interfactor interaction | |
| <0.001 | <0.001 | 0.008 | ||
| b*–1d | 6.08 by ± 0.18 | 7.24 by ± 0.15 | ||
| b*–30d | 6.87 ax ± 0.14 | 8.38 ax ± 0.38 | ||
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Interfactor interaction | |
| 0.002 | <0.001 | 0.448 | ||
| Parameter | Control Sample | Experimental Sample | |
|---|---|---|---|
| Hardness, N–1d | 25.35 ay ± 0.94 | 19.56 by ± 0.46 | |
| Hardness, N–30d | 43.12 ax ± 0.92 | 31.21 bx ± 0.89 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Interfactor interaction | 
| 0.014 | 0.095 | 0.531 | |
| Cohesiveness–1d | 0.50 ± 0.12 | 0.45 ± 0.09 | |
| Cohesiveness–30d | 0.40 ± 0.07 | 0.45 ± 0.08 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Interfactor interaction | 
| 0.383 | 0.343 | 0.385 | |
| Springiness–1d | 0.61 ± 0.12 | 0.54 ± 0.10 | |
| Springiness–30d | 0.52 ± 0.06 | 0.60 ± 0.06 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Interfactor interaction | 
| 0.831 | 0.869 | 0.221 | |
| Gumminess, N–1d | 12.16 ay ± 0.29 | 9.58 ay ± 0.36 | |
| Gumminess, N–30d | 19.29 ax ± 0.52 | 14.85 bx ± 0.54 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Interfactor interaction | 
| 0.002 | 0.032 | 0.514 | |
| Chewiness, N–cm 1d | 7.60 ay ± 0.35 | 5.69 by ± 0.39 | |
| Chewiness, N–cm 30d | 11.29 ax ± 0.36 | 9.57 ax ± 0.44 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Interfactor interaction | 
| 0.004 | 0.097 | 0.929 | |
| Resilience–1d | 0.18 ± 0.08 | 0.13 ± 0.05 | |
| Resilience–30d | 0.12 ± 0.04 | 0.15 ± 0.05 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Interfactor interaction | 
| 0.386 | 0.738 | 0.168 | |
| Parameter | Control Sample | Experimental Sample | ||
|---|---|---|---|---|
| AV, mg KOH/g–1d | 0.93 d ± 0.08 | 1.16 c ± 0.08 | ||
| AV, mg KOH/g–30d | 1.85 b ± 0.10 | 2.40 a ± 0.11 | ||
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Interfactor interaction | |
| 0.0087 | <0.001 | <0.001 | ||
| POV, meqO2/kg–1d | 0.24 c ± 0.05 | 0.43 b ± 0.03 | ||
| POV, meqO2/kg–30d | 1.32 a ± 0.13 | 0.99 a ± 0.05 | ||
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Interfactor interaction | |
| <0.001 | 0.221 | 0.001 | ||
| TBARS, mg MDA/kg–1d | 0.16 ay ± 0.03 | 0.12 ay ± 0.04 | ||
| TBARS, mg MDA/kg–30 d | 0.67 ax ± 0.10 | 0.68 ax ± 0.03 | ||
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Interfactor interaction | |
| <0.001 | 0.781 | 0.493 | ||
| FAN, mg Ala/g–1d | 1.96 ax ± 0.12 | 1.82 ax ± 0.13 | ||
| FAN, mg Ala/g–30d | 1.05 by ± 0.22 | 1.60 ax ± 0.17 | ||
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Interfactor interaction | |
| 0.020 | 0.316 | 0.110 | ||
| Protein carbonyls, nmol DNPH/g protein–1d | < LoD | < LoD | ||
| Protein carbonyls, nmol DNPH/g protein–30d | < LoD | < LoD | ||
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Interfactor interaction | |
| - | - | - | ||
| Parameter | Control Sample | Experimental Sample | p-Value | 
|---|---|---|---|
| TPC, mg GAE/kg | 2351.34 b ± 13.17 | 2932.10 a ± 8.22 | 0.0146 | 
| % Inhibition of DPPH | 42.44 b ± 1.55 | 63.94 a ± 1.35 | 0.0146 | 
| FRAP, mmol TE/kg | 4832.33 b ± 6.25 | 5540.93 a ± 16.45 | 0.0209 | 
| Samples | Time of Storage at 0–4 °C | ||
|---|---|---|---|
| Day 1 | Day 15 | Day 30 | |
| Total aerobic plate count (TAPC), CFU/g | |||
| Control sample | Not detected | Not detected | Not detected | 
| Experimental sample | Not detected | Not detected | Not detected | 
| Molds, yeasts, and other spore-forming microorganisms, CFU/g | |||
| Control sample | Not detected | Not detected | Not detected | 
| Experimental sample | Not detected | Not detected | Not detected | 
| Presence of coliforms in 1.0 g of product, CFU/g | |||
| Control sample | Not detected | Not detected | Not detected | 
| Experimental sample | Not detected | Not detected | Not detected | 
| Presence of Salmonella spp. in 25 g of product, CFU/g | |||
| Control sample | Not detected | Not detected | Not detected | 
| Experimental sample | Not detected | Not detected | Not detected | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alimardanova, M.K.; Abzhanova, S.A.; Kurmanali, A.N.; Kolev, N.D.; Yankova-Nikolova, A.D.; Nacheva-Dimitrova, N.N.; Vlahova-Vangelova, D.B.; Balev, D.K.; Dragoev, S.G. Functional and Oxidative Stability of Traditional Kazakh Molded Smoked Ham Affect by Sea Buckthorn (Hippophae rhamnoides) Extract Addition. Appl. Sci. 2025, 15, 11586. https://doi.org/10.3390/app152111586
Alimardanova MK, Abzhanova SA, Kurmanali AN, Kolev ND, Yankova-Nikolova AD, Nacheva-Dimitrova NN, Vlahova-Vangelova DB, Balev DK, Dragoev SG. Functional and Oxidative Stability of Traditional Kazakh Molded Smoked Ham Affect by Sea Buckthorn (Hippophae rhamnoides) Extract Addition. Applied Sciences. 2025; 15(21):11586. https://doi.org/10.3390/app152111586
Chicago/Turabian StyleAlimardanova, Mariam K., Sholpan A. Abzhanova, Aktoty N. Kurmanali, Nikolay D. Kolev, Anastasya D. Yankova-Nikolova, Nevena N. Nacheva-Dimitrova, Desislava B. Vlahova-Vangelova, Dessislav K. Balev, and Stefan G. Dragoev. 2025. "Functional and Oxidative Stability of Traditional Kazakh Molded Smoked Ham Affect by Sea Buckthorn (Hippophae rhamnoides) Extract Addition" Applied Sciences 15, no. 21: 11586. https://doi.org/10.3390/app152111586
APA StyleAlimardanova, M. K., Abzhanova, S. A., Kurmanali, A. N., Kolev, N. D., Yankova-Nikolova, A. D., Nacheva-Dimitrova, N. N., Vlahova-Vangelova, D. B., Balev, D. K., & Dragoev, S. G. (2025). Functional and Oxidative Stability of Traditional Kazakh Molded Smoked Ham Affect by Sea Buckthorn (Hippophae rhamnoides) Extract Addition. Applied Sciences, 15(21), 11586. https://doi.org/10.3390/app152111586
 
        



 
       