Neuroengineering Frontiers: A Selective Review of Neural Interfaces, Brain–Machine Interactions, and Artificial Intelligence in Neurodegenerative Diseases
Abstract
1. Introduction
- Map Key Concept of Co-adaptive Symbiotic Interactions
- Signal acquisition modules (e.g., EEG, ECoG, intracortical probes).
- Real-time pattern recognition occurs through recurrent neural networks (e.g., BiLSTM, GRU) for pattern recognition.
- The system utilizes adaptive feedback loops that implement reinforcement learning or unsupervised adaptation methods.
- Embodied interaction models, as seen in passive BCIs decoding multi-dimensional mental states (MDMS), e.g., stress, engagement.
- 2.
- Identifying Gaps in the Literature on Co-Adaptive BCI for AD/PD
- Limited personalization over disease progression: The current BCI systems maintain fixed calibration methods, which fail to support the time-dependent cognitive and motor deterioration patterns found in AD and PD patients.
- The majority of BCI systems operate as one-way control systems, but researchers have proven that feedback-driven models work effectively in non-clinical environments through studies like DishBrain and Dehais et al.’s flight simulation BCI.
- Sparse integration of organoids in real-time systems: Brain organoids remain largely exploratory and preclinical, and their potential as adaptive computational substrates in BCI feedback loops has not been fully realized.
- Lack of neurophenomenological decoding: Few systems address the first-person experience, which is critical for assessing intention, emotional valence, and motivational state factors, especially relevant in disorders with affective-cognitive comorbidity.
- Insufficient long-term tracking infrastructure: There is a lack of frameworks to track patient-specific neural trajectories and tailor interface adaptation accordingly over months or years.
- 3.
- Synthesizing Evidence Across Neuroscience, AI, and Clinical Studies
- Enhanced communication: Adaptive BCIs can restore interaction capacity in late-stage AD or advanced PD patients by mapping residual neural intent to assistive outputs.
- Improved mobility and motor planning: The system achieves better motor control and planning through real-time co-adaptation with recurrent models (LSTM, BiLSTM), which produces stable intent decoding during neural system changes.
- Personalized treatment response tracking: AI systems that analyze MEG/fMRI or electrophysiological changes in organoid models of PD midbrain can predict and track the effectiveness of pharmacologic or DBS treatments.
- The integration of neurophenomenological data through passive BCIs enables interfaces to detect user state changes beyond basic command input for creating cognitive-affective interfaces.
- Closed-loop hybrid systems: Emerging platforms, such as organoid–AI symbiosis, create the possibility for feedback-conditioned drug screening, personalized to a patient’s neural phenotype and integrated into BCI control pipelines.
- 4.
- Thematic Focus and Methodology
- Adaptive AI architectures in brain–computer interfaces.
- Organoid-based neuroengineering platforms for modeling and intervention.
- Bidirectional and personalized feedback loops for AD and PD patients.
2. AI and Machine Learning in Neuroscience and Neuroengineering
3. Neural Interfaces and Brain Organoids in Neuroengineering
3.1. In Vivo Neural Interfaces
3.2. In Vitro Brain Organoid Platforms
3.3. Integrated Summary of Neural Interface Systems and Organoid Models in AD and PD
3.4. BCI Signal Flow and System Architecture
4. Human–AI Symbiosis: Co-Adaptation and Emerging Paradigms
5. Challenges and Future Directions
5.1. Challenges and Limitations
5.2. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| AD | Alzheimer’s Disease |
| AI | Artificial Intelligence |
| BCI | Brain–Computer Interface |
| BiLSTM | Bidirectional Long Short-Term Memory Network |
| BMI | Brain–Machine Interface |
| BOMA | Brain and Organoids Manifold Alignment |
| CNN | Convolutional Neural Network |
| cyb-organoid | Cyborg Organoid (hippocampal platform) |
| DBN | Deep Belief Network |
| DBS | Deep Brain Stimulation |
| DL | Deep Learning |
| DNN | Deep Neural Network |
| DTI | Diffusion Tensor Imaging |
| EC | Endothelial Cell |
| ECM | Extracellular Matrix |
| ECoG | Electrocorticography |
| EEG | Electroencephalography |
| fNIRS | Functional Near-Infrared Spectroscopy |
| fUS/fUSi | Functional Ultrasound Imaging |
| GAN | Generative Adversarial Network |
| GNN | Graph Neural Network |
| GPU | Graphics Processing Unit |
| GRU | Gated Recurrent Unit |
| hHOs | Human Hippocampal Organoids |
| iPSCs | Induced Pluripotent Stem Cells |
| LFPs | Local Field Potentials |
| LR | Logistic Regression |
| LSTM | Long Short-Term Memory Network |
| MDMS | Multi-Dimensional Mental States |
| MEAs | Microelectrode Arrays |
| MEG | Magnetoencephalography |
| ML | Machine Learning |
| MLP | Multi-Layer Perceptron |
| MPC | Metal–Polymer Conductor |
| mMPC | Mesh Metal–Polymer Conductor |
| MRI | Magnetic Resonance Imaging |
| ND | Neurodegenerative Diseases |
| NEURON | Simulation environment for modeling neurons and networks |
| OBCI | Organoid–Brain–Computer Interface |
| OPM | Optically Pumped Magnetometer |
| PCA | Principal Component Analysis |
| PD | Parkinson’s Disease |
| PET | Positron Emission Tomography |
| RNN | Recurrent Neural Network |
| RF | Random Forest |
| rs-fMRI | Resting-State Functional Magnetic Resonance Imaging |
| SQUID | Superconducting Quantum Interference Device |
| SRC | Signal-Receiving Cell |
| SSC | Signal-Sending Cell |
| SVM | Support Vector Machine |
| TADPOLE | Alzheimer’s Disease Prediction Challenge Dataset |
| tFUS | Transcranial Focused Ultrasound Stimulation |
| UCI | University of California, Irvine (voice datasets) |
| XAI | Explainable Artificial Intelligence |
References
- Alzheimer’s Association. 2025 Alzheimer’s Disease Facts and Figures. 6.5 Million Americans Age 65+ with AD, Projected to 13.8 Million by 2060. 2025. Available online: https://www.alz.org/alzheimers-dementia/facts-figures (accessed on 17 July 2025).
- Dorsey, E.R.; Bloem, B.R. The Emerging Evidence of the Parkinson Pandemic. JAMA Neurol. 2018, 75, 9–10. [Google Scholar] [CrossRef]
- Yang, W.; Hamilton, J.L.; Kopil, C.; Beck, J.C.; Tanner, C.M.; Albin, R.L.; Ray Dorsey, E.; Dahodwala, N.; Cintina, I.; Hogan, P.; et al. Current and projected future economic burden of Parkinson’s disease in the US. npj Park. Dis. 2020, 6, 15. [Google Scholar] [CrossRef]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Shenoy, K.V.; Carmena, J.M. Combining decoder design and neural adaptation in brain-machine interfaces. Neuron 2014, 84, 665–680. [Google Scholar] [CrossRef] [PubMed]
- Tanji, J.; Hoshi, E. Behavioral planning in the prefrontal cortex. Curr. Opin. Neurobiol. 2001, 11, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Antzoulatos, E.G.; Miller, E.K. Differences between neural activity in prefrontal cortex and striatum during learning of novel abstract categories. Neuron 2011, 71, 243–249. [Google Scholar] [CrossRef]
- Graybiel, A.M.; Aosaki, T.; Flaherty, A.W.; Kimura, M. The basal ganglia and adaptive motor control. Science 1994, 265, 1826–1831. [Google Scholar] [CrossRef]
- Goldman-Rakic, P. Motor control function of the prefrontal cortex. In Ciba Foundation Symposium 132-Motor Areas of the Cerebral Cortex: Motor Areas of The Cerebral Cortex: Ciba Foundation Symposium 132; Wiley Online Library: Hoboken, NJ, USA, 2007; pp. 187–200. [Google Scholar]
- Wallis, J.D.; Anderson, K.C.; Miller, E.K. Single neurons in prefrontal cortex encode abstract rules. Nature 2001, 411, 953–956. [Google Scholar] [CrossRef]
- Tanveer, M.; Richhariya, B.; Khan, R.U.; Rashid, A.H.; Khanna, P.; Prasad, M.; Lin, C.T. Machine learning techniques for the diagnosis of Alzheimer’s disease: A review. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2020, 16, 1–35. [Google Scholar] [CrossRef]
- Khojaste-Sarakhsi, M.; Haghighi, S.S.; Ghomi, S.F.; Marchiori, E. Deep learning for Alzheimer’s disease diagnosis: A survey. Artif. Intell. Med. 2022, 130, 102332. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, D.; Yan, W.; Initiative, A.D.N. Classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDG-PET images. Front. Neuroinform. 2018, 12, 35. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, J.; Zhang, Y.; Zhong, J.; Hu, W.; Li, C.; Jiang, J. The combination of a graph neural network technique and brain imaging to diagnose neurological disorders: A review and outlook. Brain Sci. 2023, 13, 1462. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Mao, M.; Qian, X. Auto-metric graph neural network based on a meta-learning strategy for the diagnosis of Alzheimer’s disease. IEEE J. Biomed. Health Inform. 2021, 25, 3141–3152. [Google Scholar] [CrossRef] [PubMed]
- Ranjbarzadeh, R.; Jafarzadeh Ghoushchi, S.; Anari, S.; Safavi, S.; Tataei Sarshar, N.; Babaee Tirkolaee, E.; Bendechache, M. A deep learning approach for robust, multi-oriented, and curved text detection. Cogn. Comput. 2024, 16, 1979–1991. [Google Scholar] [CrossRef]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef]
- Craik, A.; He, Y.; Contreras-Vidal, J.L. Deep learning for electroencephalogram (EEG) classification tasks: A review. J. Neural Eng. 2019, 16, 031001. [Google Scholar] [CrossRef]
- Roy, R.; Tripathy, R.K.; Acharya, U.R. Transformer-based deep learning models for EEG signal analysis: A review. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 2211–2225. [Google Scholar]
- Zhang, L.; Wang, M.; Chen, H.; Li, R. Hybrid AI-FEM Modeling for Multiphysics Simulation of Neuroelectronic Interfaces. Electronics 2024, 14, 2268. [Google Scholar] [CrossRef]
- Harrison, R.R. The design of integrated circuits to observe brain activity. Proc. IEEE 2008, 96, 1203–1216. [Google Scholar] [CrossRef]
- Park, J.H.; Wang, H.; Seok, M.; Chiang, P. SPAD-based imaging of neural activity: Emerging photonic front-ends for neurotechnology. Nat. Photonics 2023, 17, 391–403. [Google Scholar]
- Qian, X.; Song, H.; Ming, G.l. Brain organoids: Advances, applications and challenges. Development 2019, 146, dev166074. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, M.A.; Renner, M.; Martin, C.A.; Wenzel, D.; Bicknell, L.; Hurles, M.; Homfray, T.; Penninger, J.; Jackson, A.; Knoblich, J. Cerebral organoids model human brain development and microcephaly. Nature 2013, 501, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cheng, J.; Qi, J.; Hang, C.; Dong, R.; Low, B.C.; Yu, H.; Jiang, X. Three-dimensional liquid metal-based neuro-interfaces for human hippocampal organoids. Nat. Commun. 2024, 15, 4047. [Google Scholar] [CrossRef] [PubMed]
- Anumanchipalli, G.K.; Metzger, S.; Chartier, J.; Moses, D.A.; Dougherty, M.E.; Liu, J.R.; Abrams, G.M.; Tu-Chan, A.; Ganguly, K.; Chang, E.F.; et al. A high-performance speech neuroprosthesis. Nature 2023, 621, 582–589. [Google Scholar]
- Wired Magazine. Paradromics Tested a Brain Implant. Now the FDA Is Involved. 2024. Available online: https://www.wired.com/story/paradromics-neuralink-rival-tested-brain-implant (accessed on 25 June 2025).
- Hu, N.; Shi, J.; Chen, C.; Wu, Y.; Yang, J.; Zhang, Z.; Zeng, H.; Li, B.; Huang, M.; Chen, J.; et al. Constructing organoid-brain–computer interfaces for neurofunctional repair after brain injury. Nat. Commun. 2024, 15, 9580. [Google Scholar] [CrossRef]
- Farwell, L.A.; Donchin, E. Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 1988, 70, 510–523. [Google Scholar] [CrossRef]
- Birbaumer, N.; Ghanayim, N.; Hinterberger, T.; Iversen, I.; Kotchoubey, B.; Kübler, A.; Perelmouter, J.; Taub, E.; Flor, H. A spelling device for the paralysed. Nature 1999, 398, 297–298. [Google Scholar] [CrossRef]
- Sellers, E.W.; Donchin, E. A P300-based brain–computer interface: Initial tests by ALS patients. Clin. Neurophysiol. 2006, 117, 538–548. [Google Scholar] [CrossRef]
- Nijboer, F.; Sellers, E.W.; Mellinger, J.; Jordan, M.A.; Matuz, T.; Furdea, A.; Halder, S.; Mochty, U.; Krusienski, D.J.; Vaughan, T.M.; et al. A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clin. Neurophysiol. 2008, 119, 1909–1916. [Google Scholar] [CrossRef]
- Kübler, A.; Müller-Putz, G.R. Brain–computer interfaces in the context of neurorehabilitation: Current and future directions. Appl. Psychophysiol. Biofeedback 2007, 32, 111–118. [Google Scholar]
- Guger, C.; Daban, S.; Sellers, E.; Holzner, C.; Krausz, G.; Carabalona, R.; Gramatica, F.; Edlinger, G. How many people are able to control a P300-based brain–computer interface (BCI)? Neurosci. Lett. 2009, 462, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Q.; Sun, X.; Li, C.; Luo, J.; Wang, X. Smart wearable electronics for biomedical monitoring and therapy. Nat. Electron. 2021, 4, 34–47. [Google Scholar]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.F.; Wang, J. Stretchable bioelectronics for real-time physiological monitoring and therapy. Chem. Rev. 2020, 120, 4581–4623. [Google Scholar]
- Yang, Z.; Lin, X.; Lee, C. Wireless smart implants for continuous and real-time in vivo monitoring of tissue temperature and SAR in biomedical applications. Adv. Sci. 2023, 10, 2300787. [Google Scholar]
- Rao, R.P. Towards neural co-processors for the brain: Combining decoding and encoding in brain–computer interfaces. Curr. Opin. Neurobiol. 2019, 55, 142–151. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Karavas, G.K.; Artemiadis, P. Adaptive multi-degree of freedom Brain Computer Interface using online feedback: Towards novel methods and metrics of mutual adaptation between humans and machines for BCI. PLoS ONE 2019, 14, e0212620. [Google Scholar] [CrossRef]
- De Santis, D. A framework for optimizing co-adaptation in body-machine interfaces. Front. Neurorobot. 2021, 15, 662181. [Google Scholar] [CrossRef]
- Yang, W. Brain-computer interfaces in cognitive rehabilitation for Alzheimer’s disease. Theor. Nat. Sci. 2024, 64, 179–185. [Google Scholar] [CrossRef]
- Squire, L.; Berg, D.; Bloom, F.E.; Du Lac, S.; Ghosh, A.; Spitzer, N.C. Fundamental Neuroscience; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Edelman, B.J.; Johnson, N.; Sohrabpour, A.; Tong, S.; Thakor, N.; He, B. Systems neuroengineering: Understanding and interacting with the brain. Engineering 2015, 1, 292–308. [Google Scholar] [CrossRef]
- Lebedev, M.A.; Nicolelis, M.A. Brain–machine interfaces: Past, present and future. TRENDS Neurosci. 2006, 29, 536–546. [Google Scholar] [CrossRef]
- Pandarinath, C.; O’Shea, D.J.; Collins, J.; Jozefowicz, R.; Stavisky, S.D.; Kao, J.C.; Trautmann, E.M.; Kaufman, M.T.; Ryu, S.I.; Hochberg, L.R.; et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 2018, 15, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.; Pinaya, W.H.; Mechelli, A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci. Biobehav. Rev. 2017, 74, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Roy, Y.; Banville, H.; Albuquerque, I.; Gramfort, A.; Falk, T.H.; Faubert, J. Deep learning-based electroencephalography analysis: A systematic review. J. Neural Eng. 2019, 16, 051001. [Google Scholar] [CrossRef] [PubMed]
- Badrulhisham, F.; Pogatzki-Zahn, E.; Segelcke, D.; Spisak, T.; Vollert, J. Machine learning and artificial intelligence in neuroscience: A primer for researchers. Brain Behav. Immun. 2024, 115, 470–479. [Google Scholar] [CrossRef]
- Frégnac, Y. Big data and the industrialization of neuroscience: A safe roadmap for understanding the brain? Science 2017, 358, 470–477. [Google Scholar] [CrossRef]
- Zador, A.; Escola, S.; Richards, B.; Ölveczky, B.; Bengio, Y.; Boahen, K.; Botvinick, M.; Chklovskii, D.; Churchland, A.; Clopath, C.; et al. Catalyzing next-generation artificial intelligence through neuroai. Nat. Commun. 2023, 14, 1597. [Google Scholar] [CrossRef]
- Onciul, R.; Tataru, C.I.; Dumitru, A.V.; Crivoi, C.; Serban, M.; Covache-Busuioc, R.A.; Radoi, M.P.; Toader, C. Artificial Intelligence and Neuroscience: Transformative Synergies in Brain Research and Clinical Applications. J. Clin. Med. 2025, 14, 550. [Google Scholar] [CrossRef]
- Samper-González, J.; Burgos, N.; Bottani, S.; Fontanella, S.; Lu, P.; Marcoux, A.; Routier, A.; Guillon, J.; Bacci, M.; Wen, J.; et al. Reproducible evaluation of classification methods in Alzheimer’s disease: Framework and application to MRI and PET data. NeuroImage 2018, 183, 504–521. [Google Scholar] [CrossRef]
- Solana-Lavalle, G.; Rosas-Romero, R. Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson’s disease. Comput. Methods Programs Biomed. 2021, 198, 105793. [Google Scholar] [CrossRef]
- Prashanth, R.; Roy, S.D.; Mandal, P.K.; Ghosh, S. High-accuracy classification of Parkinson’s disease through shape analysis and surface fitting in 123I-Ioflupane SPECT imaging. IEEE J. Biomed. Health Inform. 2016, 21, 794–802. [Google Scholar] [CrossRef]
- Salvatore, C.; Cerasa, A.; Castiglioni, I.; Gallivanone, F.; Augimeri, A.; Lopez, M.; Arabia, G.; Morelli, M.; Gilardi, M.; Quattrone, A. Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and Progressive Supranuclear Palsy. J. Neurosci. Methods 2014, 222, 230–237. [Google Scholar] [CrossRef]
- Zhou, T.; Thung, K.H.; Zhu, X.; Shen, D. Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis. Hum. Brain Mapp. 2019, 40, 1001–1016. [Google Scholar] [CrossRef] [PubMed]
- Basaia, S.; Agosta, F.; Wagner, L.; Canu, E.; Magnani, G.; Santangelo, R.; Filippi, M.; Alzheimer’s Disease Neuroimaging Initiative. Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. Neuroimage Clin. 2019, 21, 101645. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Sohn, J.H.; Kawczynski, M.G.; Trivedi, H.; Harnish, R.; Jenkins, N.W.; Lituiev, D.; Copeland, T.P.; Aboian, M.S.; Mari Aparici, C.; et al. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain. Radiology 2019, 290, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.H.; Rowe, S.P.; Pomper, M.G.; Du, Y. A three-stage, deep learning, ensemble approach for prognosis in patients with Parkinson’s disease. EJNMMI Res. 2021, 11, 52. [Google Scholar] [CrossRef]
- Sivaranjini, S.; Sujatha, C. Deep learning based diagnosis of Parkinson’s disease using convolutional neural network. Multimed. Tools Appl. 2020, 79, 15467–15479. [Google Scholar] [CrossRef]
- Aliero, A.S.; Malhotra, N. Comparative study of deep learning models for Parkinson’s Disease detection. Benchcouncil Trans. Benchmarks, Stand. Eval. 2025, 5, 100219. [Google Scholar] [CrossRef]
- Taleb, C.; Likforman-Sulem, L.; Mokbel, C.; Khachab, M. Detection of Parkinson’s disease from handwriting using deep learning: A comparative study. Evol. Intell. 2023, 16, 1813–1824. [Google Scholar] [CrossRef]
- Mohammed, B.A.; Senan, E.M.; Rassem, T.H.; Makbol, N.M.; Alanazi, A.A.; Al-Mekhlafi, Z.G.; Almurayziq, T.S.; Ghaleb, F.A. Multi-method analysis of medical records and MRI images for early diagnosis of dementia and Alzheimer’s disease based on deep learning and hybrid methods. Electronics 2021, 10, 2860. [Google Scholar] [CrossRef]
- Matlani, P. BiLSTM-ANN: Early diagnosis of Alzheimer’s disease using hybrid deep learning algorithms. Multimed. Tools Appl. 2024, 83, 60761–60788. [Google Scholar] [CrossRef]
- Rudroff, T.; Rainio, O.; Klén, R. AI for the prediction of early stages of Alzheimer’s disease from neuroimaging biomarkers: A narrative review of a growing field. Neurol. Sci. 2024, 45, 5117–5127. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, F.; Li, Z.; Yang, Z.; Dong, X.; Han, Q. Constructing high-order functional networks based on hypergraph for diagnosis of autism spectrum disorders. Front. Neurosci. 2023, 17, 1257982. [Google Scholar] [CrossRef] [PubMed]
- Hinrichs, C.; Singh, V.; Xu, G.; Johnson, S.C.; Alzheimers Disease Neuroimaging Initiative. Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population. NeuroImage 2011, 55, 574–589. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.T.; Abaei, M.; Gontu, V.; Morgan, P.S.; Bajaj, N.; Auer, D.P. Diffusion tensor imaging of nigral degeneration in Parkinson’s disease: A region-of-interest and voxel-based study at 3 T and systematic review with meta-analysis. NeuroImage Clin. 2013, 3, 481–488. [Google Scholar] [CrossRef]
- Simuni, T.; Merchant, K.; Brumm, M.C.; Cho, H.; Caspell-Garcia, C.; Coffey, C.S.; Chahine, L.M.; Alcalay, R.N.; Nudelman, K.; Foroud, T.; et al. Longitudinal clinical and biomarker characteristics of non-manifesting LRRK2 G2019S carriers in the PPMI cohort. npj Park. Dis. 2022, 8, 140. [Google Scholar] [CrossRef]
- Rahman, S.; Hasan, M.; Sarkar, A.K.; Khan, F. Classification of Parkinson’s disease using speech signal with machine learning and deep learning approaches. Eur. J. Electr. Eng. Comput. Sci. 2023, 7, 20–27. [Google Scholar] [CrossRef]
- Hu, Q.; Whitney, H.M.; Giger, M.L. A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI. Sci. Rep. 2020, 10, 10536. [Google Scholar] [CrossRef]
- Zhao, A.; Liu, Y.; Yu, X.; Xing, X.; Zhou, H. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using multimodal data: A survey. Inf. Fusion 2025, 121, 103175. [Google Scholar] [CrossRef]
- Mehonic, A.; Kenyon, A.J. Brain-inspired computing needs a master plan. Nature 2022, 604, 255–260. [Google Scholar] [CrossRef]
- Bai, L.; Wu, Y.; Li, G.; Zhang, W.; Zhang, H.; Su, J. AI-enabled organoids: Construction, analysis, and application. Bioact. Mater. 2024, 31, 525–548. [Google Scholar] [CrossRef]
- Zhang, Y.; He, G.; Ma, L.; Liu, X.; Hjorth, J.J.; Kozlov, A.; He, Y.; Zhang, S.; Kotaleski, J.H.; Tian, Y.; et al. A GPU-based computational framework that bridges neuron simulation and artificial intelligence. Nat. Commun. 2023, 14, 5798. [Google Scholar] [CrossRef]
- Quadrato, G.; Nguyen, T.; Macosko, E.Z.; Sherwood, J.L.; Min Yang, S.; Berger, D.R.; Maria, N.; Scholvin, J.; Goldman, M.; Kinney, J.P.; et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 2017, 545, 48–53. [Google Scholar] [CrossRef]
- Trujillo, C.A.; Gao, R.; Negraes, P.D.; Gu, J.; Buchanan, J.; Preissl, S.; Wang, A.; Wu, W.; Haddad, G.G.; Chaim, I.A.; et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 2019, 25, 558–569.e7. [Google Scholar] [CrossRef]
- Rossi, G.; Manfrin, A.; Lutolf, M.P. Progress and potential in organoid research. Nat. Rev. Genet. 2018, 19, 671–687. [Google Scholar] [CrossRef] [PubMed]
- Sharf, T.; van der Molen, T.; Glasauer, S.M.; Guzman, E.; Buccino, A.P.; Luna, G.; Cheng, Z.; Audouard, M.; Ranasinghe, K.G.; Kudo, K.; et al. Functional neuronal circuitry and oscillatory dynamics in human brain organoids. Nat. Commun. 2022, 13, 4403. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, L.; Caffo, B.S.; Gracias, D.H.; Huang, Q.; Morales Pantoja, I.E.; Tang, B.; Zack, D.J.; Berlinicke, C.A.; Boyd, J.L.; Harris, T.D.; et al. Organoid intelligence (OI): The new frontier in biocomputing and intelligence-in-a-dish. Front. Sci. 2023, 1, 1017235. [Google Scholar] [CrossRef]
- Birey, F.; Andersen, J.; Makinson, C.D.; Islam, S.; Wei, W.; Huber, N.; Fan, J.; Metzler, Z.; Panagiotakos, G.; Thom, N.; et al. Assembly of functionally integrated human forebrain spheroids. Nature 2017, 545, 54–59. [Google Scholar] [CrossRef]
- Jovanova, M.; Falk, E.B.; Pearl, J.M.; Pandey, P.; O’Donnell, M.B.; Kang, Y.; Bassett, D.S.; Lydon-Staley, D.M. Brain system integration and message consistent health behavior change. Health Psychol. 2022, 41, 611–620. [Google Scholar] [CrossRef]
- Qian, X.; Nguyen, H.N.; Song, M.M.; Hadiono, C.; Ogden, S.C.; Hammack, C.; Yao, B.; Hamersky, G.R.; Jacob, F.; Zhong, C.; et al. Brain-region-specific organoids using mini-bioreactors for modeling human neural development. Nature Protocols 2016, 11, 1721–1738. [Google Scholar]
- Di Lullo, E.; Kriegstein, A.R. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 2017, 18, 573–584. [Google Scholar] [CrossRef]
- Groveman, B.R.; Foliaki, S.T.; Orru, C.D.; Zanusso, G.; Race, B. Human cerebral organoids as a model for prion disease. Acta Neuropathol. Commun. 2021, 9, 50. [Google Scholar]
- Wang, Y.; Chiola, S.; Yang, G.; Russell, C.; Armstrong, C.J.; Wu, Y.; Spampanato, J.; Tarboton, P.; Ullah, H.A.; Edgar, N.U.; et al. Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes. Nat. Commun. 2022, 13, 5688. [Google Scholar] [CrossRef]
- Revah, O.; Gore, F.; Kelley, K.W.; Andersen, J.; Sakai, N.; Chen, X.; Li, M.-Y.; Birey, F.; Yang, X.; Saw, N.L.; et al. Maturation and circuit integration of transplanted human cortical organoids. Nature 2022, 610, 319–326. [Google Scholar] [CrossRef]
- Wilson, M.N.; Thunemann, M.; Liu, X.; Lu, Y.; Puppo, F.; Adams, J.W.; Kim, J.-H.; Ramezani, M.; Pizzo, D.P.; Djurovic, S.; et al. Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex. Nat. Commun. 2022, 13, 7945. [Google Scholar] [CrossRef] [PubMed]
- Jgamadze, D.; Lim, J.T.; Zhang, Z.; Harary, P.M.; Germi, J.; Mensah-Brown, K.; Adam, C.D.; Mirzakhalili, E.; Singh, S.; Gu, J.B.; et al. Structural and functional integration of human forebrain organoids with the injured adult rat visual system. Cell Stem Cell 2023, 30, 137–152.e7. [Google Scholar] [CrossRef]
- Cao, S.-Y.; Yang, D.; Huang, Z.-Q.; Lin, Y.-H.; Wu, H.-Y.; Chang, L.; Luo, C.-X.; Xu, Y.; Liu, Y.; Zhu, D.-Y. Cerebral organoids transplantation repairs infarcted cortex and restores impaired function after stroke. NPJ Regen. Med. 2023, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.F.; Liu, J.; Zhang, L.; Jiang, J.Y.; Russell, M.; Lyeth, B.G.; Nolta, J.A.; Zhao, M. Electrical guidance of human stem cells in the rat brain. Stem Cell Rep. 2017, 9, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Tang, Z.; Liu, X.; Van der Spiegel, J. Electronic neural interfaces. Nat. Electron. 2020, 3, 191–200. [Google Scholar] [CrossRef]
- Mudgal, S.K.; Sharma, S.K.; Chaturvedi, J.; Sharma, A. Brain computer interface advancement in neurosciences: Applications and issues. Interdiscip. Neurosurg. 2020, 20, 100694. [Google Scholar] [CrossRef]
- Willsey, M.S.; Shah, N.P.; Avansino, D.T.; Hahn, N.V.; Jamiolkowski, R.M.; Kamdar, F.B.; Hochberg, L.R.; Willett, F.R.; Henderson, J.M. A high-performance brain–computer interface for finger decoding and quadcopter game control in an individual with paralysis. Nat. Med. 2025, 31, 303–314. [Google Scholar] [CrossRef]
- Musk, E.; Neuralink. An Integrated Brain-Machine Interface Platform with Thousands of Channels. J. Med. Internet Res. 2019, 21, e16194. [Google Scholar] [CrossRef]
- Greenberg, A.; Cohen, A.; Grewal, M. Patent landscape of brain-machine interface technology. Nat. Biotechnol. 2021, 39, 1194–1199. [Google Scholar] [CrossRef]
- Lin, S.; Liu, J.; Li, W.; Wang, D.; Huang, Y.; Jia, C.; Li, Z.; Murtaza, M.; Wang, H.; Song, J.; et al. A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces. Nano Lett. 2019, 19, 6853–6861. [Google Scholar] [CrossRef]
- Abiri, R.; Borhani, S.; Sellers, E.W.; Jiang, Y.; Zhao, X. A comprehensive review of EEG-based brain-computer interface paradigms. J. Neural Eng. 2019, 16, 011001. [Google Scholar] [CrossRef]
- Wolpaw, J.R. Brain-computer interfaces (BCIs) for communication and control. In Proceedings of the 9th International ACM SIGACCESS Conference on Computers and Accessibility, Tempe, AZ, USA, 15–17 October 2007; pp. 1–2. [Google Scholar]
- Kübler, A.; Neumann, N.; Kaiser, J.; Kotchoubey, B.; Hinterberger, T.; Birbaumer, N.P. Brain-computer communication: Self-regulation of slow cortical potentials for verbal communication. Arch. Phys. Med. Rehabil. 2001, 82, 1533–1539. [Google Scholar] [CrossRef]
- Zhang, A.; Jiang, Y.; Loh, K.Y.; Bao, Z.; Deisseroth, K. Genetically targeted chemical assembly. Nat. Rev. Bioeng. 2024, 2, 82–94. [Google Scholar] [CrossRef]
- Kim, S.H.; Chang, M.Y. Application of human brain organoids: Opportunities and challenges in modeling human brain development and Neurodevelopmental Diseases. Int. J. Mol. Sci. 2023, 24, 12528. [Google Scholar] [CrossRef]
- Kisban, S.; Herwik, S.; Seidl, K.; Rubehn, B.; Jezzini, A.; Umiltà, M.A. Comprehensive biocompatibility analysis of neural interfaces. Biomed. Microdevices 2011, 13, 361–373. [Google Scholar]
- Minev, I.R.; Musienko, P.; Hirsch, A.; Barraud, Q.; Wenger, N.; Moraud, E.M.; Gandar, J.; Capogrosso, M.; Milekovic, T.; Asboth, L.; et al. Electronic dura mater for long-term multimodal neural interfaces. Science 2015, 347, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.; Kim, J.; Lee, H.; Jang, Y.; Kim, H.; Seo, J.; Park, J.; Lee, Y.; Song, Y.M.; Hwang, S.W.; et al. Bioelectronics for neuroprosthetics. Nat. Electron. 2019, 2, 429–442. [Google Scholar]
- Viventi, J.; Kim, D.H.; Vigeland, L.; Frechette, E.S.; Blanco, J.A.; Kim, Y.S.; Avrin, A.E.; Tiruvadi, V.R.; Hwang, S.W.; Vanleer, A.C.; et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 2011, 14, 1599–1605. [Google Scholar] [CrossRef]
- Luan, L.; Wei, X.; Zhao, Z.; Siegel, J.J.; Potnis, O.; Tuppen, C.A.; Lin, S.; Kazmi, S.; Fowler, R.A.; Holloway, S.; et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci. Adv. 2017, 3, e1601966. [Google Scholar] [CrossRef]
- Kretzschmar, K.; Clevers, H. Organoids: Modeling development and the stem cell niche in a dish. Dev. Cell 2016, 38, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Kagan, B.J.; Kitchen, A.C.; Tran, N.T.; Habibollahi, F.; Khajehnejad, M.; Parker, B.J.; Bhat, A.; Rollo, B.; Razi, A.; Friston, K.J. In vitro neurons learn and exhibit sentience when embodied in a simulated game-world. Neuron 2022, 110, 3952–3969.e8. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Evans, A. Graph theoretical modeling of brain connectivity. Curr. Opin. Neurol. 2010, 23, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.; Feng, X.; Cheng, L.K.W.; Wu, A.R. Vascularized human brain organoid on-chip. Lab Chip 2023, 23, 2693–2709. [Google Scholar] [CrossRef]
- Salmon, I.; Grebenyuk, S.; Fattah, A.R.A.; Rustandi, G.; Pilkington, T.; Verfaillie, C.; Ranga, A. Engineering neurovascular organoids with 3D printed microfluidic chips. Lab Chip 2022, 22, 1615–1629. [Google Scholar] [CrossRef]
- Papamichail, L.; Koch, L.S.; Veerman, D.; Broersen, K.; van der Meer, A.D. Organoids-on-a-chip: Microfluidic technology enables culture of organoids with enhanced tissue function and potential for disease modeling. Front. Bioeng. Biotechnol. 2025, 13, 1515340. [Google Scholar] [CrossRef]
- Werschler, N.; Quintard, C.; Nguyen, S.; Penninger, J. Engineering next generation vascularized organoids. Atherosclerosis 2024, 398, 118529. [Google Scholar] [CrossRef]
- Grebenyuk, S.; Abdel Fattah, A.R.; Kumar, M.; Toprakhisar, B.; Rustandi, G.; Vananroye, A.; Salmon, I.; Verfaillie, C.; Grillo, M.; Ranga, A. Large-scale perfused tissues via synthetic 3D soft microfluidics. Nat. Commun. 2023, 14, 193. [Google Scholar] [CrossRef]
- Aguirre, M.; Escobar, M.; Forero Amézquita, S.; Cubillos, D.; Rincón, C.; Vanegas, P.; Tarazona, M.P.; Atuesta Escobar, S.; Blanco, J.C.; Celis, L.G. Application of the Yamanaka transcription factors Oct4, Sox2, Klf4, and c-Myc from the laboratory to the clinic. Genes 2023, 14, 1697. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Bejoy, J.; Marzano, M.; Li, Y. The use of pluripotent stem cell-derived organoids to study extracellular matrix development during neural degeneration. Cells 2019, 8, 242. [Google Scholar] [CrossRef] [PubMed]
- Rosebrock, D.; Arora, S.; Mutukula, N.; Volkman, R.; Gralinska, E.; Balaskas, A.; Aragonés Hernández, A.; Buschow, R.; Brändl, B.; Müller, F.J.; et al. Enhanced cortical neural stem cell identity through short SMAD and WNT inhibition in human cerebral organoids facilitates emergence of outer radial glial cells. Nat. Cell Biol. 2022, 24, 981–995. [Google Scholar] [CrossRef]
- Qian, X.; Su, Y.; Adam, C.D.; Deutschmann, A.U.; Pather, S.R.; Goldberg, E.M.; Su, K.; Li, S.; Lu, L.; Jacob, F.; et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 2020, 26, 766–781. [Google Scholar] [CrossRef]
- Rathore, G.S.; Ankjær, M.; Rifes, P.; Hänninen, E.; Calleja, F.S.; Rusimbi, C.; Kajtez, J.; Nygaard, A.H.; Piilgaard, L.S.; Dubonyte, U.; et al. Mapping early patterning events in human neural development using an in-vitro microfluidic stem cell model. bioRxiv 2025. [Google Scholar] [CrossRef]
- Polevoy, H.; Gutkovich, Y.E.; Michaelov, A.; Volovik, Y.; Elkouby, Y.M.; Frank, D. New roles for Wnt and BMP signaling in neural anteroposterior patterning. EMBO Rep. 2019, 20, e45842. [Google Scholar] [CrossRef]
- Avnet, S.; Mizushima, E.; Severino, B.; Lipreri, M.V.; Scognamiglio, A.; Corvino, A.; Baldini, N.; Cortini, M. Antagonizing the S1P-S1P3 Axis as a Promising Anti-Angiogenic Strategy. Metabolites 2025, 15, 178. [Google Scholar] [CrossRef]
- Shi, Y.; Sun, L.; Wang, M.; Liu, J.; Zhong, S.; Li, R.; Li, P.; Guo, L.; Fang, A.; Chen, R.; et al. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol. 2020, 18, e3000705. [Google Scholar] [CrossRef]
- Kook, M.G.; Lee, S.E.; Shin, N.; Kong, D.; Kim, D.H.; Kim, M.S.; Kang, H.K.; Choi, S.W.; Kang, K.S. Generation of cortical brain organoid with vascularization by assembling with vascular spheroid. Int. J. Stem Cells 2022, 15, 85–94. [Google Scholar] [CrossRef]
- Ahn, Y.; An, J.H.; Yang, H.J.; Lee, D.G.; Kim, J.; Koh, H.; Park, Y.H.; Song, B.S.; Sim, B.W.; Lee, H.J.; et al. Human blood vessel organoids penetrate human cerebral organoids and form a vessel-like system. Cells 2021, 10, 2036. [Google Scholar] [CrossRef]
- Kermani, P.; Rafii, D.; Jin, D.K.; Whitlock, P.; Schaffer, W.; Chiang, A.; Vincent, L.; Friedrich, M.; Shido, K.; Hackett, N.R.; et al. Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of hematopoietic progenitors. J. Clin. Investig. 2005, 115, 653–663. [Google Scholar] [CrossRef]
- Yuan, Y.; Ye, H.Q.; Ren, Q.C. Upregulation of the BDNF/TrKB pathway promotes epithelial-mesenchymal transition, as well as the migration and invasion of cervical cancer. Int. J. Oncol. 2017, 52, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Y.; Ju, X.C.; Li, Y.; Zeng, P.M.; Wu, J.; Zhou, Y.Y.; Shen, L.B.; Dong, J.; Chen, Y.J.; Luo, Z.G. Generation of vascularized brain organoids to study neurovascular interactions. eLife 2022, 11, e76707. [Google Scholar] [CrossRef] [PubMed]
- Pham, M.T.; Pollock, K.M.; Rose, M.D.; Cary, W.A.; Stewart, H.R.; Zhou, P.; Nolta, J.A.; Waldau, B. Generation of human vascularized brain organoids. Neuroreport 2018, 29, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Wörsdörfer, P.; Rockel, A.; Alt, Y.; Kern, A.; Ergün, S. Generation of vascularized neural organoids by co-culturing with mesodermal progenitor cells. STAR Protoc. 2020, 1, 100041. [Google Scholar] [CrossRef]
- Walsh, R.M.; Luongo, R.; Giacomelli, E.; Ciceri, G.; Rittenhouse, C.; Verrillo, A.; Galimberti, M.; Bocchi, V.D.; Wu, Y.; Xu, N.; et al. Generation of human cerebral organoids with a structured outer subventricular zone. Cell Rep. 2024, 43, 114031. [Google Scholar] [CrossRef]
- VanderWielen, B.D.; Yuan, Z.; Friedmann, D.R.; Kovall, R.A. Transcriptional repression in the Notch pathway: Thermodynamic characterization of CSL-MINT (Msx2-interacting nuclear target protein) complexes. J. Biol. Chem. 2011, 286, 14892–14902. [Google Scholar] [CrossRef]
- Bejoy, J.; Bijonowski, B.; Marzano, M.; Jeske, R.; Ma, T.; Li, Y. Wnt-Notch signaling interactions during neural and astroglial patterning of human stem cells. Tissue Eng. Part A 2020, 26, 419–431. [Google Scholar] [CrossRef]
- Fiddes, I.T.; Lodewijk, G.A.; Mooring, M.; Bosworth, C.M.; Ewing, A.D.; Mantalas, G.L.; Novak, A.M.; van den Bout, A.; Bishara, A.; Rosenkrantz, J.L.; et al. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 2018, 173, 1356–1369. [Google Scholar] [CrossRef]
- Hurley, E.M.; Mozolewski, P.; Dobrowolski, R.; Hsieh, J. Familial Alzheimer’s disease-associated PSEN1 mutations affect neurodevelopment through increased Notch signaling. Stem Cell Rep. 2023, 18, 1516–1533. [Google Scholar] [CrossRef]
- Subramaniam, N. The Process of Sprouting Angiogenesis in a Healthy Blood Vessel. 2025. Available online: https://app.biorender.com/biorender-templates/details/t-5f2aaabc52f1f600aaadc271-the-process-of-sprouting-angiogenesis-in-a-healthy-blood-vessel (accessed on 19 July 2025).
- Foster, N.N.; Barry, J.; Korobkova, L.; Garcia, L.; Gao, L.; Becerra, M.; Sherafat, Y.; Peng, B.; Li, X.; Choi, J.H.; et al. The mouse cortico-basal ganglia-thalamic network. Nature 2021, 598, 188–194. [Google Scholar] [CrossRef]
- Cruz, K.G.; Leow, Y.N.; Le, N.M.; Adam, E.; Huda, R.; Sur, M. Cortical-subcortical interactions in goal-directed behavior. Physiol. Rev. 2023, 103, 347–389. [Google Scholar] [CrossRef]
- Costa, R.M.; Cohen, D.; Nicolelis, M.A. Differential corticostriatal plasticity during fast and slow motor skill learning in mice. Curr. Biol. 2004, 14, 1124–1134. [Google Scholar] [CrossRef] [PubMed]
- Antzoulatos, E.G.; Miller, E.K. Increases in functional connectivity between prefrontal cortex and striatum during category learning. Neuron 2014, 83, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Gittis, A.H.; Kreitzer, A.C. Striatal microcircuitry and movement disorders. Trends Neurosci. 2012, 35, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Gunaydin, L.A.; Kreitzer, A.C. Cortico–basal ganglia circuit function in psychiatric disease. Annu. Rev. Physiol. 2016, 78, 327–350. [Google Scholar] [CrossRef]
- Wichmann, T.; DeLONG, M.R. Pathophysiology of Parkinson’s disease: The MPTP primate model of the human disorder. Ann. N. Y. Acad. Sci. 2003, 991, 199–213. [Google Scholar] [CrossRef]
- Singh, A.; Mewes, K.; Gross, R.E.; DeLong, M.R.; Obeso, J.A.; Papa, S.M. Human striatal recordings reveal abnormal discharge of projection neurons in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2016, 113, 9629–9634. [Google Scholar] [CrossRef]
- Auer, T.; Schreppel, P.; Erker, T.; Schwarzer, C. Impaired chloride homeostasis in epilepsy: Molecular basis, impact on treatment, and current treatment approaches. Pharmacol. Ther. 2020, 205, 107422. [Google Scholar] [CrossRef]
- Grieco, S.F.; Holmes, T.C.; Xu, X. Probing neural circuit mechanisms in Alzheimer’s disease using novel technologies. Mol. Psychiatry 2023, 28, 4407–4420. [Google Scholar] [CrossRef]
- Calabresi, P.; Di Lazzaro, G.; Marino, G.; Campanelli, F.; Ghiglieri, V. Advances in understanding the function of alpha-synuclein: Implications for Parkinson’s disease. Brain 2023, 146, 3587–3597. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Shaikh, M.A.; Meymand, E.S.; Zhang, B.; Luk, K.C.; Trojanowski, J.Q.; Lee, V.M.Y. Neuronal activity modulates alpha-synuclein aggregation and spreading in organotypic brain slice cultures and in vivo. Acta Neuropathol. 2020, 140, 831–849. [Google Scholar] [CrossRef] [PubMed]
- Zablotsky, B.; Black, L.I.; Maenner, M.J.; Schieve, L.A.; Danielson, M.L.; Bitsko, R.H.; Blumberg, S.J.; Kogan, M.D.; Boyle, C.A. Prevalence and trends of developmental disabilities among children in the United States: 2009–2017. Pediatrics 2019, 144, e20190811. [Google Scholar] [CrossRef] [PubMed]
- Farokhniaee, A.; McIntyre, C.C. Theoretical principles of deep brain stimulation induced synaptic suppression. Brain Stimul. 2019, 12, 1402–1409. [Google Scholar] [CrossRef]
- Crowell, A.L.; Riva-Posse, P.; Holtzheimer, P.E.; Garlow, S.J.; Kelley, M.E.; Gross, R.E.; Denison, L.; Quinn, S.; Mayberg, H.S. Long-term outcomes of subcallosal cingulate deep brain stimulation for treatment-resistant depression. Am. J. Psychiatry 2019, 176, 949–956. [Google Scholar] [CrossRef]
- Shanok, N.A.; Muzac, S.; Derbin, B.; Cabeza, E.; Rodriguez, R. The effects of deep transcranial magnetic stimulation on Alzheimer’s disease: A case report examining cognitive functioning, memory, and QEEG. Neurocase 2023, 29, 81–86. [Google Scholar] [CrossRef]
- Xu, Z.; Duan, W.; Yuan, S.; Zhang, X.; You, C.; Yu, J.T.; Wang, J.; Li, J.D.; Deng, S.; Shu, Y. Deep brain stimulation alleviates Parkinsonian motor deficits through desynchronizing GABA release in mice. Nat. Commun. 2025, 16, 3726. [Google Scholar] [CrossRef]
- Binns, T.S.; Köhler, R.M.; Vanhoecke, J.; Chikermane, M.; Gerster, M.; Merk, T.; Pellegrini, F.; Busch, J.L.; Habets, J.G.; Cavallo, A.; et al. Shared pathway-specific network mechanisms of dopamine and deep brain stimulation for the treatment of Parkinson’s disease. Nat. Commun. 2025, 16, 3587. [Google Scholar] [CrossRef]
- Benabid, A.L. Deep brain stimulation for Parkinson’s disease. Curr. Opin. Neurobiol. 2003, 13, 696–706. [Google Scholar] [CrossRef]
- Alosaimi, F.; Temel, Y.; Hescham, S.; Witzig, V.S.; Almasabi, F.; Tan, S.K.H.; Jahanshahi, A. High-frequency stimulation of the subthalamic nucleus induces a sustained inhibition of serotonergic system via loss of cell phenotype. Sci. Rep. 2022, 12, 14011. [Google Scholar] [CrossRef]
- Mayberg, H.S.; Lozano, A.M.; Voon, V.; McNeely, H.E.; Seminowicz, D.; Hamani, C.; Schwalb, J.M.; Kennedy, S.H. Deep brain stimulation for treatment-resistant depression. Neuron 2005, 45, 651–660. [Google Scholar] [CrossRef]
- Portillo-Lara, R.; Tahirbegi, B.; Chapman, C.A.R.; Goding, J.A.; Green, R.A. Mind the gap: State-of-the-art technologies and applications for EEG-based brain–computer interfaces. APL Bioeng. 2021, 5, 031507. [Google Scholar] [CrossRef] [PubMed]
- Truccolo, W.; Donoghue, J.A.; Hochberg, L.R.; Eskandar, E.N.; Madsen, J.R.; Anderson, W.S.; Brown, E.N.; Halgren, E.; Cash, S.S. Single-neuron dynamics in human focal epilepsy. Nat. Neurosci. 2011, 14, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.J.; Gupta, D.; Brunner, P.; Gunduz, A.; Adamo, M.A.; Ritaccio, A.; Schalk, G. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. J. Vis. Exp. 2012, 64, e3993. [Google Scholar] [CrossRef]
- Parvizi, J.; Kastner, S. Promises and limitations of human intracranial EEG. Nat. Neurosci. 2018, 21, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Schalk, G.; McFarland, D.J.; Hinterberger, T.; Birbaumer, N.; Wolpaw, J.R. BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 2004, 51, 1034–1043. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- He, B.; Sohrabpour, A.; Brown, E.; Liu, Z. Electrophysiological source imaging: A noninvasive window to brain dynamics. Annu. Rev. Biomed. Eng. 2018, 20, 171–196. [Google Scholar] [CrossRef]
- Boto, E.; Hill, R.M.; Rea, M.; Holmes, N.; Seedat, Z.A.; Leggett, J.; Shah, V.; Osborne, J.; Bowtell, R.; Brookes, M.J. Measuring functional connectivity with wearable MEG. NeuroImage 2021, 230, 117815. [Google Scholar] [CrossRef]
- Jiang, R.; Tong, S.; Wu, J.; Hu, H.; Zhang, R.; Wang, H.; Zhao, Y.; Zhu, W.; Li, S.; Zhang, X. A novel EEG artifact removal algorithm based on an advanced attention mechanism. Sci. Rep. 2025, 15, 19419. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Jiang, X.; Peng, R. Transfer learning for motor imagery based brain-computer interfaces: A tutorial. Neural Netw. 2022, 153, 235–253. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, L.R.; Serruya, M.D.; Friehs, G.M.; Mukand, J.A.; Saleh, M.; Caplan, A.H.; Branner, A.; Chen, D.; Penn, R.D.; Donoghue, J.P. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006, 442, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Benabid, A.L.; Costecalde, T.; Eliseyev, A.; Charvet, G.; Verney, A.; Karakas, S.; Foerster, M.; Lambert, A.; Morinière, B.; Abroug, N.; et al. An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: A proof-of-concept demonstration. Lancet Neurol. 2019, 18, 1112–1122. [Google Scholar] [CrossRef]
- Baillet, S. Magnetoencephalography for brain electrophysiology and imaging. Nat. Neurosci. 2017, 20, 327–339. [Google Scholar] [CrossRef]
- Boto, E.; Holmes, N.; Leggett, J.; Roberts, G.; Shah, V.; Meyer, S.S.; Muñoz, L.D.; Mullinger, K.J.; Tierney, T.M.; Bestmann, S.; et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 2018, 555, 657–661. [Google Scholar] [CrossRef]
- Qi, Z.; Liu, H.; Jin, F.; Wang, Y.; Lu, X.; Liu, L.; Yang, Z.; Fan, L.; Song, M.; Zuo, N.; et al. A wearable repetitive transcranial magnetic stimulation device. Nat. Commun. 2025, 16, 2731. [Google Scholar] [CrossRef]
- Li, J.; Chen, G.; Li, G.; Xiao, L.; Jia, R.; Zhang, K. Flexible brain electronic sensors advance wearable brain-computer interface. npj Biomed. Innov. 2025, 2, 24. [Google Scholar] [CrossRef]
- Yan, P.; Acker, C.D.; Zhou, W.L.; Lee, P.; Bollensdorff, C.; Negrean, A.; Lotti, J.; Sacconi, L.; Antic, S.D.; Kohl, P.; et al. Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc. Natl. Acad. Sci. USA 2012, 109, 20443–20448. [Google Scholar] [CrossRef]
- Grienberger, C.; Konnerth, A. Imaging calcium in neurons. Neuron 2012, 73, 862–885. [Google Scholar] [CrossRef]
- He, C.X.; Arroyo, E.D.; Cantu, D.A.; Goel, A.; Portera-Cailliau, C. A versatile method for viral transfection of calcium indicators in the neonatal mouse brain. Front. Neural Circuits 2018, 12, 56. [Google Scholar] [CrossRef]
- Park, J.H.; Eom, Y.S.; Kim, T.H. Recent advances in aptamer-based sensors for sensitive detection of neurotransmitters. Biosensors 2023, 13, 413. [Google Scholar] [CrossRef]
- Clay, M.; Monbouquette, H.G. A detailed model of electroenzymatic glutamate biosensors to aid in sensor optimization and in applications in vivo. ACS Chem. Neurosci. 2018, 9, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Wang, J.W.; Zhang, H.S.; Zheng, X.; Chen, Y.P.; Tang, H.; Jiang, J.H. Development of dual-nanopore biosensors for detection of intracellular dopamine and dopamine efflux from single PC12 cell. Anal. Chem. 2022, 94, 15541–15545. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Lee, S.; Cencillo-Abad, P.; Karmakar, M.; Patel, J.; Soudi, M.; Chanda, D. Nanoplasmonic aptasensor for sensitive, selective, and real-time detection of dopamine from unprocessed whole blood. Sci. Adv. 2024, 10, eadp7460. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, C.R.; Pernet, C.R.; Gorgolewski, K.J.; Storkey, A.J.; Bastin, M.E. Test-retest reliability of structural brain networks from diffusion MRI. Neuroimage 2014, 86, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Tufail, Y.; Matyushov, A.; Baldwin, N.; Tauchmann, M.L.; Georges, J.; Yoshihiro, A.; Tillery, S.I.H.; Tyler, W.J. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 2010, 66, 681–694. [Google Scholar] [CrossRef]
- Watarai, A.; Tao, K.; Wang, M.Y.; Okuyama, T. Distinct functions of ventral CA1 and dorsal CA2 in social memory. Curr. Opin. Neurobiol. 2021, 68, 29–35. [Google Scholar] [CrossRef]
- Deffieux, T.; Demené, C.; Tanter, M. Functional ultrasound imaging: A new imaging modality for neuroscience. Neuroscience 2021, 474, 110–121. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Long, X.; Xu, T. Three-dimensional-engineered bioprinted in vitro human neural stem cell self-assembling culture model constructs of Alzheimer’s disease. Bioact. Mater. 2022, 11, 192–205. [Google Scholar] [CrossRef]
- Zhao, R.; Hu, W.; Tsai, J.; Lee, M.J.; LaMarca, E.A.; Frosch, M.P.; Hyman, B.T.; Liu, C.C.; Bu, G.; Spires-Jones, T.L.; et al. Microglia limit the expansion of β-amyloid plaques in a mouse model of Alzheimer’s disease. Mol. Neurodegener. 2017, 12, 47. [Google Scholar] [CrossRef]
- Bubnys, A.; Tsai, L.H. Harnessing cerebral organoids for Alzheimer’s disease research. Curr. Opin. Neurobiol. 2022, 72, 120–130. [Google Scholar] [CrossRef]
- Vanova, T.; Sedmik, J.; Raska, J.; Amruz Cerna, K.; Taus, P.; Pospisilova, V.; Nezvedova, M.; Fedorova, V.; Kadakova, S.; Klimova, H.; et al. Cerebral organoids derived from patients with Alzheimer’s disease with PSEN1/2 mutations have defective tissue patterning and altered development. Cell Rep. 2023, 42, 113310. [Google Scholar] [CrossRef] [PubMed]
- Smits, L.M.; Schwamborn, J.C. Midbrain organoids: A new tool to investigate Parkinson’s Disease. Front. Cell Dev. Biol. 2020, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Sozzi, E.; Nilsson, F.; Kajtez, J.; Parmar, M.; Fiorenzano, A. Generation of human ventral midbrain organoids derived from pluripotent stem cells. Curr. Protoc. 2022, 2, e555. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, H.J.; Choi, H.; Chang, Y.; Park, H.; Shin, J.; Kim, J.; Lengner, C.J.; Lee, Y.K.; Kim, J. Modeling G2019S-LRRK2 sporadic Parkinson’s Disease in 3D midbrain organoids. Stem Cell Rep. 2019, 12, 518–531. [Google Scholar] [CrossRef]
- Smits, L.M.; Reinhardt, L.; Reinhardt, P.; Glatza, M.; Monzel, A.S.; Stanslowsky, N.; Rosato Siri, M.D.; Zanon, A.; Antony, P.M.; Bellmann, J.; et al. Modeling Parkinson’s disease in midbrain-like organoids. npj Park. Dis. 2019, 5, 5. [Google Scholar] [CrossRef]
- Studer, L. Derivation of dopaminergic neurons from pluripotent stem cells. Prog. Brain Res. 2012, 200, 243–263. [Google Scholar] [CrossRef]
- Harischandra, D.S.; Rokad, D.; Ghaisas, S.; Verma, S.; Robertson, A.; Jin, H.g.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Enhanced differentiation of human dopaminergic neuronal cell model for preclinical translational research in Parkinson’s disease. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2020, 1866, 165533. [Google Scholar] [CrossRef]
- Fu, C.L.; Jiang, X.; Dong, B.C.; Li, D.; She, X.Y.; Yao, J. Protocol for transplantation of cells derived from human midbrain organoids into a Parkinson’s disease mouse model to restore motor function. STAR Protoc. 2024, 5, 103251. [Google Scholar] [CrossRef]
- Fu, C.L.; Dong, B.C.; Jiang, X.; Li, D.; Yao, J. A cell therapy approach based on iPSC-derived midbrain organoids for the restoration of motor function in a Parkinson’s disease mouse model. Heliyon 2024, 10, e24234. [Google Scholar] [CrossRef]
- Paşca, A.M.; Sloan, S.A.; Clarke, L.E.; Tian, Y.; Makinson, C.D.; Huber, N.; Kim, C.N.; Park, J.Y.; O’Rourke, N.A.; Nguyen, K.D.; et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 2015, 12, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Rickner, H.D.; Jiang, L.; Hong, R.; Sun, W.; Mehta, B.K.; Paul, S.; Li, Q.; Xu, Y.; Zhang, Y.; Spina, S.; et al. Single cell transcriptomic profiling of a neuron-astrocyte assembloid tauopathy model. Nat. Commun. 2022, 13, 6275. [Google Scholar] [CrossRef] [PubMed]
- Ye, B. Approaches to vascularizing human brain organoids. PLoS Biol. 2023, 21, e3002141. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Chen, X.; Wang, Z.; Liu, M.; Zhao, F.; Xu, L.; Yang, R.; Li, J.; Zhang, W.; Wu, T.; et al. Alzheimer’s disease patient brain extracts induce multiple pathologies in novel vascularized neuroimmune organoids for disease modeling and drug discovery. Mol. Psychiatry 2025, 30, 4558–4575. [Google Scholar] [CrossRef]
- Bagley, J.A.; Reumann, D.; Bian, S.; Lévi-Strauss, J.; Knoblich, J.A. Fused cerebral organoids model interactions between brain regions. Nat. Methods 2017, 14, 743–751. [Google Scholar] [CrossRef]
- Zourray, C.; Kurian, M.A.; Barral, S.; Lignani, G. Electrophysiological Properties of Human Cortical Organoids: Current State of the Art and Future Directions. Front. Mol. Neurosci. 2022, 15, 839366. [Google Scholar] [CrossRef]
- Reumann, D.; Krauditsch, C.; Novatchkova, M.; Elling, U.; Ortner, J.; Lengerke, C.; Knoblich, J.A.; Bolognin, S.; Schwamborn, J.C. In vitro modeling of the human dopaminergic system using spatially arranged ventral midbrain–striatum–cortex assembloids. Nat. Methods 2023, 20, 2034–2047. [Google Scholar] [CrossRef]
- Khuram, H.; Maddox, P.; Elahi, A.; Hirani, R.; Issani, A. Human cerebral organoids: Implications of ontological considerations. AJOB Neurosci. 2023, 14, 213–214. [Google Scholar] [CrossRef]
- Zhou, X.; Davis, E.P.; Tsai, L.H. APOE4 exacerbates pathology in iPSC-derived cerebral organoids. Nat. Commun. 2020, 11, 1216. [Google Scholar] [CrossRef]
- Rosety, I.; Zagare, A.; Saraiva, C.; Nickels, S.; Antony, P.; Almeida, C.; Glaab, E.; Halder, R.; Velychko, S.; Rauen, T.; et al. Impaired neuron differentiation in GBA-associated Parkinson’s disease is linked to cell cycle defects in organoids. npj Park. Dis. 2023, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Han, D.; Liu, W.; Wang, X.; Pan, N.; Wang, Y.; Chen, Z. Human iPSC-derived midbrain organoids functionally integrate into striatum circuits and restore motor function in a mouse model of Parkinson’s disease. Theranostics 2023, 13, 2673–2692. [Google Scholar] [CrossRef]
- Huang, Q.; Tang, B.; Romero, J.C.; Yang, Y.; Elsayed, S.K.; Pahapale, G.; Lee, T.J.; Morales Pantoja, I.E.; Han, F.; Berlinicke, C.; et al. Shell microelectrode arrays (MEAs) for brain organoids. Sci. Adv. 2022, 8, eabq5031. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, H.; Kadoshima, T.; Soen, M.; Narii, N.; Ishida, Y.; Ohgushi, M.; Takahashi, J.; Eiraku, M.; Sasai, Y. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat. Commun. 2015, 6, 8896. [Google Scholar] [CrossRef] [PubMed]
- Pomeshchik, Y.; Klementieva, O.; Gil, J.; Martinsson, I.; Hansen, M.G.; de Vries, T.; Sancho-Balsells, A.; Russ, K.; Savchenko, E.; Collin, A.; et al. Human iPSC-derived hippocampal spheroids: An innovative tool for stratifying Alzheimer Disease patient-specific cellular phenotypes and developing therapies. Stem Cell Rep. 2020, 15, 256–273. [Google Scholar] [CrossRef]
- Nishimura, H.; Li, Y. Human pluripotent stem cell-derived models of the hippocampus. Int. J. Biochem. Cell Biol. 2024, 177, 106695. [Google Scholar] [CrossRef]
- Zander, T.O.; Kothe, C. Towards passive brain–computer interfaces: Applying brain–computer interface technology to human–machine systems in general. J. Neural Eng. 2011, 8, 025005. [Google Scholar] [CrossRef]
- Fairclough, S. Neuroadaptive technology and the self: A postphenomenological perspective. Philos. Technol. 2023, 36, 30. [Google Scholar] [CrossRef]
- Zander, T.O.; Krol, L.R.; Birbaumer, N.P.; Gramann, K. Neuroadaptive technology enables implicit cursor control based on medial prefrontal cortex activity. Proc. Natl. Acad. Sci. USA 2016, 113, 14898–14903. [Google Scholar] [CrossRef]
- Dehais, F.; Ladouce, S.; Darmet, L.; Nong, T.V.; Ferraro, G.; Tresols, J.T.; Velut, S.; Labedan, P. Dual passive reactive brain-computer interface: A novel approach to human-machine symbiosis. Front. Neuroergon. 2023, 3, 824780. [Google Scholar] [CrossRef]
- Lavazza, A.; Chinaia, A.A. Human cerebral organoids: The ethical stance of scientists. Stem Cell Res. Ther. 2023, 14, 59. [Google Scholar] [CrossRef]
- Jeziorski, J.; Brandt, R.; Evans, J.H.; Campana, W.; Kalichman, M.; Thompson, E.; Goldstein, L.; Koch, C.; Muotri, A.R. Brain organoids, consciousness, ethics and moral status. Semin. Cell Dev. Biol. 2023, 144, 97–102. [Google Scholar] [CrossRef]
- Ethics need to keep up with human brain organoid research. Nat. Rev. Bioeng. 2024, 2, 711. [CrossRef]
- de Jongh, D.; Massey, E.K.; Berishvili, E.; Fonseca, L.M.; Lebreton, F.; Bellofatto, K.; Bignard, J.; Seissler, J.; Buerck, L.W.v.; Honarpisheh, M.; et al. Organoids: A systematic review of ethical issues. Stem Cell Res. Ther. 2022, 13, 337. [Google Scholar] [CrossRef] [PubMed]
- Mogilenko, D.A.; Haas, J.T.; L’homme, L.; Fleury, S.; Quemener, S.; Levavasseur, M.; Becquart, C.; Wartelle, J.; Bogomolova, A.; Pineau, L.; et al. Metabolic and innate immune cues merge into a specific inflammatory response via the UPR. Cell 2019, 177, 1201–1216. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Y.; Li, X.; Zhang, Z.; Yang, H.; Zhang, Y.; Williams, P.R.; Alwahab, N.S.; Kapur, K.; Yu, B.; et al. Deconstruction of corticospinal circuits for goal-directed motor skills. Cell 2017, 171, 440–455. [Google Scholar] [CrossRef] [PubMed]
- Baker, M. Blame it on the antibodies. Nature 2015, 521, 274. [Google Scholar] [CrossRef]
- Mera, P.; Ferron, M.; Mosialou, I. Regulation of energy metabolism by bone-derived hormones. Cold Spring Harb. Perspect. Med. 2018, 8, a031666. [Google Scholar] [CrossRef]
- Peng, W.; Datta, P.; Wu, Y.; Dey, M.; Ayan, B.; Dababneh, A.; Ozbolat, I.T. Challenges in bio-fabrication of organoid cultures. In Cell Biology and Translational Medicine, Volume 3; Springer: Cham, Switzerland, 2018; pp. 53–71. [Google Scholar]
- Lukonin, I.; Zinner, M.; Liberali, P. Organoids in image-based phenotypic chemical screens. Exp. Mol. Med. 2021, 53, 1495–1502. [Google Scholar] [CrossRef]
- Lavazza, A.; Massimini, M. Cerebral organoids: Ethical issues and consciousness assessment. J. Med. Ethics 2018, 44, 606–610. [Google Scholar] [CrossRef]
- Yadav, A.; Seth, B.; Chaturvedi, R.K. Brain organoids: Tiny mirrors of human neurodevelopment and neurological disorders. Neuroscientist 2021, 27, 388–426. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, G.R.; Oonk, J.R.; Combes, F.; Salomé, P.; O’Dea, C.P.; Baum, S.A.; Voit, G.M.; Donahue, M.; McNamara, B.R.; Davis, T.A.; et al. Cold, clumpy accretion onto an active supermassive black hole. Nature 2016, 534, 218–221. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. NIH Establishes Nation’s First Dedicated Organoid Development Center to Reduce Reliance on Animal Modeling. 2025. Available online: https://www.nih.gov/news-events/news-releases/nih-establishes-nations-first-dedicated-organoid-development-center-reduce-reliance-animal-modeling (accessed on 10 October 2025).
- Fekete, Z.; Zátonyi, A.; Kaszás, A.; Madarász, M.; Slézia, A. Transparent neural interfaces: Challenges and solutions of microengineered multimodal implants designed to measure intact neuronal populations using high-resolution electrophysiology and microscopy simultaneously. Microsyst. Nanoeng. 2023, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, J.; Fang, Y. Recent developments in multifunctional neural probes for simultaneous neural recording and modulation. Microsyst. Nanoeng. 2023, 9, 4. [Google Scholar] [CrossRef]
- Topalovic, U.; Barclay, S.; Ling, C.; Alzuhair, A.; Yu, W.; Hokhikyan, V.; Chandrakumar, H.; Rozgic, D.; Jiang, W.; Basir-Kazeruni, S.; et al. A wearable platform for closed-loop stimulation and recording of single-neuron and local field potential activity in freely moving humans. Nat. Neurosci. 2023, 26, 517–527. [Google Scholar] [CrossRef]
- Urai, A.E.; Doiron, B.; Leifer, A.M.; Churchland, A.K. Large-scale neural recordings call for new insights to link brain and behavior. Nat. Neurosci. 2022, 25, 11–19. [Google Scholar] [CrossRef]
- Sejnowski, T.J.; Churchland, P.S.; Movshon, J.A. Putting big data to good use in neuroscience. Nat. Neurosci. 2014, 17, 1440–1441. [Google Scholar] [CrossRef]
- Yuste, R.; Goering, S.; Agüera y Arcas, B.; Bi, G.; Carmena, J.M.; Carter, A.; Fins, J.J.; Friesen, P.; Gallant, J.; Huggins, J.E.; et al. Four ethical priorities for neurotechnologies and AI. Nature 2017, 551, 159–163. [Google Scholar] [CrossRef]
- Kataoka, M.; Niikawa, T.; Nagaishi, N.; Lee, T.L.; Erler, A.; Savulescu, J.; Sawai, T. Beyond consciousness: Ethical, legal, and social issues in human brain organoid research and application. Eur. J. Cell Biol. 2025, 104, 151470. [Google Scholar] [CrossRef]
- Vishwarupe, V.; Joshi, P.M.; Mathias, N.; Maheshwari, S.; Mhaisalkar, S.; Pawar, V. Explainable AI and Interpretable Machine Learning: A Case Study in Perspective. Procedia Comput. Sci. 2022, 204, 869–876. [Google Scholar] [CrossRef]
- Tyler, W.J.; Tufail, Y.; Finsterwald, M.; Tauchmann, M.L.; Olson, E.J.; Majestic, C. Ultrasound modulates ion channel currents. Nat. Neurosci. 2011, 11, 491–498. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, H.; Zhang, W.; Wang, S. AI-enhanced multiphysics modeling for targeted ultrasound neurostimulation. Adv. Sci. 2024, 11, 2401667. [Google Scholar] [CrossRef]

| AI Paradigm | Key Techniques | Applications in AD | Applications in PD | References |
|---|---|---|---|---|
| Machine Learning (ML) | Supervised (SVM, RF, LR); unsupervised (clustering, PCA); ensemble (bagging, boosting) | AD classification, MCI-to-AD conversion, subtype identification, feature extraction | PD classification, early-stage detection, differential diagnosis, biomarker selection | [11,52,53,54,55] |
| Deep Learning (DL) | DNN, CNN, RNN, autoencoders, DBN, MLP, GRU, GAN, GNN | AD/MCI identification, progression modeling, raw neuroimaging feature extraction, end-to-end classification | PD stage prediction, progression modeling, multimodal fusion, vocal biomarkers | [15,56,57,58,59,60,61] |
| Hybrid Models | CNN-BLSTM; AlexNet+SVM; ResNet-50+SVM; BiLSTM-ANN | Early dementia and AD detection/classification | PD detection via time-series classification, patient stratification, clinical-imaging fusion | [62,63,64] |
| Datasets Used | — | Multimodal MRI and PET, TADPOLE datasets | Structural MRI, DTI, DaTSCAN, rs-fMRI, UCI voice datasets | [65,66,67,68,69,70,71,72] |
| NI Type | Example Technologies | Description | Application in AD/PD | Pros | Cons | Sources |
|---|---|---|---|---|---|---|
| Invasive NIs | Utah Array, Neuralink, depth electrodes | Electrodes implanted directly in the brain/neural tissue | Used in deep brain stimulation (DBS) for PD | High-resolution, real-time brain signal access | Surgical risk, infection, long-term safety concerns, privacy, autonomy issues | [5,41,156,157,158] |
| Partially invasive NIs | ECoG grids, NeuroPace RNS | Electrodes beneath the skull but above the cortex | Experimental cognitive monitoring; seizure control | Better signal than EEG; less invasive than depth implants | Requires craniotomy; device longevity and post-surgical concerns | [159,160,161,162] |
| Non-invasive NIs | EEG caps, fNIRS headsets, OpenBCI, Muse, Emotiv | Scalp- or skin-surface sensors for brain activity | Cognitive and motor symptom tracking in AD/PD | Safe, affordable, widely available; home monitoring possible | Lower spatial resolution, poor depth sensing, data privacy, and algorithmic bias risks | [17,163,164,165,166,167] |
| Sensorimotor BCIs | BrainGate, Neurable, Neurocontrol Exoskeletons | Decode motor intent for control of devices or communication | Assistive devices for PD mobility or AD communication | Enables motor recovery or intent-based interaction | Cognitively demanding; limited generalization in AD; risk of over-dependence | [4,30,163,168,169,170] |
| Signal Type | Example Technologies | Description | Application in AD/PD | Pros | Cons | Sources |
|---|---|---|---|---|---|---|
| Electrical (spikes, LFPs) | Utah Array, Neuralink, OpenBCI, ECoG, EEG | Measures electrical activity from neurons or populations | DBS, cognitive load monitoring, movement decoding in PD | High temporal resolution, real-time control | Spatial resolution varies; noise-prone (e.g., EEG) | [95,163,169] |
| Magnetic (MEG, OPM) | MEG, OPMs, SQUID arrays | Detects magnetic fields from neural activity without scalp contact | Cognitive monitoring, early detection of dementia-related oscillatory changes | High temporal resolution, better source localization than EEG | Expensive, bulky, limited portability | [171,172,173,174] |
| Optical (calcium, voltage) | Two-photon imaging, GCaMP, fNIRS, miniScope | Light-based indicators (e.g., calcium or hemoglobin changes) | Functional connectivity, early neurodegeneration detection | Cell-type specificity, good spatial resolution | Slower temporal dynamics, bulky equipment | [175,176,177] |
| Biochemical (neurotransmitters) | Neurochemical biosensors, aptamer-based electrodes | Detects levels of dopamine, glutamate, or other molecules in real time | Tracking dopamine loss in PD, identifying stress/metabolic biomarkers | High specificity to neurotransmitters | Complex fabrication, less mature than others | [178,179,180,181] |
| Multimodal (hybrid) | Neuralink, BrainCo, Kernel Flow, NeuroNexus | Combines electrical, optical, and metabolic signals in one platform | Comprehensive neurobehavioral assessment | Enables richer brain-state decoding | Power-hungry, complex data fusion needed | [95,104,182] |
| Ultrasound-based NIs | Clarity, Neural-FUS, fUSi | Ultrasound waves used for imaging (fUS) or stimulation (tFUS) | Non-invasive brain stimulation (e.g., PD) and vascular/neural imaging in AD/PD research | Deep-brain access non-invasively; high spatial resolution; diagnostic and therapeutic potential | Requires precise targeting and safety validation; limited widespread availability | [183,184,185] |
| Organoid Model | Description | Application in AD/PD | Pros | Cons | Ethical Issues | Sources |
|---|---|---|---|---|---|---|
| Cerebral organoids | Mimic cortex and hippocampus for AD research | Study amyloid-beta, tau pathology (AD) | Human-relevant biology; spontaneous activity | Lack of vasculature and immune cells | Consciousness concerns in long-term culture | [23,24,28,186,187,188,189] |
| Midbrain organoids | Model dopaminergic neurons for PD research | Dopamine neuron loss and synaptic stress modeling (PD) | Recapitulate substantia nigra-like features | Immature and variable differentiation | Genetic manipulation implications | [190,191,192,193,194,195,196,197] |
| Forebrain assembloids | Fusion of forebrain and interneuron lineages | Network formation defects and migration studies in AD | Multiregional integration supports interneuron flow | Complex fabrication; reproducibility issues | Potential for sentience-like behavior | [77,198,199] |
| Vascularized brain organoids | Organoids embedded with vascular scaffolds | Improves AD drug diffusion, nutrient exchange modeling | Supports longer-term, functional neural development | Still under optimization; cost-intensive | Transplantation ethical risks | [129,200,201] |
| Fused cortico-subpallial organoids | Region-specific fused units (cortex + GABAergic) | Synaptic integration disruption analysis in AD | Enable synaptic-level interaction modeling | Requires precise fusion protocols | Moral status of fused organoids | [81,202,203,204] |
| Patient-derived iPSC organoids | Organoids from AD/PD patient stem cells | Model genetic variants in familial AD/PD | Personalized pathology, pharmacogenomic testing | Batch variability, long differentiation time | Data ownership, reprogramming rights | [205,206,207,208] |
| Integrated NI–organoid platforms | Electrode-organoid integration for recording/stimulation | Neurodegeneration drug screening, neuron activity tracking | Functional testing; closed-loop experiments | Still preclinical; signal interpretation challenges | Neural data privacy, AI misuse | [25,28,80,197,209] |
| Hippocampal organoids | Region-specific organoids mimicking the hippocampus | Memory circuit modeling, tauopathy, neurogenesis studies (AD) | Recapitulate CA- and DG-like structures; relevant to memory loss in AD | Differentiation protocols are complex; regional maturity may vary | Memory and cognition modeling raise sensitivity around sentience | [25,210,211,212] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usman, M.; Ashebir, S.; Okey-Mbata, C.; Yun, Y.; Kim, S. Neuroengineering Frontiers: A Selective Review of Neural Interfaces, Brain–Machine Interactions, and Artificial Intelligence in Neurodegenerative Diseases. Appl. Sci. 2025, 15, 11316. https://doi.org/10.3390/app152111316
Usman M, Ashebir S, Okey-Mbata C, Yun Y, Kim S. Neuroengineering Frontiers: A Selective Review of Neural Interfaces, Brain–Machine Interactions, and Artificial Intelligence in Neurodegenerative Diseases. Applied Sciences. 2025; 15(21):11316. https://doi.org/10.3390/app152111316
Chicago/Turabian StyleUsman, Mutiyat, Simachew Ashebir, Chioma Okey-Mbata, Yeoheung Yun, and Seongtae Kim. 2025. "Neuroengineering Frontiers: A Selective Review of Neural Interfaces, Brain–Machine Interactions, and Artificial Intelligence in Neurodegenerative Diseases" Applied Sciences 15, no. 21: 11316. https://doi.org/10.3390/app152111316
APA StyleUsman, M., Ashebir, S., Okey-Mbata, C., Yun, Y., & Kim, S. (2025). Neuroengineering Frontiers: A Selective Review of Neural Interfaces, Brain–Machine Interactions, and Artificial Intelligence in Neurodegenerative Diseases. Applied Sciences, 15(21), 11316. https://doi.org/10.3390/app152111316

