EasyVizAR: Supporting First Responders Through the Use of Collaborative Augmented Reality Tools
Abstract
1. Introduction
2. Related Work
3. System Architecture
3.1. Edge Node
3.2. AR Devices
3.3. Data
3.4. Data Conditioning
3.5. Edge-Based SLAM
3.6. Explicit Corridor Mapping
3.7. Navigation Mesh Path Planning
3.8. Floor Plan Generation
4. Applications
4.1. Object Detection and Person Identification
4.2. Visualizations
Multi-User and Dataset Localization
4.3. Multimodal AR Cues to Assist Navigation
Edge-Assisted Path Planning
4.4. Evaluation
5. Limitations and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morrison, K.; Dawkins, S.; Choong, Y.Y.; Theofanos, M.F.; Greene, K.; Furman, S. Current problems, future needs: Voices of first responders about communication technology. In Proceedings of the Human-Computer Interaction. Design and User Experience Case Studies: Thematic Area, HCI 2021, Held as Part of the 23rd HCI International Conference, HCII 2021, Virtual Event, 24–29 July 2021; Proceedings, Part III 23. Springer: Berlin/Heidelberg, Germany, 2021; pp. 381–399. [Google Scholar]
- Smith, E.C.; Holmes, L.; Burkle, F.M. The physical and mental health challenges experienced by 9/11 first responders and recovery workers: A review of the literature. Prehospital Disaster Med. 2019, 34, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Dimou, A.; Kogias, D.G.; Trakadas, P.; Perossini, F.; Weller, M.; Balet, O.; Patrikakis, C.Z.; Zahariadis, T.; Daras, P. FASTER: First Responder Advanced Technologies for Safe and Efficient Emergency Response. In Technology Development for Security Practitioners; Springer: Berlin/Heidelberg, Germany, 2021; pp. 447–460. [Google Scholar]
- Gutiérrez, Á.; Blanco, P.; Ruiz, V.; Chatzigeorgiou, C.; Oregui, X.; Álvarez, M.; Navarro, S.; Feidakis, M.; Azpiroz, I.; Izquierdo, G.; et al. Biosignals monitoring of first responders for cognitive load estimation in real-time operation. Appl. Sci. 2023, 13, 7368. [Google Scholar] [CrossRef]
- Zechner, O.; García Guirao, D.; Schrom-Feiertag, H.; Regal, G.; Uhl, J.C.; Gyllencreutz, L.; Sjöberg, D.; Tscheligi, M. NextGen Training for Medical First Responders: Advancing Mass-Casualty Incident Preparedness through Mixed Reality Technology. Multimodal Technol. Interact. 2023, 7, 113. [Google Scholar] [CrossRef]
- Tucker, S.; Jonnalagadda, S.; Beseler, C.; Yoder, A.; Fruhling, A. Exploring wearable technology use and importance of health monitoring in the hazardous occupations of first responders and professional drivers. J. Occup. Health 2024, 66, uiad002. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zeng, Z.; Ren, T.; Li, F.; Zhang, H.; Yang, J.; Jiang, Q.; Li, C.; Yang, J.; Su, H.; et al. Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection. In Proceedings of the Computer Vision—ECCV 2024, Milan, Italy, 29 September–4 October 2024; Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G., Eds.; Springer: Cham, Switzerland, 2025; pp. 38–55. [Google Scholar]
- Zhang, K.; Cochran, B.R.; Chen, R.; Hartung, L.; Sprecher, B.; Tredinnick, R.; Ponto, K.; Banerjee, S.; Zhao, Y. Exploring the design space of optical see-through AR head-mounted displays to support first responders in the field. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 11–16 May 2024; pp. 1–19. [Google Scholar]
- Argo, E.; Ahmed, T.; Gable, S.; Hampton, C.; Grandi, J.; Kopper, R. Augmented Reality User Interfaces for First Responders: A Scoping Literature Review. arXiv 2025, arXiv:2506.09236. [Google Scholar] [CrossRef]
- Oztank, F.; Balcisoy, S. Towards Extended Reality in Emergency Response: Guidelines and Challenges for First Responder Friendly Augmented Interfaces. Comput. Animat. Virtual Worlds 2025, 36, e70056. [Google Scholar] [CrossRef]
- Grandi, J.G.; Cao, Z.; Ogren, M.; Kopper, R. Design and Simulation of Next-Generation Augmented Reality User Interfaces in Virtual Reality. In Proceedings of the 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Virtual Event, 27 March–3 April 2021; pp. 23–29. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, N.Y.; Hong, J.I.; Wang, K.; Takayama, L.; Landay, J.A. Siren: Context-aware computing for firefighting. In Proceedings of the International Conference on Pervasive Computing, Orlando, FL, USA, 14–17 March 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 87–105. [Google Scholar]
- Killeen, J.P.; Chan, T.C.; Buono, C.; Griswold, W.G.; Lenert, L.A. A Wireless First Responder Handheld Device for Rapid Triage, Patient Assessment and Documentation During Mass Casualty Incidents. In Proceedings of the AMIA Annual Symposium Proceedings, Washington, DC, USA, 11–15 November 2006; pp. 429–433. [Google Scholar]
- KYNG, M.; Nielsen, E.T.; Kristensen, M. Challenges in Designing Interactive Systems for Emergency Response. In Proceedings of the 6th Conference on Designing Interactive Systems (University Park, PA, USA) (DIS ’06), University Park, PA, USA, 26–28 June 2006; Association for Computing Machinery: New York, NY, USA, 2006; pp. 301–310. [Google Scholar] [CrossRef]
- Monares, A.; Ochoa, S.F.; Pino, J.A.; Herskovic, V.; Rodriguez-Covili, J.; Neyem, A. Mobile computing in urban emergency situations: Improving the support to firefighters in the field. Expert Syst. Appl. 2011, 38, 1255–1267. [Google Scholar] [CrossRef]
- Kapalo, K.A.; Bockelman, P.; LaViola, J.J., Jr. “Sizing Up” Emerging Technology for Firefighting: Augmented Reality for Incident Assessment. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Philadelphia, PA, USA, 1–5 October 2018; SAGE Publications: Sage CA: Los Angeles, CA, USA, 2018; Volume 62, pp. 1464–1468. [Google Scholar]
- Wilson, J.; Steingart, D.; Romero, R.; Reynolds, J.; Mellers, E.; Redfern, A.; Lim, L.; Watts, W.; Patton, C.; Baker, J.; et al. Design of monocular head-mounted displays for increased indoor firefighting safety and efciency. In Helmet-and Head-Mounted Displays X: Technologies and Applications; SPIE: Bellingham, WA, USA, 2005; Volume 5800, pp. 103–114. [Google Scholar]
- Cheng, D.; Wang, Q.; Liu, Y.; Chen, H.; Ni, D.; Wang, X.; Yao, C.; Hou, Q.; Hou, W.; Luo, G.; et al. Design and manufacture AR head-mounted displays: A review and outlook. Light. Adv. Manuf. 2021, 2, 350–369. [Google Scholar] [CrossRef]
- Augview. 2013. Available online: http://www.augview.net (accessed on 20 October 2025).
- Chen, Y.J.; Lai, Y.S.; Lin, Y.H. BIM-based augmented reality inspection and maintenance of fire safety equipment. Autom. Constr. 2020, 110, 103041. [Google Scholar] [CrossRef]
- Datcu, D.; Lukosch, S.G.; Lukosch, H.K. Handheld augmented reality for distributed collaborative crime scene investigation. In Proceedings of the 19th International Conference on Supporting Group Work, Sanibel Island, FL, USA, 13–16 November 2016; pp. 267–276. [Google Scholar]
- Nunes, I.L.; Lucas, R.; Simões-Marques, M.; Correia, N. An Augmented Reality Application to Support Deployed Emergency Teams. In Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018), Florence, Italy, 26–30 August 2018; Springer International Publishing: Cham, Switzerland, 2019; pp. 195–204. [Google Scholar]
- Sebillo, M.; Tortora, G.; Vitiello, G.; Paolino, L.; Ginige, A. The use of augmented reality interfaces for on-site crisis preparedness. In Proceedings of the International Conference on Learning and Collaboration Technologies, Washington, DC, USA, 29 June 2024; Springer: Berlin/Heidelberg, Germany, 2015; pp. 136–147. [Google Scholar]
- Sebillo, M.; Vitiello, G.; Paolino, L.; Ginige, A. Training Emergency Responders through Augmented Reality Mobile Interfaces. Multimed. Tools Appl. 2016, 75, 9609–9622. [Google Scholar] [CrossRef]
- Siu, T.; Herskovic, V. SidebARs: Improving awareness of off-screen elements in mobile augmented reality. In Proceedings of the 2013 Chilean Conference on Human-Computer Interaction, Temuco, Chile, 11–15 November 2013; pp. 36–41. [Google Scholar]
- Brunetti, P.; Croatti, A.; Ricci, A.; Viroli, M. Smart augmented fields for emergency operations. Procedia Comput. Sci. 2015, 63, 392–399. [Google Scholar] [CrossRef]
- Kamat, V.R.; El-Tawil, S. Evaluation of augmented reality for rapid assessment of earthquake-induced building damage. J. Comput. Civ. Eng. 2007, 21, 303–310. [Google Scholar] [CrossRef]
- Sainidis, D.; Tsiakmakis, D.; Konstantoudakis, K.; Albanis, G.; Dimou, A.; Daras, P. Single-handed gesture UAV control and video feed AR visualization for first responders. In Proceedings of the International Conference on Information Systems for Crisis Response and Management (ISCRAM), Blacksburg, VA, USA, 23–26 May 2021; pp. 23–26. [Google Scholar]
- Wani, A.R.; Shabir, S.; Naaz, R. Augmented reality for fire and emergency services. In Proceedings of the Int. Conf. on Recent Trends in Communication and Computer Networks, Byderabad, India, 8–9 November 2013. [Google Scholar]
- Nelson, C.R.; Conwell, J.; Lally, S.; Cohn, M.; Tanous, K.; Moats, J.; Gabbard, J.L. Exploring Augmented Reality Triage Tools to Support Mass Casualty Incidents. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Atlanta, GA, USA, 10–14 October 2022; Volume 66, pp. 1664–1666. [Google Scholar] [CrossRef]
- Cagiltay, B.; Oztank, F.; Balcisoy, S. The Case for Audio-First Mixed Reality: An AI-Enhanced Framework. In Proceedings of the 2025 IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR), Lisbon, Portugal, 27–29 January 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 165–170. [Google Scholar]
- Wilchek, M.; Wang, L.; Dickinson, S.; Feuerbacher, E.; Luther, K.; Batarseh, F.A. KHAIT: K-9 Handler Artificial Intelligence Teaming for Collaborative Sensemaking. In Proceedings of the 30th International Conference on Intelligent User Interfaces, Cagliari, Italy, 24–27 March 2025; pp. 925–937. [Google Scholar]
- Liu, P.; Willis, D.; Banerjee, S. ParaDrop: Enabling Lightweight Multi-tenancy at the Network’s Extreme Edge. In Proceedings of the 2016 IEEE/ACM Symposium on Edge Computing (SEC), Washington, DC, USA, 27–28 October 2016; pp. 1–13. [Google Scholar] [CrossRef]
- Ben Ali, A.J.; Kouroshli, M.; Semenova, S.; Hashemifar, Z.S.; Ko, S.Y.; Dantu, K. Edge-SLAM: Edge-assisted visual simultaneous localization and mapping. ACM Trans. Embed. Comput. Syst. 2022, 22, 1–31. [Google Scholar] [CrossRef]
- Chen, Y.; Inaltekin, H.; Gorlatova, M. AdaptSLAM: Edge-assisted adaptive SLAM with resource constraints via uncertainty minimization. In Proceedings of the IEEE INFOCOM 2023-IEEE Conference on Computer Communications, New York City, NY, USA, 17–20 May 2023; IEEE: Piscaraway, NJ, USA, 2023; pp. 1–10. [Google Scholar]
- van Toll, W.; Cook, A.F.; Geraerts, R. Navigation Meshes for Realistic Multi-Layered Environments. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 3526–3532. [Google Scholar] [CrossRef]
- van Toll, W.; Triesscheijn, R.; Kallmann, M.; Oliva, R.; Pelechano, N.; Pettré, J.; Geraerts, R. A Comparative Study of Navigation Meshes. In Proceedings of the 9th International Conference on Motion in Games, New York, NY, USA, 10–12 October 2016; MIG ’16. pp. 91–100. [Google Scholar] [CrossRef]
- Fachri, M.; Khumaidi, A.; Hikmah, N.; Chusna, N.L. Performance analysis of navigation ai on commercial game engine: Autodesk stingray and Unity3D. J. Mantik 2020, 4, 61–68. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. In Proceedings of the 38th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 10–15 December 2024; Volume 37, pp. 107984–108011. [Google Scholar]
- Serengil, S.; Ozpinar, A. A Benchmark of Facial Recognition Pipelines and Co-Usability Performances of Modules. J. Inf. Technol. 2024, 17, 95–107. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Chen, J.; Tang, H.; Li, D.; Fang, Y.; Zhu, L.; Xie, E.; Yin, H.; Yi, L.; et al. Vila-u: A unified foundation model integrating visual understanding and generation. arXiv 2024, arXiv:2409.04429. [Google Scholar] [CrossRef]
- Ren, T.; Jiang, Q.; Liu, S.; Zeng, Z.; Liu, W.; Gao, H.; Huang, H.; Ma, Z.; Jiang, X.; Chen, Y.; et al. Grounding dino 1.5: Advance the“ edge” of open-set object detection. arXiv 2024, arXiv:2405.10300. [Google Scholar]
- Chen, R.; Jiang, J.; Maheshwary, P.; Cochran, B.R.; Zhao, Y. VisiMark: Characterizing and Augmenting Landmarks for People with Low Vision in Augmented Reality to Support Indoor Navigation. In Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 26 April–1 May 2025. CHI ’25. [Google Scholar] [CrossRef]
- Ansari, M.M. Evaluating Stenosis Detection with Grounding DINO, YOLO, and DINO-DETR. arXiv 2025, arXiv:2503.01601. [Google Scholar] [CrossRef]
- Teixeira, E.H.; Melo, M.C.; Junior, W.B.; Silva, E.C.; Cruz, M.R.; Pimenta, T.C.; Aquino, G.P.; Boas, E.C.V. Brain Tumor Images Class-Based and Prompt-Based Detectors and Segmenter: Performance Evaluation of YOLO, SAM and Grounding DINO. In Proceedings of the 2024 International Conference on Artificial Intelligence, Blockchain, Cloud Computing, and Data Analytics (ICoABCD), Bali, Indonesia, 20–21 August 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 202–207. [Google Scholar]
- Moore, L.K. The First Responder Network (FirstNet) and Next-Generation Communications for Public Safety: Issues for Congress. Congressional Research Service. Available online: https://allthingsfirstnet.com/wp-content/uploads/2017/05/CRS-FirstNet-Linda-Moore-Report-2016.pdf (accessed on 17 June 2016).











| Headset (HoloLens 2) | Edge (Jetson TX2) | |||||||
|---|---|---|---|---|---|---|---|---|
| Engine | Barracuda | Barracuda | Sentis | ONNX Runtime | ||||
| NMS | Postprocess | Embedded | Embedded | Embedded | ||||
| Preprocessing | 0 | 0 | 0 | 1 | 0 | 0 | 34 | 2 |
| Execution | 13 | 5 | 1295 | 89 | 621 | 11 | 126 | 3 |
| Postprocessing | 1054 | 127 | 26 | 8 | 64 | 12 | 0 | 0 |
| Transfer | - | - | - | - | - | - | 441 | 191 |
| Total | 1098 | 131 | 1355 | 92 | 685 | 17 | 601 | 191 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponto, K.; Hartung, L.; Zhao, Y.; Sprecher, B.; Tredinnick, R.; Banerjee, S. EasyVizAR: Supporting First Responders Through the Use of Collaborative Augmented Reality Tools. Appl. Sci. 2025, 15, 11498. https://doi.org/10.3390/app152111498
Ponto K, Hartung L, Zhao Y, Sprecher B, Tredinnick R, Banerjee S. EasyVizAR: Supporting First Responders Through the Use of Collaborative Augmented Reality Tools. Applied Sciences. 2025; 15(21):11498. https://doi.org/10.3390/app152111498
Chicago/Turabian StylePonto, Kevin, Lance Hartung, Yuhang Zhao, Bryce Sprecher, Ross Tredinnick, and Suman Banerjee. 2025. "EasyVizAR: Supporting First Responders Through the Use of Collaborative Augmented Reality Tools" Applied Sciences 15, no. 21: 11498. https://doi.org/10.3390/app152111498
APA StylePonto, K., Hartung, L., Zhao, Y., Sprecher, B., Tredinnick, R., & Banerjee, S. (2025). EasyVizAR: Supporting First Responders Through the Use of Collaborative Augmented Reality Tools. Applied Sciences, 15(21), 11498. https://doi.org/10.3390/app152111498

