Energy and Exergy Assessment of a Solar Power Tower Integrated Subcritical-CO2 Brayton–Rankine–Desalination Multigeneration System for Mediterranean Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. System Description
2.2. System Modeling
- All system components were modeled under steady-state flow assumptions.
- Kinetic and potential energies were neglected.
- Heat losses within the system are considered negligible, with the exception of the SPT system.
- A pressure drop of 0.1 bar was assumed for each heat exchanger in the Sb-CO2, sRC, and DS.
- In the receiver of the SPT, the pressure drop was accepted as 15 bar.
- Ambient temperature changes between 12 and 30.7 °C according to the months during a year.
- The cooling water inlet temperature is 20 °C
- For the heat exchangers, the minimum pinch-point temperature difference is taken as 10 °C.
- The pump and compressor are modeled with isentropic efficiencies of 80% and 85%, respectively.
- Isentropic efficiencies of 85% for the Sb-CO2 turbine and 86% for the sRC turbine are adopted in the model.
2.3. Thermodynamic Model
2.4. Environmental Analysis
2.5. Economic Evaluation
3. Results and Discussion
4. Conclusions
- The integrated system delivered electricity and freshwater concurrently throughout the year. Total net power increased from 5.74 MW in January to 23.48 MW in July, while the freshwater production rate rose from 3.48 kg/s to 14.25 kg/s. The monthly net thermal efficiency of the integrated configuration (Sb-CO2-sRC-DS) ranged from 0.39 to 0.43. At the subcycle level, the Sb-CO2 and sRC maintained thermal efficiencies of approximately 0.12 and 0.13, respectively.
- A component-based analysis indicates that the largest irreversibilities occur in the solar receiver (24.97 MW exergy destruction; = 65.46%) and the Sb-CO2 cooler (3.02 MW; = 10.3%). In contrast, the Rankine-side heat exchangers and the turbine achieve higher exergetic efficiencies (83.74–90.53%), reflecting comparatively lower exergy destruction. Consequently, the receiver, HEX-2, and the Sb-CO2 cooler are identified as the primary targets for performance improvement.
- In the Sb-CO2, thermal efficiency improves with higher turbine inlet temperature but is highly sensitive to pressure (10 bar and 1100 °C optimum); beyond 10 bar, further pressurization causes efficiency losses due to increased compressor work. By contrast, in the sRC, efficiency increases steadily with rising pressure (200 bar and 790 °C optimum).
- The analysis confirms that higher solar availability directly enhances the system’s capacity for CO2 mitigation, enabling a seasonal reduction of up to 27,434.55 kg-CO2/h, which underscores the significant environmental benefit of the proposed configuration.
- In addition, the conducted economic evaluation clearly demonstrates the investment feasibility of the proposed system. The analysis revealed that the total investment cost of the configuration is approximately 154.6 million USD, while the simple payback period is estimated to be 15.3 years. Although the payback period is slightly longer compared to hybrid or fossil-assisted systems, the complete reliance on solar energy eliminates both fuel costs and carbon emissions, thereby ensuring long-term economic and environmental sustainability. Furthermore, the positive NPVR value indicates that the system is economically profitable and investment-worthy. These findings confirm that the proposed SPT–Sb-CO2–sRC–DS integrated system offers not only strong energy and exergy performance but also a financially viable and sustainable solution for large-scale multigeneration applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
| area () | Subscripts | ||
| direct normal radiation (W/m2) | condenser | ||
| exergy flow () | critic | ||
| specific exergy () | cooling water | ||
| heat loss factor | destruction | ||
| enthalpy (kJ/kg) | det | deterioration | |
| HeX | heat exchanger | p | evaporator |
| mass flow rate () | inlet | ||
| RC | Rankine cycle | isen | isentropic |
| P | pressure () | opt | optical |
| heat flow () | outlet | ||
| s-CO2 | supercritical CO2 Brayton cycle | regen | regenerator |
| molar universal gas constant | ph | physical | |
| entropy (); saturation | preheater | ||
| Sb-CO2 | subcritical-CO2 Brayton cycle | rec | receiver |
| temperature () | recev | solar receiver | |
| atmosphere temperature () | heat transfer surface | ||
| TIC | total investment cost | superheater | |
| heat transfer coefficient () | Ts | thermal storage | |
| V | volume (m3) | turbine | |
| power () | Ap | aperture | |
| HTF | heat transfer fluid | br | brine |
| SPT | solar power tower | fr | freshwater |
| GT | gas turbine | Tsun | Sun apparent temperature |
| f | fuel | ||
| req | required | ||
| mw | molecular weight | ||
| dec | decreased | ||
| Greek letters | |||
| energy efficiency () | |||
| effectiveness () |
References
- Santhosh, M.; Venkaiah, C.; Kumar, D.M.V. Current advances and approaches in wind speed and wind power forecasting for improved renewable energy integration: A review. Eng. Rep. 2020, 2, e12178. [Google Scholar] [CrossRef]
- Kaushik, S.; Reddy, V.S.; Tyagi, S. Energy and exergy analyses of thermal power plants: A review. Renew. Sustain. Energy Rev. 2011, 15, 1857–1872. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Liu, W.; Hu, B.; Lou, J.; Zhao, P. Multi-objective optimization design of a solar-powered integrated multi-generation system based on combined SCO2 Brayton cycle and ORC using machine learning approach. Appl. Therm. Eng. 2024, 252, 123684. [Google Scholar] [CrossRef]
- Singh, U.P.; Chandra, S. Optimal cleaning schedule in solar PV using the biography-based helianthus optimization enabled coupled deep network. Sol. Energy 2023, 266, 112138. [Google Scholar] [CrossRef]
- González-Barredo, S.; Reyes-Belmonte, M.Á. Renewable Energy Curtailment Storage in Molten Salt and Solid Particle Solar Thermal Power Plants: A Comparative Analysis in Spain. Appl. Sci. 2025, 15, 6162. [Google Scholar] [CrossRef]
- Linares, J.I.; Martín-Colino, A.; Arenas, E.; Montes, M.J.; Cantizano, A.; Pérez-Domínguez, J.R. A Novel Hybrid CSP-PV Power Plant Based on Brayton Supercritical CO2 Thermal Machines. Appl. Sci. 2023, 13, 9532. [Google Scholar] [CrossRef]
- Zhang, X.; Ge, Y. Power Generation with Renewable Energy and Advanced Supercritical CO2 Thermodynamic Power Cycles: A Review. Energies 2023, 16, 7781. [Google Scholar] [CrossRef]
- Praveenkumar, S.; Agyekum, E.B.; Kumar, A.; Ampah, J.D.; Afrane, S.; Amjad, F.; Velkin, V.I. Techno-Economics and the Identification of Environmental Barriers to the Development of Concentrated Solar Thermal Power Plants in India. Appl. Sci. 2022, 12, 10400. [Google Scholar] [CrossRef]
- Li, Q.; Erqi, E.; Qiu, Y.; Wang, J.; Zhang, Y. Conceptual design of novel He-SCO2 Brayton cycles for ultra-high-temperature concentrating solar power. Energy Convers. Manag. 2022, 260. [Google Scholar] [CrossRef]
- Deng, Q.; Liu, A.; Li, J.; Feng, Z. A review on supercritical CO2 and CO2-based mixture in power cycle. Energy Convers. Manag. 2025, 324, 119295. [Google Scholar] [CrossRef]
- Awan, A.B.; Mouli, K.V.C.; Zubair, M. Performance enhancement of solar tower power plant: A multi-objective optimization approach. Energy Convers. Manag. 2020, 225, 113378. [Google Scholar] [CrossRef]
- Cagnoli, M.; de la Calle, A.; Pye, J.; Savoldi, L.; Zanino, R. A CFD-supported dynamic system-level model of a sodium-cooled billboard-type receiver for central tower CSP applications. Sol. Energy 2019, 177, 576–594. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, L.; Ma, W.; Yu, Z.; Fu, L.; Li, M.; Mao, D. Life cycle assessment of typical tower solar thermal power station in China. Energy 2024, 309, 133154. [Google Scholar] [CrossRef]
- Russo, V.; Napoli, G.; Rovense, F.; Di Ascenzi, P.; Giorgi, G.; Mongibello, L.; Cancro, C.; Ciniglio, G.; Gaggioli, W. Investigations on Solidification and Melting Processes of the Solar Salt Mixture in Evacuated and Non-Evacuated Receiver Tubes. Energies 2025, 18, 4492. [Google Scholar] [CrossRef]
- Xia, G.; Egerer, U.; Letizia, S.; Debnath, M.; Jager, D.; Dana, S.; Yellapantula, S. Characterization of wind conditions and impact on wind loading at an operational parabolic trough concentrating solar power plant using LiDAR observations. Sol. Energy 2025, 300, 113844. [Google Scholar] [CrossRef]
- Brano, V.L.; Guarino, S.; Buscemi, A.; Bonomolo, M. Development of Neural Network Prediction Models for the Energy Producibility of a Parabolic Dish: A Comparison with the Analytical Approach. Energies 2022, 15, 9298. [Google Scholar] [CrossRef]
- Parveh, A.; Baneshi, M. Transient Modelling and Economic Viability of Parabolic Dish Concentrating Photovoltaic-Thermal (PD-CPVT) Systems Across Diverse Climatic Zones. Case Stud. Therm. Eng. 2025, 74, 106949. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, S.; Zou, T. Design and comparison study of a novel linear Fresnel reflector solar ORC-driven hydrogen production system using different working fluids. Case Stud. Therm. Eng. 2025, 71, 106187. [Google Scholar] [CrossRef]
- Ellingwood, K.; Safdarnejad, S.M.; Rashid, K.; Powell, K. Leveraging Energy Storage in a Solar-Tower and Combined Cycle Hybrid Power Plant. Energies 2019, 12, 40. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Z.; Duan, Y. Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system. Energy 2020, 201, 117676. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, X.; Su, W.; Xing, L.; Zhou, N. Thermal-economic analysis of a novel solar power tower system with CO2-based mixtures at typical days of four seasons. Energy 2023, 276, 127602. [Google Scholar] [CrossRef]
- Mohan, G.; Venkataraman, M.B.; Coventry, J. Sensible energy storage options for concentrating solar power plants operating above 600 °C. Renew. Sustain. Energy Rev. 2019, 107, 319–337. [Google Scholar] [CrossRef]
- Ahmad, F.; Mahatab, F.; Mahmud, S.; Ehsan, M.M. Comprehensive Analysis of a Hybrid Solar Assisted Supercritical CO2 Reheat Recompression Brayton Cycle for Enhanced Performance. Int. J. Thermofluids 2024, 24, 100926. [Google Scholar] [CrossRef]
- Nedaei, N.; Azizi, S.; Farshi, L.G. Performance assessment and multi-objective optimization of a multi-generation system based on solar tower power: A case study in Dubai, UAE. Process. Saf. Environ. Prot. 2022, 161, 295–315. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, L.; Yao, Y.; Zhang, Y.; He, J.; Tian, H.; Pei, G.; Shu, G. Supercritical CO2 Brayton cycle for space exploration: New perspectives base on power density analysis. Energy 2024, 313, 133772. [Google Scholar] [CrossRef]
- Bai, W.; Li, H.; Zhang, X.; Qiao, Y.; Zhang, C.; Gao, W.; Yao, M. Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants. Energy 2022, 261, 124780. [Google Scholar] [CrossRef]
- Moreno-Gamboa, F.; Nieto-Londoño, C.; Sanin-Villa, D. Thermoeconomic analysis for hybrid solar Brayton cycles operating with different working fluids. Int. J. Thermofluids 2024, 22, 100693. [Google Scholar] [CrossRef]
- Khan, Y.; Apparao, D.; Gawande, S.; Singh, N.; Bisht, Y.S.; Singh, P. Performance assessment and working fluid selection of the novel combined helium Brayton cycle and organic rankine cycle based on solar power tower for sustainable generation. Iran. J. Sci. Technol. Trans. Mech. Eng. 2024, 48, 1901–1916. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Lund, P.D.; Zhu, H. Thermal Performance Analysis of a Direct-Heated Recompression Supercritical Carbon Dioxide Brayton Cycle Using Solar Concentrators. Energies 2019, 12, 4358. [Google Scholar] [CrossRef]
- Kowalski, R.; Kuczyński, S.; Łaciak, M.; Szurlej, A.; Włodek, T. A Case Study of the Supercritical CO2-Brayton Cycle at a Natural Gas Compression Station. Energies 2020, 13, 2447. [Google Scholar] [CrossRef]
- Sánchez, D.; Patiño, J.; Sanz-Kock, C.; Llopis, R.; Cabello, R.; Torrella, E. Energetic evaluation of a CO2 refrigeration plant working in supercritical and subcritical conditions. Appl. Therm. Eng. 2014, 66, 227–238. [Google Scholar] [CrossRef]
- Lei, X.; Peng, R.; Guo, Z.; Li, H.; Ali, K.; Zhou, X. Experimental comparison of the heat transfer of carbon dioxide under subcritical and supercritical pressures. Int. J. Heat Mass Transf. 2020, 152, 119562. [Google Scholar] [CrossRef]
- Santos, M.; Miguel-Barbero, C.; Merchán, R.; Medina, A.; Hernández, A.C. Roads to improve the performance of hybrid thermosolar gas turbine power plants: Working fluids and multi-stage configurations. Energy Convers. Manag. 2018, 165, 578–592. [Google Scholar] [CrossRef]
- Dincer, I.; Bicer, Y. Integrated Energy Systems for Multigeneration; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Ustun, I.; Karakus, C.; Yagli, H. Empirical models for estimating the daily and monthly global solar radiation for Mediterranean and Central Anatolia region of Turkey. Int. J. Glob. Warm. 2020, 20, 249. [Google Scholar] [CrossRef]
- Üstün, I.; Üneş, F.; Mert, I.; Karakuş, C. A comparative study of estimating solar radiation using machine learning approaches: DL, SMGRT, and ANFIS. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 44, 10322–10345. [Google Scholar] [CrossRef]
- Yağlı, H.; Karakuş, C.; Koç, Y.; Çevik, M.; Uğurlu, R.; Koç, A. Designing and exergetic analysis of a solar power tower system for Iskenderun region. Int. J. Exergy 2019, 28, 96–112. [Google Scholar] [CrossRef]
- Köse, Ö.; Koç, Y.; Yağlı, H. Energy, exergy, economy and environmental (4E) analysis and optimization of single, dual and triple configurations of the power systems: Rankine Cycle/Kalina Cycle, driven by a gas turbine. Energy Convers. Manag. 2021, 227, 113604. [Google Scholar] [CrossRef]
- Köse, Ö. Solar energy storage assisted green hydrogen production: A thermo-economic assessment. Int. J. Hydrogen Energy 2025, 170, 151192. [Google Scholar] [CrossRef]
- Dincer, I. Thermodynamics: A Smart Approach; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Yilmaz, F. Thermodynamic performance evaluation of a novel solar energy based multigeneration system. Appl. Therm. Eng. 2018, 143, 429–437. [Google Scholar] [CrossRef]
- Khatoon, S.; Kim, M.H. Performance analysis of carbon dioxide based combined power cycle for concentrating solar power. Energy Convers. Manag. 2020, 205, 112416. [Google Scholar] [CrossRef]
- Yağli, H. Examining the receiver heat loss, parametric optimization and exergy analysis of a solar power tower (SPT) system. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 42, 2155–2180. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Boles, M.A. Thermodynamics: An engineering approach. Sea 2002, 1000, 287–293. [Google Scholar]
- Cao, Y.; Habibi, H.; Zoghi, M.; Raise, A. Waste heat recovery of a combined regenerative gas turbine—Recompression supercritical CO2 Brayton cycle driven by a hybrid solar-biomass heat source for multi-generation purpose: 4E analysis and parametric study. Energy 2021, 236, 121432. [Google Scholar] [CrossRef]
- Zoghi, M.; Habibi, H.; Choubari, A.Y.; Ehyaei, M. Exergoeconomic and environmental analyses of a novel multi-generation system including five subsystems for efficient waste heat recovery of a regenerative gas turbine cycle with hybridization of solar power tower and biomass gasifier. Energy Convers. Manag. 2021, 228, 113702. [Google Scholar] [CrossRef]
- Temiz, M.; Dincer, I. Design and analysis of a concentrated solar power-based system with hydrogen production for a resilient community. Energy 2024, 307, 132628. [Google Scholar] [CrossRef]
- Ma, N.; Meng, F.; Hong, W.; Li, H.; Niu, X. Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture. Renew. Energy 2023, 203, 649–663. [Google Scholar] [CrossRef]
- Yuksel, Y.E.; Ozturk, M.; Dincer, I. Development of a novel combined energy plant for multigeneration with hydrogen and ammonia production. Int. J. Hydrogen Energy 2021, 46, 28980–28994. [Google Scholar] [CrossRef]
- Koç, Y.; Yağlı, H.; Görgülü, A.; Koç, A. Analysing the performance, fuel cost and emission parameters of the 50 MW simple and recuperative gas turbine cycles using natural gas and hydrogen as fuel. Int. J. Hydrogen Energy 2020, 45, 22138–22147. [Google Scholar] [CrossRef]
- Ashwni; Sherwani, A.F.; Tiwari, D. Exergy, economic and environmental analysis of organic Rankine cycle based vapor compression refrigeration system. Int. J. Refrig. 2021, 126, 259–271. [Google Scholar] [CrossRef]
- Wang, X.; Dai, Y. Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study. Appl. Energy 2016, 170, 193–207. [Google Scholar] [CrossRef]
- Mamaghani, A.H.; Najafi, B.; Shirazi, A.; Rinaldi, F. 4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system. Energy 2015, 82, 650–663. [Google Scholar] [CrossRef]
- Jamil, M.A.; Shahzad, M.W.; Zubair, S.M. A comprehensive framework for thermoeconomic analysis of desalination systems. Energy Convers. Manag. 2020, 222, 113188. [Google Scholar] [CrossRef] [PubMed]
- Colakoglu, M.; Durmayaz, A. Energy, exergy, economic and emission saving analysis and multiobjective optimization of a new multi-generation system based on a solar tower with triple combined power cycle. Sustain. Energy Technol. Assess. 2022, 52, 102289. [Google Scholar] [CrossRef]
- Özahi, E.; Tozlu, A.; Abuşoğlu, A. Thermoeconomic multi-objective optimization of an organic Rankine cycle (ORC) adapted to an existing solid waste power plant. Energy Convers. Manag. 2018, 168, 308–319. [Google Scholar] [CrossRef]
- Tiwari, D.; Sherwani, A.F.; Kumar, N. Optimization and thermo-economic performance analysis of organic Rankine cycles using mixture working fluids driven by solar energy. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 41, 1890–1907. [Google Scholar] [CrossRef]
- Behar, O.; Sbarbaro, D.; Morán, L. A Practical Methodology for the Design and Cost Estimation of Solar Tower Power Plants. Sustainability 2020, 12, 8708. [Google Scholar] [CrossRef]
- Nondy, J.; Gogoi, T.K. Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system. Energy 2021, 233, 121135. [Google Scholar] [CrossRef]
- Baydar, C.; Koç, Y.; Yağlı, H.; Koç, A.; Depci, T.; Aygün, M.K. Experimental detection of inadequacies and improvements for a geothermal power plant using single shaft double turbine binary Organic Rankine cycle as power system. Energy 2023, 283, 128370. [Google Scholar] [CrossRef]
- Lu, X.; Du, B.; Zhu, W.; Yang, Y.; Xie, C.; Tu, Z.; Zhao, B.; Zhang, L.; Wang, J.; Yang, Z. Multi-criteria assessment of an auxiliary energy system for desalination plant based on PEMFC-ORC combined heat and power. Energy 2024, 290, 130163. [Google Scholar] [CrossRef]
- Goyal, N.; Aggarwal, A.; Kumar, A. Financial feasibility of concentrated solar power with and without sensible heat storage in hot and dry Indian climate. J. Energy Storage 2022, 52, 105002. [Google Scholar] [CrossRef]
- Federal Reserve Bank of St. Louis (FRED). Average Price: Electricity per Kilowatt-Hour in U.S. City Average (APU000072610). Available online: https://fred.stlouisfed.org/series/APU000072610 (accessed on 19 October 2025).
- Di Marcoberardino, G.; Morosini, E.; Manzolini, G. Preliminary investigation of the influence of equations of state on the performance of CO2 + C6F6 as innovative working fluid in transcritical cycles. Energy 2022, 238, 121815. [Google Scholar] [CrossRef]
- Córdoba, J.; Valencia, G.; Molina, B. Energy, Exergy, and Exergo-Sustainability Analysis of a Brayton S-CO2/Kalina Operating in Araçuaí, Brazil, Using Solar Energy as a Thermal Source. Resources 2025, 14, 31. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, M.; Li, Z.; Xu, H.; Zheng, K.; Han, M.; Ni, M. Performance analysis and optimization of a zero-emission solar-driven hydrogen production system based on solar power tower plant and protonic ceramic electrolysis cells. Int. J. Hydrogen Energy 2024, 83, 1415–1428. [Google Scholar] [CrossRef]
- Siddiqui, M.A.; Alsaduni, I. Performance assessment of solar tower collector based integrated system for the cogeneration of power and cooling. Heliyon 2024, 10, e39993. [Google Scholar] [CrossRef] [PubMed]
- Battisti, F.G.; Klein, C.F.; Escobar, R.A.; Cardemil, J.M. Exergy Analysis and Off-Design Modeling of a Solar-Driven Supercritical CO2 Recompression Brayton Cycle. Energies 2023, 16, 4755. [Google Scholar] [CrossRef]














| Parameter | Value | |
|---|---|---|
| SPT | Direct normal irradiation | 244.9–970.3 W/m2 |
| Heliostat field efficiency | 0.6945 | |
| Heliostat mirror surface area | 36 m2 | |
| Total heliostat area | 180,000 m2 | |
| Number of heliostats | 5000 | |
| Receiver efficiency | 0.93 | |
| Sun apparent temperature | 5770 K | |
| Receiver outlet temperature | 1150 | |
| Sb-CO2 Brayton Cycle | Compressor efficiency | 0.85 |
| Compressor inlet temperature | 20 °C | |
| Heat exchanger effectiveness | 0.85 | |
| Compressor inlet pressure | 1 bar | |
| Regenerator effectiveness | 0.85 | |
| Turbine efficiency | 0.85 | |
| Turbine inlet temperature | 800–1100 °C | |
| Cooler cooling water inlet temperature | 20 °C | |
| sRC | Atmospheric pressure | 101.3 kPa |
| Evaporator effectiveness | 0.85 | |
| Condenser cooling water inlet temperature | 20 °C | |
| Turbine efficiency | 0.86 | |
| Pump efficiency | 0.80 |
| Component | Energy Balance | Exergy Balance |
|---|---|---|
| Pump-1 | ||
| Receiver | ||
| HEX-1 | ||
| Superheater | ||
| Evaporator | ||
| Preheater | ||
| Compressor | ||
| Regenerator | ||
| Cooler | ||
| Turbine-1 | ||
| Pump-2 | ||
| Turbine-2 | ||
| Condenser | ||
| HEX-2 | ||
| Coefficient (Molar) | Chemical Species | |
|---|---|---|
| Chemical content | 0.93 | |
| 0.033 | ||
| 0.01 | ||
| 0.01 | ||
| 0.017 |
| Equipment | Correlation |
|---|---|
| SPT | |
| Pump-1 | |
| HEX-1 | |
| Compressor | |
| Regenerator | |
| Turbine-1 | |
| Cooler | |
| Pump-2 | |
| Preheater | |
| Evaporator | |
| Superheater | |
| Turbine-2 | |
| Condenser | |
| HEX-2 | |
| DS |
| System Configuration | Working Fluid | Main Outputs | Net Power | Thermal Efficiency | Exergy Efficiency | CO2 Reduction | Freshwater Production | Ref. |
|---|---|---|---|---|---|---|---|---|
| MW | % | % | kg-CO2/h | kg/s | ||||
| SPT + s-CO2+ ORC + ARC | s-CO2/R123/R245fa/Toluene | Power + Cooling | 3.2 | 52.39 | 46.67 | - | - | [67] |
| SPT + s-CO2 | s-CO2 | Power | 25 | 39 | 65% | - | - | [68] |
| SPT + Hybrid Brayton | s-CO2/Air/He/N2 | Power | 5 | 40 | - | - | - | [33] |
| SPT + sCO2 + TES | s-CO2 | Power | 50 | 35.53 | - | - | - | [20] |
| SPT + Tr-CO2 + C6F6 | CO2 + C6F6 | Power | 100 | 41.9 | - | - | - | [64] |
| SPT + s-CO2 + ARC + HDH + PEM | He/LiBr–H2O | Power/ Cooling/Water H2 | 8.32 | 46.49 | 39.15 | - | 3.16 | [24] |
| SPT + Sb-CO2 + sRC + DS | Sb-CO2/Water | Power + Water | 23.48 | 39–43 | 0.22 | 27,434.55 | 14.25 | Present work |
| State Point | Working Fluid | P (bar) | T (°C) | ṁ (kg/s) | h (kJ/kg) | s (kJ/kg·K) | e (kJ/kg) |
|---|---|---|---|---|---|---|---|
| 1 | water | 2 | 120 | 24 | 503.94 | 1.528 | 48.22 |
| 2 | water | 28.7 | 120 | 24 | 507.49 | 1.530 | 51.22 |
| 3 | water | 2 | 1150 | 24 | 5021.03 | 9.941 | 2022.55 |
| 4 | water | 2 | 800 | 24 | 4159.78 | 9.250 | 1370.09 |
| 5 | water | 2 | 522 | 24 | 3534.11 | 8.577 | 947.92 |
| 6 | water | 2 | 390 | 24 | 3255.62 | 8.194 | 785.16 |
| 7 | water | 2 | 120 | 24 | 2665.72 | 7.026 | 548.21 |
| 8 | CO2 | 1 | 20 | 39.64 | 16.57 | 4.847 | −0.634 |
| 9 | CO2 | 10 | 227 | 39.64 | 209.95 | 4.906 | 174.70 |
| 10 | CO2 | 10 | 689 | 39.64 | 733.79 | 5.641 | 476.62 |
| 11 | CO2 | 10 | 1100 | 39.64 | 1255.40 | 6.091 | 862.05 |
| 12 | CO2 | 1 | 764 | 39.64 | 826.36 | 6.166 | 410.27 |
| 13 | water | 1 | 316 | 39.64 | 302.52 | 5.512 | 84.39 |
| 14 | water | 1.5 | 20 | 70 | 84.06 | 0.296 | 0.634 |
| 15 | water | 1.4 | 58 | 70 | 244.35 | 0.810 | 5.598 |
| 16 | water | 0.1 | 33 | 9.21 | 137.77 | 0.476 | 0.001 |
| 17 | water | 201 | 35 | 9.21 | 162.92 | 0.493 | 20.20 |
| 18 | water | 200 | 355 | 9.21 | 1685.17 | 3.792 | 545.36 |
| 19 | water | 200 | 366 | 9.21 | 2411.08 | 4.929 | 927.36 |
| 20 | water | 200 | 790 | 9.21 | 4041.94 | 7.029 | 1923.54 |
| 21 | water | 0.1 | 33 | 9.21 | 2451.70 | 8.038 | 28.54 |
| 22 | water | 2 | 20 | 647.67 | 84.14 | 0.297 | 0.683 |
| 23 | water | 2 | 28 | 647.67 | 117.04 | 0.407 | 0.104 |
| 24 | Seawater | 1.4 | 20 | 291.76 | 77.38 | 0.330 | 6.996 |
| 25 | Seawater | 1.2 | 50 | 291.76 | 192.92 | 0.766 | −9.012 |
| 26 | Seawater | 1.1 | 95 | 291.76 | 370.78 | 1.330 | −1.716 |
| 27 | Seawater | 0.3 | 66 | 277.51 | 254.39 | 0.973 | −8.967 |
| 28 | Seawater | 1 | 66 | 277.51 | 254.48 | 0.982 | −11.464 |
| 29 | Freshwater | 0.3 | 65 | 14.25 | 271.93 | 0.893 | 8.173 |
| 30 | Freshwater | 20 | 65 | 14.25 | 274.44 | 0.895 | 10.240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Üstün, İ.; Karakuş, C.; Köse, Ö. Energy and Exergy Assessment of a Solar Power Tower Integrated Subcritical-CO2 Brayton–Rankine–Desalination Multigeneration System for Mediterranean Applications. Appl. Sci. 2025, 15, 11544. https://doi.org/10.3390/app152111544
Üstün İ, Karakuş C, Köse Ö. Energy and Exergy Assessment of a Solar Power Tower Integrated Subcritical-CO2 Brayton–Rankine–Desalination Multigeneration System for Mediterranean Applications. Applied Sciences. 2025; 15(21):11544. https://doi.org/10.3390/app152111544
Chicago/Turabian StyleÜstün, İsmail, Cuma Karakuş, and Özkan Köse. 2025. "Energy and Exergy Assessment of a Solar Power Tower Integrated Subcritical-CO2 Brayton–Rankine–Desalination Multigeneration System for Mediterranean Applications" Applied Sciences 15, no. 21: 11544. https://doi.org/10.3390/app152111544
APA StyleÜstün, İ., Karakuş, C., & Köse, Ö. (2025). Energy and Exergy Assessment of a Solar Power Tower Integrated Subcritical-CO2 Brayton–Rankine–Desalination Multigeneration System for Mediterranean Applications. Applied Sciences, 15(21), 11544. https://doi.org/10.3390/app152111544

