Effect of Ply Orientation and Triaxiality on Mesh Regularization for Carbon/Epoxy Composites Through Material Parameter Estimation
Abstract
1. Introduction
2. Methodology
- Definition of the material damage model for mesh regularization. The composite damage behavior was modeled using the MAT_ADD_GENERALIZED_DAMAGE (MAGD) framework in LS-DYNA, superimposed on an orthotropic elastic base model representative of the unidirectional carbon/epoxy laminate. MAGD was selected because it introduces anisotropic tensor-based damage variables (, , ) corresponding to fiber, transverse, and shear directions, respectively. Unlike conventional MAT_54/55 models, MAGD accounts for stress-state dependency, strain-rate effects, and mesh-size scaling, thereby allowing consistent representation of energy dissipation across different discretizations. The formulation employs a damage tensor that modifies the stress response progressively, with nonlinear stress fading applied after a critical damage threshold is reached.
- Development of theoretical models for scaling factor prediction. A predictive framework was developed to estimate mesh-scaling factors required for regularization of impact simulations. These scaling factors, denoted , depend on both the characteristic element length and the applied stress triaxiality . Building on fracture mechanics principles, the model establishes a relationship between fracture energy, critical strain energy release rates, and the element size to ensure consistent energy dissipation irrespective of mesh density. Analytical expressions were derived for tensile, shear, and mixed-mode loading conditions. These theoretical models allow scaling factors to be computed directly from intrinsic material properties, thus reducing reliance on empirical calibration.
- Specification of material properties. The composite material considered in this study was a unidirectional carbon fiber/epoxy laminate, a system widely employed in aerospace and automotive applications due to its high stiffness-to-weight ratio and anisotropic strength characteristics. The orthotropic elastic constants (longitudinal modulus , transverse modulus , in-plane shear modulus , and Poisson’s ratios ) were extracted from experimental characterizations. Strength values in the longitudinal, transverse, and shear directions () were specified along with fracture toughness parameters to define the initiation and propagation of damage. These inputs provided the foundation for both the failure initiation criteria (Chang–Chang) and the subsequent MAGD-based damage evolution.
- Execution of numerical simulations under different stress states. Finite element models of composite specimens were developed and subjected to distinct stress triaxiality conditions, including uniaxial tension, in-plane compression, and pure shear loading. Each configuration was simulated with multiple mesh sizes to investigate the sensitivity of failure predictions to discretization. The evolution of the damage parameters (, , ) was monitored, and the effective fracture energies were calculated for each mesh density. This enabled the extraction of scaling factors corresponding to different failure modes. At present, the procedure involves a trial-and-error calibration of scaling factors to match experimental load–displacement responses, but the goal of this study is to move toward predictive regularization based on intrinsic material properties.
- Validation through comparison of analytical and experimental scaling factors. Finally, the analytically predicted scaling factors were compared against those obtained from experimental impact and coupon-level tests. This comparison served to validate the proposed theoretical framework, highlighting its accuracy in predicting mesh-independent behavior. Discrepancies between analytical and experimental values were discussed in terms of potential microstructural effects, strain-rate sensitivity, and the limitations of shell-based modeling assumptions. This step provided critical insight into the robustness and applicability of the proposed regularization methodology for unidirectional carbon/epoxy composites under a wide range of stress states.
3. Modeling Progressive Damage and Failure with Mesh Regularization in Composites and Composite Material Used in the Study
- Mesh-size-based regularization to mitigate non-physical localization and ensure mesh-independent results;
- Triaxiality-dependent failure, where failure strains are scaled based on the stress state (e.g., via load curves LCSDG for triaxiality vs. failure strain);
- Ply orientation dependence, aligning damage variables with material axes (e.g., 0°, 45°, 90° for fiber, shear, and matrix directions);
- Independent control over in-plane and out-of-plane damage, with options for volumetric-deviatoric splitting;
- Strain-rate sensitivity and nonlinear stress fading for realistic post-peak softening.
- Matrix cracking;
- Fiber breakage;
- Fiber–matrix shear failure.
- is the transverse tensile stress in each layer;
- is the shear stress in each layer;
- is the transverse tensile strength;
- is the ultimate shear strain.
- n is the damage exponent (DMGEXP, controlling nonlinearity; e.g., for linear, for delayed onset);
- are the instantaneous damage rates;
- are orientation-specific functions accounting for triaxiality and lode angle effects, ensuring consistency with the stress-state dependency in the Chang-Chang criterion.
3.1. Mesh Regularization Parameter Through MAGD
3.2. Composite Material Properties Used
4. Theoretical Models for Mesh-Size-Based Failure Propagation
4.1. Fracture Energy Equation Approach
- is the tensile strength of the material;
- is the strain at the end of the strain-softening, at which the microcracks coalesce into a continuous crack;
- is the fracture energy consumed in formulating and opening a crack of unit length per unit thickness;
- is the function to predict the propagation of microcracks.
4.2. Continuum Damage Energy and Local Fracture Energy Based Approach
- is the failure strain;
- is the critical strain;
- is the critical stress for the material;
- is the size effect function dependent on the length of the mesh.
4.3. Modified Elastic Modulus Approach
4.4. Stress Degradation Approach
5. Mesh Regularization Scaling Factor for Orthotropic Materials Based on Various Stress Triaxiality
5.1. Finite Element Modeling Approach
5.2. Tensile Test Specimen ( = 0.33)
5.3. Compression Test Specimen ( = )
5.4. Shear Test Specimen ( = 0.0)
6. Discussion
7. Conslusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Belytschko, T.; Chiang, H.Y.; Plaskacz, E. High resolution two-dimensional shear band computations: Imperfections and mesh dependence. Comput. Methods Appl. Mech. Eng. 1994, 119, 1–15. [Google Scholar] [CrossRef]
- Bracamonte, A.J.; Mercado-Puche, V.; Martínez-Arguelles, G.; Pumarejo, L.F.; Ortiz, A.R.; Herazo, L.C.S. Effect of Finite Element Method (FEM) Mesh Size on the Estimation of Concrete Stress–Strain Parameters. Appl. Sci. 2023, 13, 2352. [Google Scholar] [CrossRef]
- Benvenuti, E.; Orlando, N. A mesh-independent framework for crack tracking in elastodamaging materials through the regularized extended finite element method. Comput. Mech. 2021, 68, 25–49. [Google Scholar] [CrossRef]
- Kahla, N.B.; AlQadhi, S.; Ahmed, M. Mesh-Free MLS-Based Error-Recovery Technique for Finite Element Incompressible Elastic Computations. Appl. Sci. 2023, 13, 6890. [Google Scholar] [CrossRef]
- Prime, M.B.; Merson, J.S.; Chen, S.R. Physical Regime Sensitivity. J. Dyn. Behav. Mater. 2023, 9, 248–261. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, X.; Liu, S. Finite-Element-Mesh Based Method for Modeling and Optimization of Lattice Structures for Additive Manufacturing. Materials 2018, 11, 2073. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, Y.; Zhang, W. Analysis of Dynamic Response Behavior of Crack under Impact Stress Wave. Metals 2021, 11, 1920. [Google Scholar] [CrossRef]
- Manesh, M.G.; Kazemian, A.H.; Rahmani, H. Investigation of the Collapse Behavior of Aluminum Burr-Filled Cylindrical Energy Absorber Under Low-Velocity Impact. J. Dyn. Behav. Mater. 2024, 10, 338–347. [Google Scholar] [CrossRef]
- Naveen Kumar, S.; Balasubramanian, V.; Malarvizhi, S.; Rahman, A.H.; Balaguru, V.; Sonar, T. Experimental and Numerical Investigation on Ballistic Performance of Ultra High Hard Armour Steel Joints Welded Using Shielded Metal Arc Welding Process and Austenitic Stainless Steel Electrode. J. Dyn. Behav. Mater. 2025, 11, 22–33. [Google Scholar] [CrossRef]
- Bendarma, A.; Jankowiak, T.; Rusinek, A.; Lodygowski, T.; Czarnota, C.; Bernier, R.; Khalfaoui, M. Experimental and Numerical Analysis of Aluminum-Polyethylene Composite Structure Subjected to Tension and Perforation Under Dynamic Loading for a Wide Range of Temperatures. J. Dyn. Behav. Mater. 2024, 10, 51–74. [Google Scholar] [CrossRef]
- Meyer, C.S.; Haque, B.Z.; Gillespie, J.W. Impact-Induced Through-Thickness Stress Wave Propagation and Damage in Woven Composites. J. Dyn. Behav. Mater. 2023, 9, 2–23. [Google Scholar] [CrossRef]
- Liu, P.; Xing, Q.; Wang, D.; Oeser, M. Application of Dynamic Analysis in Semi-Analytical Finite Element Method. Materials 2017, 10, 1010. [Google Scholar] [CrossRef] [PubMed]
- Fantuzzi, N. Special Issue “Mesh-Free and Finite Element-Based Methods for Structural Mechanics Applications”. Math. Comput. Appl. 2020, 25, 75. [Google Scholar] [CrossRef]
- Ahmed, M.; Singh, D.; AlQadhi, S.; Alrefae, M.A. Mesh Free Radial Point Interpolation Based Displacement Recovery Techniques for Elastic Finite Element Analysis. Mathematics 2021, 9, 1900. [Google Scholar] [CrossRef]
- Zhang, C.; An, S.; Wang, W.; Lin, D. A Novel Meshing Method Based on Adaptive Size Function and Moving Mesh for Electromagnetic Finite Element Analysis. Symmetry 2021, 13, 254. [Google Scholar] [CrossRef]
- Takabi, B.; Tai, B.L. Finite Element Modeling of Orthogonal Machining of Brittle Materials Using an Embedded Cohesive Element Mesh. J. Manuf. Mater. Process. 2019, 3, 36. [Google Scholar] [CrossRef]
- Chan, T.C.; Ullah, A.; Roy, B.; Chang, S.L. Finite element analysis and structure optimization of a gantry-type high-precision machine tool. Sci. Rep. 2023, 13, 13006. [Google Scholar] [CrossRef]
- Nirmal, R.R.; Patnaik, B.S.V.; Jayaganthan, R. FEM Simulation of High Speed Impact Behaviour of Additively Manufactured AlSi10Mg Alloy. J. Dyn. Behav. Mater. 2021, 7, 469–484. [Google Scholar] [CrossRef]
- Rueda, F.; Rull, N.; Quintana, C.; Torres, J.P.; Messiha, M.; Frank, A.; Arbeiter, F.; Frontini, P.M.; Pinter, G. Modelling Failure of Polymers: An Optimization Strategy Based on Genetic Algorithms and Instrumented Impact Tests. J. Dyn. Behav. Mater. 2021, 7, 538–552. [Google Scholar] [CrossRef]
- Sathananthan, P.; Singh, D.; Sirois, A.; Cronin, D. Soda-Lime Glass Constitutive Parameters and Finite Element Model for Simulating Ballistic Impact. J. Dyn. Behav. Mater. 2021, 7, 591–609. [Google Scholar] [CrossRef]
- Carpenter, A.J.; Chocron, S.; Scott, N.L.; Anderson, C.E. Characterization, Modeling, and Ballistic Impact of Kevlar/Phenolic PVB Composite. J. Dyn. Behav. Mater. 2023, 9, 225–239. [Google Scholar] [CrossRef]
- Picart, D.; Tchikladze, N.; Camus, S. Mechanical Behaviour of Pressed HMX and TATB-Based PBXs During Low-Velocity Impact. J. Dyn. Behav. Mater. 2023, 9, 345–364. [Google Scholar] [CrossRef]
- Belytschko, T.; Bažant, Z.P.; Yul-Woong, H.; Ta-Peng, C. Strain-softening materials and finite-element solutions. Comput. Struct. 1986, 23, 163–180. [Google Scholar] [CrossRef]
- Liu, J.T.; Fan, Q.B.; Cai, H.N.; Li, G.J. Investigation of Mesh Dependency of Materials Fracture in the Finite Element Simulation of a Projectile Penetrating into a Target. Appl. Mech. Mater. 2015, 782, 302–308. [Google Scholar] [CrossRef]
- Amirrahmat, S.; Alshibli, K.A.; Melton, J.L. 3D Finite Element Modelling of Fracture of Sand Particles Subjected to High Strain Loading Rate. J. Dyn. Behav. Mater. 2019, 5, 444–462. [Google Scholar] [CrossRef]
- Bustamante, M.C.; Bruneau, D.; Barker, J.B.; Gierczycka, D.; Coralles, M.A.; Cronin, D.S. Component-Level Finite Element Model and Validation for a Modern American Football Helmet. J. Dyn. Behav. Mater. 2019, 5, 117–131. [Google Scholar] [CrossRef]
- Provchy, Z.A.; Palazotto, A.N.; Flater, P.J. Topology Optimization for Projectile Design. J. Dyn. Behav. Mater. 2018, 4, 129–137. [Google Scholar] [CrossRef]
- Forquin, P.; Lukić, B. On the Processing of Spalling Experiments. Part I: Identification of the Dynamic Tensile Strength of Concrete. J. Dyn. Behav. Mater. 2018, 4, 34–55. [Google Scholar] [CrossRef]
- Lukić, B.B.; Saletti, D.; Forquin, P. On the Processing of Spalling Experiments. Part II: Identification of Concrete Fracture Energy in Dynamic Tension. J. Dyn. Behav. Mater. 2018, 4, 56–73. [Google Scholar] [CrossRef]
- Bai, Y.; Wierzbicki, T. Application of extended Mohr–Coulomb criterion to ductile fracture. Int. J. Fract. 2010, 161, 1–20. [Google Scholar] [CrossRef]
- Lou, Y.; Huh, H.; Lim, S.; Pack, K. New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals. Int. J. Solids Struct. 2012, 49, 3605–3615. [Google Scholar] [CrossRef]
- Mohr, D.; Marcadet, S.J. Micromechanically-motivated phenomenological Hosford-Coulomb model for predicting ductile fracture initiation at low stress triaxialities. Int. J. Solids Struct. 2015, 67–68, 40–55. [Google Scholar] [CrossRef]
- Woelke, P.B. Simplification of the Gurson model for large-scale plane stress problems. Int. J. Plast. 2020, 125, 331–347. [Google Scholar] [CrossRef]
- Beese, A.M.; Luo, M.; Li, Y.; Bai, Y.; Wierzbicki, T. Partially coupled anisotropic fracture model for aluminum sheets. Eng. Fract. Mech. 2010, 77, 1128–1152. [Google Scholar] [CrossRef]
- Li, Y.; Wierzbicki, T. Prediction of plane strain fracture of AHSS sheets with post-initiation softening. Int. J. Solids Struct. 2010, 47, 2316–2327. [Google Scholar] [CrossRef]
- Kõrgesaar, M. The effect of low stress triaxialities and deformation paths on ductile fracture simulations of large shell structures. Mar. Struct. 2019, 63, 45–64. [Google Scholar] [CrossRef]
- Kõrgesaar, M.; Romanoff, J. Influence of softening on fracture propagation in large-scale shell structures. Int. J. Solids Struct. 2013, 50, 3911–3921. [Google Scholar] [CrossRef]
- Andrade, F.X.; Feucht, M.; Haufe, A.; Neukamm, F. An incremental stress state dependent damage model for ductile failure prediction. Int. J. Fract. 2016, 200, 127–150. [Google Scholar] [CrossRef]
- Walters, C.L. Framework for adjusting for both stress triaxiality and mesh size effect for failure of metals in shell structures. Int. J. Crashworthiness 2014, 19, 1–12. [Google Scholar] [CrossRef]
- Andrade, F.D.A.; Feucht, M.D.A.; Haufe, A.D.G. On the Prediction of Material Failure in LS-DYNA®: A Comparison Between GISSMO and DIEM. In Proceedings of the 13th International LS-DYNA Users Conference, Detroit, MI, USA, 8–10 June 2014; pp. 1–12. [Google Scholar]
- Johnson, G.R.; Cook, W.H. A constitutive model and data from metals subjected to large strains, high strain rates and high temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983. [Google Scholar]
- Johnson, G.R.; Holmquist, T.J. Evaluation of cylinder-impact test data for constitutive model constants. J. Appl. Phys. 1988, 64, 3901–3910. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Zerilli, F.J.; Armstrong, R.W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 1987, 61, 1816–1825. [Google Scholar] [CrossRef]
- Zerilli, F.J.; Armstrong, R.W. The effect of dislocation drag on the stress-strain behavior of F.C.C. metals. Acta Metall. Mater. 1992, 40, 1803–1808. [Google Scholar] [CrossRef]
- Steinberg, D.J.; Cochran, S.G.; Guinan, M.W. A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 1980, 51, 1498–1504. [Google Scholar] [CrossRef]
- Haight, S.; Wang, L.; Bois, D.P.; Carney, K.; Kan, C.D. Development of a Titanium Alloy Ti-6Al-4V Material Model Used in LS-DYNA. DOT/FAA/TC-15/23. 2016. Available online: https://rosap.ntl.bts.gov/view/dot/57630 (accessed on 1 October 2025).
- Yatnalkar, R.S. Experimental Investigation of Plastic Deformation of Ti-6Al-4V Under Various Loading Conditions. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2010. [Google Scholar]
- Wang, L.; Dicecca, F.; Haight, S.; Carney, K.; Dubois, P.; Emmerling, W.; Kan, C.D. Test and Simulation Comparison using Titanium Material Models based on MAT224. In Proceedings of the 14th International LS-DYNA Users Conference, Detroit, MI, USA, 12–14 June 2016; pp. 1–17. [Google Scholar]
- Woelke, P.B.; Abboud, N.N. Modeling fracture in large scale shell structures. J. Mech. Phys. Solids 2012, 60, 2044–2063. [Google Scholar] [CrossRef]
- Kwak, H.G.; Gang, H. An improved criterion to minimize FE mesh-dependency in concrete structures under high strain rate conditions. Int. J. Impact Eng. 2015, 86, 84–95. [Google Scholar] [CrossRef]
- Choi, C.K.; Kwak, H.G. The effect of finite element mesh size in nonlinear analysis of reinforced concrete structures. Comput. Struct. 1990, 36, 807–815. [Google Scholar] [CrossRef]
- Cao, T.S.; Gachet, J.M.; Montmitonnet, P.; Bouchard, P.O. A Lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality. Eng. Fract. Mech. 2014, 124–125, 80–96. [Google Scholar] [CrossRef]
- Bao, Y.; Wierzbicki, T. On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 2004, 46, 81–98. [Google Scholar] [CrossRef]
- Yu, F.; Hendry, M.T.; Jar, P.Y.B.; Li, S.; Li, Z. A coupled stress-triaxiality-dependent damage viscoplasticity model on crack initiation and propagation in high-strength rail steel. Theor. Appl. Fract. Mech. 2020, 109, 102769. [Google Scholar] [CrossRef]
- Jia, Y.; Bai, Y. Ductile fracture prediction for metal sheets using all-strain-based anisotropic eMMC model. Int. J. Mech. Sci. 2016, 115–116, 516–531. [Google Scholar] [CrossRef]
- Algarni, M.; Bai, Y.; Choi, Y. A study of Inconel 718 dependency on stress triaxiality and Lode angle in plastic deformation and ductile fracture. Eng. Fract. Mech. 2015, 147, 140–157. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, X.; Lu, Y.; Duan, X. Electrical discharge-mechanical hybrid drilling of micro-holes in carbon fibre-reinforced polymers. Int. J. Mach. Tools Manuf. 2025, 205, 104243. [Google Scholar] [CrossRef]
- Chang, F.K.; Chang, K.Y. A Progressive Damage Model for Laminated Composites Containing Stress Concentrations. J. Compos. Mater. 1987, 21, 834–855. [Google Scholar] [CrossRef]
- Shao, J.R.; Liu, N.; Zheng, Z.J. Numerical comparison between Hashin and Chang-Chang failure criteria in terms of inter-laminar damage behavior of laminated composite. Mater. Res. Express 2021, 8, 085602. [Google Scholar] [CrossRef]
- Padhi, G.; Shenoi, R.; Moy, S.; Hawkins, G. Progressive failure and ultimate collapse of laminated composite plates in bending. Compos. Struct. 1997, 40, 277–291. [Google Scholar] [CrossRef]
- Chang, F.K.; Scott, R.A.; Springer, G.S. Failure Strength of Nonlinearly Elastic Composite Laminates Containing a Pin Loaded Hole. J. Compos. Mater. 1984, 18, 464–477. [Google Scholar] [CrossRef]
- Feng, D.C.; Ren, X. Analytical examination of mesh-dependency issue for uniaxial RC elements and new fracture energy-based regularization technique. Int. J. Damage Mech. 2023, 32, 321–339. [Google Scholar] [CrossRef]
- Shyamsunder, L.; Khaled, B.; Rajan, S.D.; Goldberg, R.K.; Carney, K.S.; Dubois, P.; Blankenhorn, G. Implementing deformation, damage, and failure in an orthotropic plastic material model. J. Compos. Mater. 2020, 54, 463–484. [Google Scholar] [CrossRef]
- ASTM D3039/D3039M-08; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2008. [CrossRef]
- Littell, J. The Experimental and Analytical Characterization of the Macromechanical Response for Triaxial Braided Composite Materials. Ph.D. Thesis, University of Akron, Akron, OH, USA, 2008. Available online: http://rave.ohiolink.edu/etdc/view?acc_num=akron1224164770 (accessed on 1 October 2025).
- ASTM D3410/D3410M-16e1; Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading. ASTM International: West Conshohocken, PA, USA, 2016. [CrossRef]
- ASTM D5379/D5379M-19e1; Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- Liu, B.; Yang, L.; Li, D.; Ouyang, K. Analysis of axial vibration frequency for projectile structure in penetration. Explos. Shock Waves 2018, 38, 677–682. [Google Scholar] [CrossRef]
- Belytschko, T.; Liu, W.; Moran, B.; Elkhodary, K. Nonlinear Finite Elements for Continua and Structures; No Longer used; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Jiang, N.; Wu, S.; Hu, Y.; Mu, Z.; Wu, X.; Zhang, W. Investigations into the Role of Friction for Rigid Penetration into Concrete-like Material Targets. Materials 2020, 13, 4733. [Google Scholar] [CrossRef] [PubMed]
- Chai, C.; Pi, A.; Li, Q.; Huang, F. On the friction effects on rigid-body penetration in concrete and aluminium-alloy targets. Def. Technol. 2019, 15, 576–581. [Google Scholar] [CrossRef]
- Wriggers, P. Constitutive Equations for Contact Interfaces. In Computational Contact Mechanics; Springer: Berlin/Heidelberg, Germany, 2006; pp. 69–108. [Google Scholar] [CrossRef]
- Riedmaier, S.; Danquah, B.; Schick, B.; Diermeyer, F. Unified Framework and Survey for Model Verification, Validation and Uncertainty Quantification. Arch. Comput. Methods Eng. 2021, 28, 2655–2688. [Google Scholar] [CrossRef]
- Zhan, W.; Baise, L.G.; Moaveni, B. An uncertainty quantification framework for logistic regression based geospatial natural hazard modeling. Eng. Geol. 2023, 324, 107271. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, J.; Wang, R. Basic Framework and Main Methods of Uncertainty Quantification. Math. Probl. Eng. 2020, 2020, 6068203. [Google Scholar] [CrossRef]
- De Vuyst, T.; Vignjevic, R.; Albero, A.A.; Hughes, K.; Campbell, J.; Djordjevic, N. The effect of the orientation of cubical projectiles on the ballistic limit and failure mode of AA2024-T351 sheets. Int. J. Impact Eng. 2017, 104, 21–37. [Google Scholar] [CrossRef]
- Li, X.; Shephard, M.S.; Beall, M.W. 3D anisotropic mesh adaptation by mesh modification. Comput. Methods Appl. Mech. Eng. 2005, 194, 4915–4950. [Google Scholar] [CrossRef]
- Boussetta, R.; Coupez, T.; Fourment, L. Adaptive remeshing based on a posteriori error estimation for forging simulation. Comput. Methods Appl. Mech. Eng. 2006, 195, 6626–6645. [Google Scholar] [CrossRef]
- Dunyach, M.; Vanderhaeghe, D.; Barthe, L.; Botsch, M. Adaptive Remeshing for Real-Time Mesh Deformation. In Proceedings of the Eurographics 2013—Short Papers, Girona, Spain, 6–10 May 2013; Otaduy, M.A., Sorkine, O., Eds.; The Eurographics Association: Eindhoven, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Zhu, J.Z. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Methods Eng. 1992, 33, 1331–1364. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Zhu, J.Z. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int. J. Numer. Methods Eng. 1992, 33, 1365–1382. [Google Scholar] [CrossRef]
- Brown, B.W.; Mariano, R.S. Residual-Based Procedures for Prediction and Estimation in a Nonlinear Simultaneous System. Econometrica 1984, 52, 321–343. [Google Scholar] [CrossRef]
- Wohlmuth, B.I. A residual based error estimator for mortar finite element discretizations. Numer. Math. 1999, 84, 143–171. [Google Scholar] [CrossRef]
- Prudhomme, S.; Oden, J. On goal-oriented error estimation for elliptic problems: Application to the control of pointwise errors. Comput. Methods Appl. Mech. Eng. 1999, 176, 313–331. [Google Scholar] [CrossRef]
- Oden, J.; Prudhomme, S. Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 2001, 41, 735–756. [Google Scholar] [CrossRef]
- Luce, R.; Wohlmuth, B.I. A Local A Posteriori Error Estimator Based on Equilibrated Fluxes. SIAM J. Numer. Anal. 2004, 42, 1394–1414. [Google Scholar] [CrossRef]
- Buffa, A.; Chanon, O.; Grappein, D.; Vázquez, R.; Vohralík, M. An Equilibrated Flux A Posteriori Error Estimator for Defeaturing Problems. SIAM J. Numer. Anal. 2024, 62, 2439–2458. [Google Scholar] [CrossRef]
- Creusé, E.; Nicaise, S.; Tang, Z. Goal-oriented error estimation based on equilibrated flux and potential reconstruction for the approximation of elliptic and parabolic problems. Comput. Math. Appl. 2023, 146, 323–338. [Google Scholar] [CrossRef]
- Zeramdini, B.; Robert, C.; Germain, G.; Pottier, T. Numerical simulation of metal forming processes with 3D adaptive Remeshing strategy based on a posteriori error estimation. Int. J. Mater. Form. 2019, 12, 411–428. [Google Scholar] [CrossRef]
- Giacomini, M. Quantitative a Posteriori Error Estimators in Finite Element-Based Shape Optimization. Ph.D. Thesis, Université Paris Saclay (COmUE), Orsay, France, 2016. [Google Scholar]
- Rochery, L.; Loseille, A. Fast High-Order Mesh Correction for Metric-Based Cavity Remeshing and a Posteriori Curving of P2 Tetrahedral Meshes. Comput.-Aided Des. 2023, 163, 103575. [Google Scholar] [CrossRef]
- Rabizadeh, E.; Bagherzadeh, A.S.; Anitescu, C.; Alajlan, N.; Rabczuk, T. Pointwise dual weighted residual based goal-oriented a posteriori error estimation and adaptive mesh refinement in 2D/3D thermo-mechanical multifield problems. Comput. Methods Appl. Mech. Eng. 2020, 359, 112666. [Google Scholar] [CrossRef]






















| Physical Properties | Units | Value |
|---|---|---|
| Density | ρ [kg/m3] | 1540 |
| Poisson’s ratio | [-] | 0.0232 |
| Elastic modulus in direction x | [GPa] | 116 |
| Elastic modulus in direction y | [GPa] | 8.3 |
| Shear modulus in xy plane | [GPa] | 5.37 |
| Shear modulus in yz plane | [GPa] | 5.37 |
| Shear modulus in zx plane | [GPa] | 5.37 |
| Damage exponent | n [-] | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patro, A.; Tabiei, A. Effect of Ply Orientation and Triaxiality on Mesh Regularization for Carbon/Epoxy Composites Through Material Parameter Estimation. Appl. Sci. 2025, 15, 11451. https://doi.org/10.3390/app152111451
Patro A, Tabiei A. Effect of Ply Orientation and Triaxiality on Mesh Regularization for Carbon/Epoxy Composites Through Material Parameter Estimation. Applied Sciences. 2025; 15(21):11451. https://doi.org/10.3390/app152111451
Chicago/Turabian StylePatro, Abinash, and Ala Tabiei. 2025. "Effect of Ply Orientation and Triaxiality on Mesh Regularization for Carbon/Epoxy Composites Through Material Parameter Estimation" Applied Sciences 15, no. 21: 11451. https://doi.org/10.3390/app152111451
APA StylePatro, A., & Tabiei, A. (2025). Effect of Ply Orientation and Triaxiality on Mesh Regularization for Carbon/Epoxy Composites Through Material Parameter Estimation. Applied Sciences, 15(21), 11451. https://doi.org/10.3390/app152111451

