Evaluation of LULC Use Classification for the Municipality of Deva, Hunedoara County, Romania Using Sentinel 2A Multispectral Satellite Imagery—A Comparative Study of GIS Software Analysis and Accuracy Assessment
Abstract
1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Sentinel Data—2A
| Spectral Bands | Center Wavelength (nm) | Band Width (nm) | Spatial Resolution (m) |
|---|---|---|---|
| Band 1 | 443 | 20 | 60 |
| Band 2 | 490 | 65 | 10 |
| Band 3 | 560 | 35 | 10 |
| Band 4 | 665 | 30 | 10 |
| Band 5 | 705 | 15 | 20 |
| Band 6 | 740 | 15 | 20 |
| Band 7 | 783 | 20 | 20 |
| Band 8 | 842 | 115 | 10 |
| Band 8a | 865 | 20 | 20 |
| Band 9 | 945 | 20 | 60 |
| Band 10 | 1380 | 30 | 60 |
| Band 11 | 1610 | 90 | 20 |
| Band 12 | 2190 | 180 | 20 |
2.3. Methods
2.4. Image Classification
2.5. Image Pre-Processing
- Clipping maps—defining and extracting the area of interest (AOI) by cutting the satellite scenes to match the study boundaries;
- Image registration—aligning multiple image frames to ensure that corresponding elements can be accurately compared;
- Geo-referencing—a process in which locations are assigned to images, allowing a computer to identify the location of different objects covering the terrain;
- Radiometric correction—adjusting pixel values to normalize brightness and appearance;
- Composite band—a composite band is generated by merging several individual spectral bands captured by remote sensing sensors. Since each band captures distinct environmental characteristics—such as surface reflectance or vegetation health—they offer complementary insights. By integrating multiple bands into a single composite image, analysts can achieve a more comprehensive representation of the landscape. These composite images are particularly valuable for identifying and mapping land use and land cover (LULC) features with greater precision;
- Layout maps creation [41].
2.6. Satellite Image Processing

2.7. Algorithms Used
2.7.1. Minimum Distance Algorithm
2.7.2. k-Nearest Neighbor (k-NN) Algorithm

2.8. Color Samples
2.9. Classification of Land Cover and Assessment of Accuracy
3. Results and Discussion
3.1. Assessment of the Accuracy of LULC Classification
3.2. LULC Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oli, D.; Gyawali, B.; Neupane, B.; Oshikoya, S. Assessment of Land Use Land Cover Change and Its Impact on Variations of Land Surface Temperature in Atlanta, USA. Environ. Sustain. Indic. 2025, 26, 100712. [Google Scholar] [CrossRef]
- Ursu, C.-D.; Benedek, J.; Temerdek-Ivan, K. Accuracy Assessment of Four Land Cover Datasets at Urban, Rural and Metropolitan Area Level. Remote Sens. 2025, 17, 756. [Google Scholar] [CrossRef]
- Said, Y.; Saidani, O.; Algarni, A.D.; Algarni, M.H.; Flah, A. Lightweight Multiscale Information Aggregation Network for Land Cover Land Use Semantic Segmentation from Remote Sensing Images. Sci. Rep. 2025, 15, 30265. [Google Scholar] [CrossRef]
- Frimpong, B.F.; Molkenthin, F. Tracking Urban Expansion Using Random Forests for the Classification of Landsat Imagery (1986–2015) and Predicting Urban/Built-Up Areas for 2025: A Study of the Kumasi Metropolis, Ghana. Land 2021, 10, 44. [Google Scholar] [CrossRef]
- Simoes, R.; Camara, G.; Queiroz, G.; Souza, F.; Andrade, P.R.; Santos, L.; Carvalho, A.; Ferreira, K. Satellite Image Time Series Analysis for Big Earth Observation Data. Remote Sens. 2021, 13, 2428. [Google Scholar] [CrossRef]
- Chachondhia, P.; Shakya, A.; Kumar, G. Performance Evaluation of Machine Learning Algorithms Using Optical and Microwave Data for LULC Classification. Remote Sens. Appl. Soc. Environ. 2021, 23, 100599. [Google Scholar] [CrossRef]
- Hysa, A.; Spalevic, V.; Dudic, B.; Roșca, S.; Kuriqi, A.; Bilașco, Ș.; Sestras, P. Utilizing the Available Open-Source Remotely Sensed Data in Assessing the Wildfire Ignition and Spread Capacities of Vegetated Surfaces in Romania. Remote Sens. 2021, 13, 2737. [Google Scholar] [CrossRef]
- Landsat Satellite Missions|U.S. Geological Survey. Available online: https://www.usgs.gov/landsat-missions/landsat-satellite-missions (accessed on 26 May 2025).
- Copernicus S2 Mission. Available online: https://sentiwiki.copernicus.eu/web/s2-mission (accessed on 26 May 2025).
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Tempa, K.; Aryal, K.R. Semi-Automatic Classification for Rapid Delineation of the Geohazard-Prone Areas Using Sentinel-2 Satellite Imagery. SN Appl. Sci. 2022, 4, 141. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, L.; Liu, Q.; Hang, R.; Zhou, Z.-G. SITS-Former: A Pre-Trained Spatio-Spectral-Temporal Representation Model for Sentinel-2 Time Series Classification. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102651. [Google Scholar] [CrossRef]
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
- Nivedita Priyadarshini, K.; Kumar, M.; Rahaman, S.A.; Nitheshnirmal, S. A Comparative Study of Advanced Land Use/Land Cover Classification Algorithms Using Sentinel-2 Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–5, 665–670. [Google Scholar] [CrossRef]
- Copernicus. Available online: https://www.copernicus.eu/en (accessed on 26 May 2025).
- Sudmanns, M.; Tiede, D.; Augustin, H.; Lang, S. Assessing Global Sentinel-2 Coverage Dynamics and Data Availability for Operational Earth Observation (EO) Applications Using the EO-Compass. Int. J. Digit. Earth 2020, 13, 768–784. [Google Scholar] [CrossRef]
- Cai, B.; Shao, Z.; Huang, X.; Zhou, X.; Fang, S. Deep Learning-Based Building Height Mapping Using Sentinel-1 and Sentinel-2 Data. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103399. [Google Scholar] [CrossRef]
- Habibie, M.I.; Nurda, N.; Fernando, D.; Arifandri, R.; Putra, P.K.; Prayogi, H.; Sencaki, D.B. Integrating Sentinel-2 and ESA World Cover for Effective Land Use and Land Cover Assessment Using Machine Learning. Adv. Space Res. 2025, 76, 4925–4958. [Google Scholar] [CrossRef]
- Yimer, S.M.; Bouanani, A.; Kumar, N.; Tischbein, B.; Borgemeister, C. Comparison of Different Machine-Learning Algorithms for Land Use Land Cover Mapping in a Heterogenous Landscape over the Eastern Nile River Basin, Ethiopia. Adv. Space Res. 2024, 74, 2180–2199. [Google Scholar] [CrossRef]
- Ismail, M.A.; Muhamad Ludin, A.N.; Hosni, N. Comparative Assessment of the Unsupervised Land Use Classification by Using Proprietary GIS and Open Source Software. IOP Conf. Ser. Earth Environ. Sci. 2020, 540, 012020. [Google Scholar] [CrossRef]
- Cloete, D.N.; Shoko, C.; Dube, T.; Clarke, S. Remote Sensing-Based Land Use Land Cover Classification for the Heuningnes Catchment, Cape Agulhas, South Africa. Phys. Chem. Earth Parts A/B/C 2024, 134, 103559. [Google Scholar] [CrossRef]
- Yuh, Y.G.; Tracz, W.; Matthews, H.D.; Turner, S.E. Application of Machine Learning Approaches for Land Cover Monitoring in Northern Cameroon. Ecol. Inform. 2023, 74, 101955. [Google Scholar] [CrossRef]
- Cuypers, S.; Nascetti, A.; Vergauwen, M. Land Use and Land Cover Mapping with VHR and Multi-Temporal Sentinel-2 Imagery. Remote Sens. 2023, 15, 2501. [Google Scholar] [CrossRef]
- Zaki, A.; Buchori, I.; Sejati, A.W.; Liu, Y. An Object-Based Image Analysis in QGIS for Image Classification and Assessment of Coastal Spatial Planning. Egypt. J. Remote Sens. Space Sci. 2022, 25, 349–359. [Google Scholar] [CrossRef]
- Suh, C.N.; Tsheko, R.; Kayombo, B.; Moroke, S.T. Analysis of Land Cover Land Use Change in the Greater Gaborone Area of South Eastern Botswana. Acta Ecol. Sin. 2023, 43, 1080–1089. [Google Scholar] [CrossRef]
- Stoica, I.-V.; Vîrghileanu, M.; Zamfir, D.; Mihai, B.-A.; Săvulescu, I. Comparative Assessment of the Built-Up Area Expansion Based on Corine Land Cover and Landsat Datasets: A Case Study of a Post-Socialist City. Remote Sens. 2020, 12, 2137. [Google Scholar] [CrossRef]
- Basheer, S.; Wang, X.; Farooque, A.A.; Nawaz, R.A.; Liu, K.; Adekanmbi, T.; Liu, S. Comparison of Land Use Land Cover Classifiers Using Different Satellite Imagery and Machine Learning Techniques. Remote Sens. 2022, 14, 4978. [Google Scholar] [CrossRef]
- Afuye, G.A.; Nduku, L.; Kalumba, A.M.; Santos, C.A.G.; Orimoloye, I.R.; Ojeh, V.N.; Thamaga, K.H.; Sibandze, P. Global Trend Assessment of Land Use and Land Cover Changes: A Systematic Approach to Future Research Development and Planning. J. King Saud. Univ.- Sci. 2024, 36, 103262. [Google Scholar] [CrossRef]
- Geospatial Information and the 2030 Agenda for Sustainable Development. Available online: https://www.unescap.org/resources/stats-brief-december-2020-issue-no-27-geospatial-information-and-2030-agenda-sustainable (accessed on 26 May 2025).
- Cardenas-Ritzert, O.S.E.; Vogeler, J.C.; Shah Heydari, S.; Fekety, P.A.; Laituri, M.; McHale, M.R. Effects of Land Use Data Spatial Resolution on SDG Indicator 11.3.1 (Urban Expansion) Assessments: A Case Study Across Ethiopia. Sustainability 2024, 16, 9698. [Google Scholar] [CrossRef]
- Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation. Remote Sens. 2021, 13, 586. [Google Scholar] [CrossRef]
- Wikipedia. Deva, Romania. Available online: https://en.wikipedia.org/wiki/Deva,_Romania (accessed on 17 October 2025).
- National Agency for Natural Protected Areas (ANANP). Protected Natural Areas of Romania. Available online: https://ananp.gov.ro/ariile-naturale-protejate-ale-romaniei/ (accessed on 16 October 2025).
- Romanian National Meteorological Administration (ANM). Available online: https://www.meteoromania.ro (accessed on 17 October 2025).
- Sawant, S.; Garg, R.D.; Meshram, V.; Mistry, S. Sen-2 LULC: Land Use Land Cover Dataset for Deep Learning Approaches. Data Brief. 2023, 51, 109724. [Google Scholar] [CrossRef]
- Huang, H.; Roy, D.; Boschetti, L.; Zhang, H.; Yan, L.; Kumar, S.; Gomez-Dans, J.; Li, J. Separability Analysis of Sentinel-2A Multi-Spectral Instrument (MSI) Data for Burned Area Discrimination. Remote Sens. 2016, 8, 873. [Google Scholar] [CrossRef]
- Sentinel-2A SatelliteSensor|Satellite Imaging Corp. Available online: https://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/sentinel-2a/ (accessed on 17 October 2025).
- Semi-Automatic Classification Plugin—QGIS Python Plugins Repository. Available online: https://plugins.qgis.org/plugins/SemiAutomaticClassificationPlugin/ (accessed on 26 May 2025).
- Asokan, A.; Anitha, J.; Ciobanu, M.; Gabor, A.; Naaji, A.; Hemanth, D.J. Image Processing Techniques for Analysis of Satellite Images for Historical Maps Classification—An Overview. Appl. Sci. 2020, 10, 4207. [Google Scholar] [CrossRef]
- Zhang, H.; He, J.; Chen, S.; Zhan, Y.; Bai, Y.; Qin, Y. Comparing Three Methods of Selecting Training Samples in Supervised Classification of Multispectral Remote Sensing Images. Sensors 2023, 23, 8530. [Google Scholar] [CrossRef]
- Darem, A.A.; Alhashmi, A.A.; Almadani, A.M.; Alanazi, A.K.; Sutantra, G.A. Development of a Map for Land Use and Land Cover Classification of the Northern Border Region Using Remote Sensing and GIS. Egypt. J. Remote Sens. Space Sci. 2023, 26, 341–350. [Google Scholar] [CrossRef]
- Gondwe, J.F.; Lin, S.; Munthali, R.M. Analysis of Land Use and Land Cover Changes in Urban Areas Using Remote Sensing: Case of Blantyre City. Discret. Dyn. Nat. Soc. 2021, 2021, 8011565. [Google Scholar] [CrossRef]
- Ramjeawon, M.; Demlie, M.; Toucher, M.L.; Van Rensburg, S.J. Analysis of Three Decades of Land Cover Changes in the Maputaland Coastal Plain, South Africa. KOEDOE Afr. Prot. Area Conserv. Sci. 2020, 62, a1642. [Google Scholar] [CrossRef]
- Espinola, M.; Piedra-Fernandez, J.A.; Ayala, R.; Iribarne, L.; Wang, J.Z. Contextual and Hierarchical Classification of Satellite Images Based on Cellular Automata. IEEE Trans. Geosci. Remote Sens. 2015, 53, 795–809. [Google Scholar] [CrossRef]
- Chughtai, A.H.; Abbasi, H.; Karas, I.R. A Review on Change Detection Method and Accuracy Assessment for Land Use Land Cover. Remote Sens. Appl. Soc. Environ. 2021, 22, 100482. [Google Scholar] [CrossRef]
- Stern, A.J.; Daughtry, C.S.T.; Hunt, E.R.; Gao, F. Comparison of Five Spectral Indices and Six Imagery Classification Techniques for Assessment of Crop Residue Cover Using Four Years of Landsat Imagery. Remote Sens. 2023, 15, 4596. [Google Scholar] [CrossRef]
- Trigunasih, N.M.; Narka, I.W.; Saifulloh, M. Mapping Eruption Affected Area Using Sentinel-2A Imagery and Machine Learning Techniques. J. Degrade. Min. Land. Manag. 2023, 11, 5073. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Ge, G.; Shi, Z.; Zhu, Y.; Yang, X.; Hao, Y. Land Use/Cover Classification in an Arid Desert-Oasis Mosaic Landscape of China Using Remote Sensed Imagery: Performance Assessment of Four Machine Learning Algorithms. Glob. Ecol. Conserv. 2020, 22, e00971. [Google Scholar] [CrossRef]
- Boateng, E.Y.; Otoo, J.; Abaye, D.A. Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review. JDAIP 2020, 8, 341–357. [Google Scholar] [CrossRef]
- Razaque, A.; Ben Haj Frej, M.; Almi’ani, M.; Alotaibi, M.; Alotaibi, B. Improved Support Vector Machine Enabled Radial Basis Function and Linear Variants for Remote Sensing Image Classification. Sensors 2021, 21, 4431. [Google Scholar] [CrossRef] [PubMed]
- K-Nearest Neighbors (KNN) Algorithm for Classification: Real-world Applications and Examples. Available online: https://www.linkedin.com/pulse/k-nearest-neighbors-knn-algorithm-classification-nrxgf (accessed on 16 July 2025).
- Understanding Segmentation and Classification—ArcGIS Pro|Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/help/analysis/image-analyst/understanding-segmentation-and-classification.htm# (accessed on 9 April 2024).
- Sensing, R.; Change, L.C.; Areas, U.; Detection, C. Remote Sensing-Based Urban Land Use/Land Cover Change Detection and Monitoring. J. Remote Sens. GIS 2017, 6, 3. [Google Scholar] [CrossRef]
- Feng, F.; Gao, M.; Liu, R.; Yao, S.; Yang, G. A Deep Learning Framework for Crop Mapping with Reconstructed Sentinel-2 Time Series Images. Comput. Electron. Agric. 2023, 213, 108227. [Google Scholar] [CrossRef]
- Billah, M.; Islam, A.K.M.S.; Mamoon, W.B.; Rahman, M.R. Random Forest Classifications for Landuse Mapping to Assess Rapid Flood Damage Using Sentinel-1 and Sentinel-2 Data. Remote Sens. Appl. Soc. Environ. 2023, 30, 100947. [Google Scholar] [CrossRef]
- Zhang, X.; Du, L.; Tan, S.; Wu, F.; Zhu, L.; Zeng, Y.; Wu, B. Land Use and Land Cover Mapping Using RapidEye Imagery Based on a Novel Band Attention Deep Learning Method in the Three Gorges Reservoir Area. Remote Sens. 2021, 13, 1225. [Google Scholar] [CrossRef]
- Kang, J.; Yang, X.; Wang, Z.; Cheng, H.; Wang, J.; Tang, H.; Li, Y.; Bian, Z.; Bai, Z. Comparison of Three Ten Meter Land Cover Products in a Drought Region: A Case Study in Northwestern China. Land 2022, 11, 427. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, L.; Zhang, Y.; Wei, B.; Gong, D.; Li, L. Spatial Consistency and Accuracy Analysis of Multi-Source Land Cover Products on the Southeastern Tibetan Plateau, China. Remote Sens. 2024, 16, 3219. [Google Scholar] [CrossRef]
- Kasahun, M.; Legesse, A. Machine Learning for Urban Land Use/Cover Mapping: Comparison of Artificial Neural Network, Random Forest and Support Vector Machine, a Case Study of Dilla Town. Heliyon 2024, 10, e39146. [Google Scholar] [CrossRef]
- Alshari, E.A.; Gawali, B.W. Development of Classification System for LULC Using Remote Sensing and GIS. Glob. Transit. Proc. 2021, 2, 8–17. [Google Scholar] [CrossRef]
- Orusa, T.; Cammareri, D.; Borgogno Mondino, E. A Possible Land Cover EAGLE Approach to Overcome Remote Sensing Limitations in the Alps Based on Sentinel-1 and Sentinel-2: The Case of Aosta Valley (NW Italy). Remote Sens. 2022, 15, 178. [Google Scholar] [CrossRef]
- Tasnim, S.; Mahbub, F.; Biswas, G.; Enamul Haque, D.M. Spatial Indices and SDG Indicator-Based Urban Environmental Change Detection of the Major Cities in Bangladesh. J. Urban. Manag. 2022, 11, 519–529. [Google Scholar] [CrossRef]
- Esri Desktop GIS Software|Mapping Analytics|ArcGIS Pro. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on 26 May 2023).
- McCarty, D.A.; Kim, H.W.; Lee, H.K. Evaluation of Light Gradient Boosted Machine Learning Technique in Large Scale Land Use and Land Cover Classification. Environments 2020, 7, 84. [Google Scholar] [CrossRef]









| No. | Classes | Description |
|---|---|---|
| 1 | Water | Rivers, lakes, pools, ponds |
| 2 | Building | Residential, commercial, industrial, transportation |
| 3 | Vegetation | Forests, parks, green spaces |
| 4 | Agricultural Land | Arable land with less than 10% vegetation cover |
| 5 | Infrastructure | Streets, bridges, parking lots, platforms |
| Coefficient | Interval | Accuracy | QGIS (SPC) | ArcGIS Pro |
|---|---|---|---|---|
| 0.4–0.6 | good | 0.32 | 0.54 | |
| Kappa | 0.6–0.8 | very good | - | - |
| 0.8–1.00 | excellent | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bîscoveanu, O.M.; Badea, G.; Dragomir, P.I.; Badea, A.C. Evaluation of LULC Use Classification for the Municipality of Deva, Hunedoara County, Romania Using Sentinel 2A Multispectral Satellite Imagery—A Comparative Study of GIS Software Analysis and Accuracy Assessment. Appl. Sci. 2025, 15, 11437. https://doi.org/10.3390/app152111437
Bîscoveanu OM, Badea G, Dragomir PI, Badea AC. Evaluation of LULC Use Classification for the Municipality of Deva, Hunedoara County, Romania Using Sentinel 2A Multispectral Satellite Imagery—A Comparative Study of GIS Software Analysis and Accuracy Assessment. Applied Sciences. 2025; 15(21):11437. https://doi.org/10.3390/app152111437
Chicago/Turabian StyleBîscoveanu, Oana Mihaela, Gheorghe Badea, Petre Iuliu Dragomir, and Ana Cornelia Badea. 2025. "Evaluation of LULC Use Classification for the Municipality of Deva, Hunedoara County, Romania Using Sentinel 2A Multispectral Satellite Imagery—A Comparative Study of GIS Software Analysis and Accuracy Assessment" Applied Sciences 15, no. 21: 11437. https://doi.org/10.3390/app152111437
APA StyleBîscoveanu, O. M., Badea, G., Dragomir, P. I., & Badea, A. C. (2025). Evaluation of LULC Use Classification for the Municipality of Deva, Hunedoara County, Romania Using Sentinel 2A Multispectral Satellite Imagery—A Comparative Study of GIS Software Analysis and Accuracy Assessment. Applied Sciences, 15(21), 11437. https://doi.org/10.3390/app152111437

