Beyond VO2 Peak: Hemodynamic Profiling After Bariatric Surgery Using the Fick Principle
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
- Two weeks prior to the surgery (before);
- Three months after the surgery (3 m);
- Six months after the surgery (6 m).
2.2. Cardiopulmonary Exercise Testing (CPET)
2.3. Inert Gas Rebreathing (IGR)
2.4. Ethical Issues
2.5. Statistical Analysis
3. Results
Descriptive Characteristics of the Study Population
- Group Q1: increase in AVDiff, decrease in CO (↑AVDiff, ↓CO);
- Group Q2: increase in both AVDiff and CO (↑AVDiff, ↑CO);
- Group Q3: decrease in AVDiff, increase in CO (↓AVDiff, ↑CO);
- Group Q4: decrease in both AVDiff and CO (↓AVDiff, ↓CO).
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AT | Anaerobic Threshold |
| AVDiff | Arteriovenous Oxygen Difference |
| BMI | Body Mass Index |
| BPD-DS | Biliopancreatic Diversion with Duodenal Switch |
| CaO2 | Arterial Oxygen Content |
| CO | Cardiac Output |
| CPET | Cardiopulmonary Exercise Testing |
| CvO2 | Venous Oxygen Content |
| DASI | Duke Activity Status Index |
| ESS | Epworth Sleepiness Scale |
| GLP-1 | Glucagon-Like Peptide-1 |
| HOHF | High-Output Heart Failure |
| IGR | Inert Gas Rebreathing |
| IQR | Interquartile Range |
| LVH | Left Ventricular Hypertrophy |
| MRC | Medical Research Council Dyspnoea Scale |
| N2O | Nitrous Oxide |
| NoSAS | NoSAS Score (Sleep Apnea Screening Score) |
| OWLQOL | Obesity and Weight-Loss Quality of Life Instrument |
| PCWP | Pulmonary Capillary Wedge Pressure |
| PBF | Pulmonary Blood Flow |
| RER | Respiratory Exchange Ratio |
| RYGB | Roux-en-Y Gastric Bypass |
| SF6 | Sulphur Hexafluoride |
| SpO2 | Peripheral Oxygen Saturation |
| STOP-Bang | Snoring, Tiredness, Observed Apnea, high blood Pressure, BMI, Age, Neck circumference, Gender questionnaire |
| T2DM | Type 2 Diabetes Mellitus |
| TNF-α | Tumor Necrosis Factor Alpha |
| VE | Minute Ventilation |
| VE/VCO2 slope | Ventilatory Equivalent for Carbon Dioxide Slope |
| VO2 | Oxygen Uptake |
| VO2 peak | Peak Oxygen Uptake |
| VSAQ | Veterans Specific Activity Questionnaire |
| WHO | World Health Organization |
| WHR | Waist-to-Hip Ratio |
References
- Fijałkowska, A.; Dzielska, A.; Mazur, J.; Korzycka, M.; Breda, J.; Oblacińska, A. Childhood Obesity Surveillance Initiative (COSI) in Poland: Implementation of Two Rounds of the Study in the Context of International Methodological Assumptions. J. Mother Child 2020, 24, 2. [Google Scholar]
- Parameswaran, K.; Todd, D.C.; Soth, M. Altered respiratory physiology in obesity. Can. Respir. J. 2006, 13, 203. [Google Scholar] [CrossRef]
- Alpert, M.A.; Omran, J.; Bostick, B.P. Effects of Obesity on Cardiovascular Hemodynamics, Cardiac Morphology, and Ventricular Function. Curr. Obes. Rep. 2016, 5, 424–434. Available online: https://pubmed.ncbi.nlm.nih.gov/27744513/ (accessed on 4 May 2023). [CrossRef] [PubMed]
- Shen, Q.; Hiebert, J.B.; Rahman, F.K.; Krueger, K.J.; Gupta, B.; Pierce, J.D. Understanding Obesity-Related High Output Heart Failure and Its Implications. Int. J. Heart Fail. 2021, 3, 160. [Google Scholar] [CrossRef] [PubMed]
- Hulens, M.; Vansant, G.; Lysens, R.; Claessens, A.L.; Muls, E. Exercise capacity in lean versus obese women. Scand. J. Med. Sci. Sports 2001, 11, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.É.; Phillips, D.B.; Brotto, A.R.; Rampuri, Z.H.; Stickland, M.K. Ventilatory efficiency in athletes, asthma and obesity. Eur. Respir. Rev. 2021, 30, 200206. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schraufnagel, D.E.; Agostoni, P. Cardiopulmonary Exercise Testing. Ann. Am. Thorac. Soc. 2017, 14 (Suppl. S1), S1–S2. Available online: https://pubmed.ncbi.nlm.nih.gov/28746821/ (accessed on 11 June 2023). [CrossRef]
- Wasserman, K.; Hansen, J.; Sue, D.; Stringer, W.; Whipp, B. (Eds.) Principles of Exercise Testing and Interpretation. Can. J. Cardiol. 2007, 23, 274. [Google Scholar]
- Wolfe, B.M.; Kvach, E.; Eckel, R.H. Treatment of Obesity: Weight Loss and Bariatric Surgery. Circ Res. 2016, 118, 1844. [Google Scholar] [CrossRef]
- Dadan, J.; Iwacewicz, P.; Hady, H.R. New approaches in bariatric surgery. Wideochirurgia Inne Tech. Maloinwazyjne 2008, 3, 66–70. [Google Scholar]
- Wojciak, P.A.; Pawłuszewicz, P.; Diemieszczyk, I.; Komorowska-Wojtunik, E.; Czerniawski, M.; Krętowski, A.; Błachnio-Zabielska, A.; Dadan, J.; Ładny, J.R.; Hady, H.R. Laparoscopic sleeve gastrectomy: A study of efficiency in treatment of metabolic syndrome components, comorbidities and influence on certain biochemical markers. Videosurgery Other Miniinvasive Tech. 2019, 15, 136–147. [Google Scholar] [CrossRef]
- Schauer, P.; Mingrone, G.; Ikramuddin, S.; Wolfe, B. Clinical Outcomes of Metabolic Surgery: Efficacy of Glycemic Control, Weight Loss, and Remission of Diabetes. Diabetes Care 2016, 39, 902–911. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=ovftr&NEWS=N&AN=00003458-201606000-00009 (accessed on 8 December 2022). [CrossRef] [PubMed]
- Reddy, Y.N.; Anantha-Narayanan, M.; Obokata, M.; Koepp, K.E.; Erwin, P.; Carter, R.E.; Borlaug, B.A. Hemodynamic Effects of Weight Loss in Obesity: A Systematic Review and Meta-Analysis. JACC Heart Fail. 2019, 7, 678–687. Available online: https://pubmed.ncbi.nlm.nih.gov/31302042/ (accessed on 5 June 2023). [CrossRef]
- Sandoval, D.A.; Patti, M.E. Glucose metabolism after bariatric surgery: Implications for T2DM remission and hypoglycaemia. Nat. Rev. Endocrinol. 2023, 19, 164–176. Available online: https://pubmed.ncbi.nlm.nih.gov/36289368/ (accessed on 5 June 2023). [CrossRef]
- Schlottmann, F.; Galvarini, M.M.; Dreifuss, N.H.; Laxague, F.; Buxhoeveden, R.; Gorodner, V. Metabolic Effects of Bariatric Surgery. J. Laparoendosc. Adv. Surg. Tech A 2018, 28, 944–948. Available online: https://pubmed.ncbi.nlm.nih.gov/30004821/ (accessed on 5 June 2023). [CrossRef] [PubMed]
- Arterburn, D.E.; Telem, D.A.; Kushner, R.F.; Courcoulas, A.P. Benefits and Risks of Bariatric Surgery in Adults: A Review. JAMA 2020, 324, 879–887. Available online: https://pubmed.ncbi.nlm.nih.gov/32870301/ (accessed on 7 June 2023). [CrossRef] [PubMed]
- van Brussel, P.M.; van den Bogaard, B.; de Weijer, B.A.; Truijen, J.; Krediet, C.P.; Janssen, I.M.; van de Laar, A.; Kaasjager, K.; Fliers, E.; Van Lieshout, J.J.; et al. Blood pressure reduction after gastric bypass surgery is explained by a decrease in cardiac output. J. Appl. Physiol. 2017, 122, 223–229. [Google Scholar] [CrossRef]
- Remígio, M.I.; Santa Cruz, F.; Ferraz, Á.; Remígio, M.C.; Parente, G.; Nascimento, I.; Brandão, D.; Dornelas de Andrade, A.D.F.; de Moraes Neto, F.; Campos, J. The Impact of Bariatric Surgery on Cardiopulmonary Function: Analyzing VO2 Recovery Kinetics. Obes. Surg. 2018, 28, 4039–4044. [Google Scholar] [CrossRef]
- Zavorsky, G.S.; Kim, D.J.; Christou, N.V. Compensatory exercise hyperventilation is restored in the morbidly obese after bariatric surgery. Obes. Surg. 2008, 18, 549–559. Available online: https://pubmed.ncbi.nlm.nih.gov/18360754/ (accessed on 23 May 2023). [CrossRef]
- Borasio, N.; Neunhaeuserer, D.; Gasperetti, A.; Favero, C.; Baioccato, V.; Bergamin, M.; Busetto, L.; Foletto, M.; Vettor, R.; Ermolao, A. Ventilatory Response at Rest and During Maximal Exercise Testing in Patients with Severe Obesity Before and After Sleeve Gastrectomy. Obes. Surg. 2021, 31, 694–701. [Google Scholar] [CrossRef]
- Inadomi, C.; Terao, Y.; Yamashita, K.; Fukusaki, M.; Takada, M.; Sumikawa, K. Comparison of oxygen consumption calculated by Fick’s principle (using a central venous catheter) and measured by indirect calorimetry. J. Anesth. 2008, 22, 163–166. Available online: https://pubmed.ncbi.nlm.nih.gov/18500614/ (accessed on 8 August 2025). [CrossRef] [PubMed]
- Bizouarn, P.; Soulard, D.; Blanloeil, Y.; Guillet, A.; Goarin, Y. Oxygen consumption after cardiac surgery -a comparison between calculation by Fick’s principle and measurement by indirect calorimetry. Intensive Care Med. 1992, 18, 206–209. Available online: https://pubmed.ncbi.nlm.nih.gov/1430583/ (accessed on 8 August 2025). [CrossRef]
- Chwiedź, A.; Minarowski, Ł.; Mróz, R.M.; Razak Hady, H. Non-Invasive Cardiac Output Measurement Using Inert Gas Rebreathing Method during Cardiopulmonary Exercise Testing—A Systematic Review. J. Clin. Med. 2023, 12, 7154. [Google Scholar] [CrossRef]
- Vaurs, C.; Diméglio, C.; Charras, L.; Anduze, Y.; Chalret du Rieu, M.; Ritz, P. Determinants of changes in muscle mass after bariatric surgery. Diabetes Metab. 2015, 41, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.C.; Meli, E.F.; Candia, F.P.; Filippi, F.; Vilallonga, R.; Cordero, E.; Hernández, I.; Eguinoa, A.Z.; Burgos, R.; Vila, A.; et al. The Impact of Bariatric Surgery on the Muscle Mass in Patients with Obesity: 2-Year Follow-up. Obes. Surg. 2022, 32, 625–633. [Google Scholar] [CrossRef]
- Nuijten, M.A.H.; Eijsvogels, T.M.H.; Monpellier, V.M.; Janssen, I.M.C.; Hazebroek, E.J.; Hopman, M.T.E. The magnitude and progress of lean body mass, fat-free mass, and skeletal muscle mass loss following bariatric surgery: A systematic review and meta-analysis. Obes. Rev. 2022, 23, e13370. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sorimachi, H.; Obokata, M.; Omote, K.; Reddy, Y.N.; Takahashi, N.; Koepp, K.E.; Ng, A.C.; Rider, O.J.; Borlaug, B.A. Long-Term Changes in Cardiac Structure and Function Following Bariatric Surgery. J. Am. Coll. Cardiol. 2022, 80, 1501–1512. [Google Scholar] [CrossRef]
- Alpert, M.A.; Omran, J.; Mehra, A.; Ardhanari, S. Impact of obesity and weight loss on cardiac performance and morphology in adults. Prog. Cardiovasc. Dis. 2014, 56, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Koschker, A.C.; Warrings, B.; Morbach, C.; Seyfried, F.; Jung, P.; Dischinger, U.; Edelmann, F.; Herrmann, M.J.; Stier, C.; Frantz, S.; et al. Effect of bariatric surgery on cardio-psycho-metabolic outcomes in severe obesity: A randomized controlled trial. Metabolism 2023, 147, 155655. Available online: https://pubmed.ncbi.nlm.nih.gov/37393945/ (accessed on 14 November 2023). [CrossRef] [PubMed]

| Completed | Drop-Out | All | p-Value | |
|---|---|---|---|---|
| N | 14 | 10 | 24 | |
| % of men | 71.4 | 40 | 58 | 0.211 |
| age | 38.5 | 33.5 | 36 | 0.354 |
| BMI (kg/m2) | 47.75 | 43.25 | 45.3 | 0.128 |
| Body fat (%) | 51.2 | 44.6 | 46.8 | 0.169 |
| Muscle mass (%) | 46.35 | 52.65 | 50.55 | 0.791 |
| Parameter | Before Median (IQR) | 3 m Median (IQR) | 6 m Median (IQR) | p-Value (Before vs. 3 m) | p-Value (3 m vs. 6 m) |
|---|---|---|---|---|---|
| Weight | 144.0 (136.35–163.3) | 121.95 (116.12–132.12) | 112.3 (103.9–120.75) | 0.000 | 0.000 |
| Height | 180.0 (174.5–184.5) | 180.0 (174.5–184.5) | 180.0 (174.5–184.5) | ||
| Age | 38.5 (25.75–48.75) | 38.5 (25.75–48.75) | 38.5 (25.75–48.75) | ||
| BMI (kg/m2) | 47.75 (43.28–51.5) | 38.95 (35.52–41.48) | 35.52 (32.55–38.0) | 0.000 | 0.000 |
| VO2 rest (L/min) | 0.26 (0.2–0.38) | 0.25 0.19–0.35 | 0.24 0.19–0.3 | 0.770 | 0.831 |
| VO2 peak (L/min) | 2.24 (2.0–2.78) | 1.29 (1.08–1.7) | 1.44 (1.12–1.9) | 0.008 | 0.006 |
| VO2 rest (mL/min/kg) | 1.8 (1.2–2.3) | 2.2 (1.7–2.65) | 2.1 (1.92–2.4) | 0.296 | 0.087 |
| VO2 peak (mL/min/kg) | 16.0 (2.6–17.3) | 10.15 (8.77–13.02) | 14.3 (10.68–16.47) | 0.058 | 0.583 |
| CO rest (L/min) | 7.2 (6.72–7.7) | 6.3 (5.32–6.82) | 6.0 (4.93–6.38) | 0.006 | 0.002 |
| CO peak (L/min) | 18.2 (16.9–20.05) | 15.5 (14.08–16.68) | 14.1 (12.35–15.55) | 0.000 | 0.000 |
| AVDiff rest (mL O2/dL) | 19.0 (13.0–26.5) | 26.0 (20.25–29.0) | 25.5 (19.5–32.0) | 0.002 | 0.007 |
| AVDiff peak (mL O2/dL) | 50.5 (46.25–58.5) | 46.0 (40.75–50.75) | 52.0 (49.25–64.25) | 0.426 | 0.583 |
| Body fat (%) | 51.2 (38.28–52.9) | 40.95 (31.95–44.97) | 34.95 (28.18–41.8) | 0.000 | 0.000 |
| Body fat (kg) | 69.65 (57.7–81.22) | 47.7 (39.75–56.45) | 36.5 (33.2–49.18) | 0.000 | 0.000 |
| Muscle mass (%) | 46.35 (44.78–58.72) | 56.15 (51.25–65.42) | 61.35 (53.7–68.22) | 0.000 | 0.000 |
| Muscle mass (kg) | 75.5 (66.2–88.1) | 80.05 (60.97–81.7) | 73.95 (55.97–79.18) | 0.017 | 0.007 |
| Fat free mass (kg) | 79.4 (69.68–92.68) | 83.55 (64.12–85.65) | 77.75 (58.98–85.02) | 0.017 | 0.007 |
| Parameter | Comparison | Wilcoxon p-Value |
|---|---|---|
| Weight (kg) | before vs. 3 m | 0.000 |
| Weight (kg) | 3 m vs. 6 m | 0.000 |
| Weight (kg) | before vs. 6 m | 0.000 |
| BMI (kg/m2) | before vs. 3 m | 0.000 |
| BMI (kg/m2) | 3 m vs. 6 m | 0.000 |
| BMI (kg/m2) | before vs. 6 m | 0.000 |
| VO2 rest (L/min) | before vs. 3 m | 0.770 |
| VO2 rest (L/min) | 3 m vs. 6 m | 0.577 |
| VO2 rest (L/min) | before vs. 6 m | 0.831 |
| VO2 peak (L/min) | before vs. 3 m | 0.008 |
| VO2 peak (L/min) | 3 m vs. 6 m | 0.160 |
| VO2 peak (L/min) | before vs. 6 m | 0.006 |
| VO2 rest (mL/min/kg) | before vs. 3 m | 0.296 |
| VO2 rest (mL/min/kg) | 3 m vs. 6 m | 0.855 |
| VO2 rest (mL/min/kg) | before vs. 6 m | 0.087 |
| VO2 peak (mL/min/kg) | before vs. 3 m | 0.058 |
| VO2 peak (mL/min/kg) | 3 m vs. 6 m | 0.020 |
| VO2 peak (mL/min/kg) | before vs. 6 m | 0.583 |
| CO rest (L/min) | before vs. 3 m | 0.006 |
| CO rest (L/min) | 3 m vs. 6 m | 0.059 |
| CO rest (L/min) | before vs. 6 m | 0.002 |
| CO peak (L/min) | before vs. 3 m | 0.000 |
| CO peak (L/min) | 3 m vs. 6 m | 0.025 |
| CO peak (L/min) | before vs. 6 m | 0.000 |
| AVDiff rest (mL O2/dL) | before vs. 3 m | 0.002 |
| AVDiff rest (mL O2/dL) | 3 m vs. 6 m | 0.305 |
| AVDiff rest (mL O2/dL) | before vs. 6 m | 0.007 |
| AVDiff peak (mL O2/dL) | before vs. 3 m | 0.426 |
| AVDiff peak (mL O2/dL) | 3 m vs. 6 m | 0.002 |
| AVDiff peak (mL O2/dL) | before vs. 6 m | 0.583 |
| Body fat (%) | before vs. 3 m | 0.000 |
| Body fat (%) | 3 m vs. 6 m | 0.000 |
| Body fat (%) | before vs. 6 m | 0.000 |
| Body fat (kg) | before vs. 3 m | 0.000 |
| Body fat (kg) | 3 m vs. 6 m | 0.000 |
| Body fat (kg) | before vs. 6 m | 0.000 |
| Muscle mass (%) | before vs. 3 m | 0.000 |
| Muscle mass (%) | 3 m vs. 6 m | 0.000 |
| Muscle mass (%) | before vs. 6 m | 0.000 |
| Muscle mass (kg) | before vs. 3 m | 0.017 |
| Muscle mass (kg) | 3 m vs. 6 m | 0.007 |
| Muscle mass (kg) | before vs. 6 m | 0.007 |
| Fat free mass (kg) | before vs. 3 m | 0.017 |
| Fat free mass (kg) | 3 m vs. 6 m | 0.007 |
| Fat free mass (kg) | before vs. 6 m | 0.007 |
| Condition | Q1 | Q2 | Q3 | Q4 | Fisher p-Value |
|---|---|---|---|---|---|
| 3 m rest | 11 | 0 | 1 | 2 | 0.048 |
| 3 m peak | 6 | 0 | 0 | 8 | 0.075 |
| 6 m rest | 10 | 1 | 1 | 2 | 0.097 |
| 6 m peak | 8 | 0 | 1 | 5 | 0.130 |
| 3 Months | ||
| Parameter | Q1 Median (IQR) | Q4 Median (IQR) |
| BMI (mg/m2) | 41.3 (36.75–43.25) | 36.85 (35.7–40.95) |
| Body fat (%) | 43.15 (34.42–44.97) | 37.8 (32.0–44.2) |
| Body fat (kg) | 56.65 (41.38–61.05) | 46.55 (41.45–47.78) |
| Muscle mass (%) | 53.45 (49.6–63.08) | 59.15 (53.03–64.68) |
| Muscle mass (kg) | 80.55 (72.28–81.7) | 74.85 (57.75–81.32) |
| Fat Free Mass (kg) | 83.55 (76.15–85.32) | 78.75 (60.75–85.52) |
| VO2 rest (L/min) | 0.34 (0.29–0.41) | 0.2 (0.15–0.28) |
| VO2 peak (L/min) | 1.38 (1.16–1.74) | 1.29 (1.08–1.68) |
| VO2 rest (mL/min/kg) | 2.5 (2.3–3.22) | 1.7 (1.5–1.9) |
| VO2 peak (mL/min/kg) | 11.15 (8.9–14.15) | 10.0 (8.8–11.6) |
| CO rest (L/min) | 6.6 (6.08–7.28) | 5.8 (4.9–6.45) |
| CO peak (L/min) | 16.2 (15.5–17.12) | 14.6 (13.85–15.98) |
| AVDiff rest (mL O2/dL) | 29.0 (28.25–29.75) | 22.0 (16.75–25.0) |
| AVDiff peak (mL O2/dL) | 46.5 (40.25–54.25) | 46.0 (42.25–50.25) |
| 6 Months | ||
| Parameter | Q1 Median (IQR) | Q4 Median (IQR) |
| BMI (mg/m2) | 37.12 (32.75–38.17) | 34.5 (33.9–37.5) |
| Body fat (%) | 33.25 (27.75–41.0) | 31.9 (28.1–42.4) |
| Body fat (kg) | 41.7 (30.0–52.4) | 35.6 (34.0–39.6) |
| Muscle mass (%) | 62.95 (51.68–68.65) | 64.8 (54.6–68.3) |
| Muscle mass (kg) | 75.0 (70.3–78.53) | 72.5 (53.8–82.5) |
| Fat Free Mass (kg) | 80.55 (73.9–84.07) | 76.2 (56.7–86.8) |
| VO2 rest (L/min) | 0.3 (0.21–0.33) | 0.21 (0.17–0.23) |
| VO2 peak (L/min) | 1.69 (1.12–2.01) | 1.44 (1.08–1.83) |
| VO2 rest (mL/min/kg) | 2.3 (2.05–2.55) | 2.0 (1.9–2.0) |
| VO2 peak (mL/min/kg) | 14.95 (10.22–17.27) | 11.9 (10.5–15.2) |
| CO rest (L/min) | 6.2 (4.95–6.95), 4.94–7.68 | 5.7 (4.9–6.1) |
| CO peak (L/min) | 14.7 (12.5–15.7) | 13.8 (12.1–13.9) |
| AVDiff rest (mL O2/dL) | 27.0 (23.5–30.0) | 24.0 (19.0–35.0) |
| AVDiff peak (mL O2/dL) | 57.5 (51.75–67.25) | 50.0 (49.0–52.0) |
| (a) | |||
| Variable 1 | Variable 2 | rho | p-Value |
| BMI (kg/m2) | Body fat (kg) | 0.8 | 0.001 |
| BMI (kg/m2) | Muscle mass (%) | −0.59 | 0.028 |
| Body fat (%) | Body fat (kg) | 0.81 | 0.001 |
| Body fat (%) | Muscle mass (%) | −0.95 | 0.000 |
| Body fat (%) | Muscle mass (kg) | −0.71 | 0.004 |
| Body fat (%) | Fat Free Mass (kg) | −0.67 | 0.009 |
| Body fat (kg) | Muscle mass (%) | −0.87 | 0.000 |
| Muscle mass (%) | Muscle mass (kg) | 0.55 | 0.040 |
| Muscle mass (kg) | Fat Free Mass (kg) | 0.97 | 0.000 |
| Muscle mass (kg) | CO rest (L/min) | 0.6 | 0.024 |
| Fat Free Mass (kg) | CO rest (L/min) | 0.6 | 0.024 |
| VO2 rest (L/min) | VO2 rest (mL/min/kg) | 0.96 | 0.000 |
| VO2 rest (L/min) | CO rest (L/min) | 0.73 | 0.011 |
| VO2 rest (L/min) | AVDiff rest (mL O2/dL) | 0.77 | 0.005 |
| VO2 peak (L/min) | VO2 peak (mL/min/kg) | 0.9 | 0.000 |
| VO2 peak (L/min) | AVDiff peak (mL O2/dL) | 0.75 | 0.007 |
| VO2 rest (mL/min/kg) | CO rest (L/min) | 0.63 | 0.016 |
| VO2 rest (mL/min/kg) | AVDiff rest (mL O2/dL) | 0.77 | 0.001 |
| VO2 peak (mL/min/kg) | AVDiff peak (mL O2/dL) | 0.77 | 0.001 |
| (b) | |||
| Variable 1 | Variable 2 | rho | p-Value |
| BMI (kg/m2) | Body fat (kg) | 0.55 | 0.042 |
| Body fat (%) | Body fat (kg) | 0.82 | 0.000 |
| Body fat (%) | Muscle mass (%) | −0.95 | 0.000 |
| Body fat (%) | Muscle mass (kg) | −0.87 | 0.000 |
| Body fat (%) | Fat Free Mass (kg) | −0.76 | 0.002 |
| Body fat (kg) | Muscle mass (%) | −0.9 | 0.000 |
| Body fat (kg) | Muscle mass (kg) | −0.54 | 0.049 |
| Muscle mass (%) | Muscle mass (kg) | 0.79 | 0.001 |
| Muscle mass (%) | Fat Free Mass (kg) | 0.59 | 0.028 |
| Muscle mass (kg) | Fat Free Mass (kg) | 0.92 | 0.000 |
| VO2 rest (L/min) | VO2 rest (mL/min/kg) | 0.87 | 0.000 |
| VO2 rest (L/min) | CO peak (L/min) | 0.63 | 0.027 |
| VO2 peak (L/min) | VO2 peak (mL/min/kg) | 0.91 | 0.000 |
| VO2 peak (L/min) | CO peak (L/min) | 0.83 | 0.000 |
| VO2 rest (mL/min/kg) | CO peak (L/min) | 0.67 | 0.009 |
| VO2 peak (mL/min/kg) | CO peak (L/min) | 0.73 | 0.003 |
| VO2 peak (mL/min/kg) | AVDiff peak (mL O2/dL) | 0.6 | 0.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chwiedź, A.; Minarowski, Ł.; Mróz, R.M.; Hady, H.R. Beyond VO2 Peak: Hemodynamic Profiling After Bariatric Surgery Using the Fick Principle. Appl. Sci. 2025, 15, 11502. https://doi.org/10.3390/app152111502
Chwiedź A, Minarowski Ł, Mróz RM, Hady HR. Beyond VO2 Peak: Hemodynamic Profiling After Bariatric Surgery Using the Fick Principle. Applied Sciences. 2025; 15(21):11502. https://doi.org/10.3390/app152111502
Chicago/Turabian StyleChwiedź, Agnieszka, Łukasz Minarowski, Robert M. Mróz, and Hady Razak Hady. 2025. "Beyond VO2 Peak: Hemodynamic Profiling After Bariatric Surgery Using the Fick Principle" Applied Sciences 15, no. 21: 11502. https://doi.org/10.3390/app152111502
APA StyleChwiedź, A., Minarowski, Ł., Mróz, R. M., & Hady, H. R. (2025). Beyond VO2 Peak: Hemodynamic Profiling After Bariatric Surgery Using the Fick Principle. Applied Sciences, 15(21), 11502. https://doi.org/10.3390/app152111502

