DW-YOLO: A Model for Identifying Surface Characteristics and Distinguishing Grades of Graphite Ore
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Production of Datasets
3.2. Evaluation Indicators
3.3. Model Training and Detection
3.4. Ablation Experiments
3.4.1. Module Selection Experiment
3.4.2. Single-Module Ablation
3.4.3. Comparison of Whole Module Ablation
3.5. Comparative Experiments
3.5.1. Comparison with Other Models
3.5.2. Comparison with the Same Model Algorithm
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, J.; Pei, L.; Yuan, S.; Lin, D.; Lu, R.; Zhu, Y.; Wang, H. A unique graphene composite coating suitable for ultra-low temperature and thermal shock environments. Prog. Org. Coat. 2024, 186, 107997. [Google Scholar] [CrossRef]
- Zhao, L.; Ding, B.; Qin, X.Y.; Wang, Z.; Lv, W.; He, Y.; Yang, Q.; Kang, F. Revisiting the roles of natural graphite in ongoing lithium-ion batteries. Adv. Mater. 2022, 34, 2106704. [Google Scholar] [CrossRef]
- Kim, Y.S.; Hanif, M.A.; Song, H.; Kim, S.; Cho, Y.; Ryu, S.-K.; Kim, H.G. Wood-Derived Graphite: A Sustainable and Cost-Effective Material for the Wide Range of Industrial Applications. Crystals 2024, 14, 309. [Google Scholar] [CrossRef]
- Zhang, C.; Lv, W.; Xie, X.; Tang, D.; Liu, C.; Yang, Q.-H. Towards low temperature thermal exfoliation of graphite oxide for graphene production. Carbon 2013, 62, 11–24. [Google Scholar] [CrossRef]
- Tamashausky, A.V. Graphite. Am. Ceram. Soc. Bull. 1998, 77, 102–104. [Google Scholar]
- McCoy, T.M.; Parks, H.C.W.; Tabor, R.F. Highly efficient recovery of graphene oxide by froth flotation using a common surfactant. Carbon 2018, 135, 164–170. [Google Scholar] [CrossRef]
- Bu, X.; Zhang, T.; Peng, Y.; Xie, G.; Wu, E. Multi-stage flotation for the removal of ash from fine graphite using mechanical and centrifugal forces. Minerals 2018, 8, 15. [Google Scholar] [CrossRef]
- Lee, S.M.; Kang, D.S.; Roh, J.S. Bulk graphite: Materials and manufacturing process. Carbon Lett. 2015, 16, 135–146. [Google Scholar] [CrossRef]
- Dash, P.; Dash, T.; Rout, T.K.; Sahu, A.K.; Biswal, S.K.; Mishra, B.K. Preparation of graphene oxide by dry planetary ball milling process from natural graphite. RSC Adv. 2016, 6, 12657–12668. [Google Scholar] [CrossRef]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef] [PubMed]
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001; IEEE: New York, NY, USA, 2001; Volume 1, p. I. [Google Scholar]
- Hussain, M. Yolov1 to v8: Unveiling each variant–a comprehensive review of yolo. IEEE Access 2024, 12, 42816–42833. [Google Scholar] [CrossRef]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Kong, D.; Li, Y.; Duan, M. Fire and smoke real-time detection algorithm for coal mines based on improved YOLOv8s. PLoS ONE 2024, 19, e0300502. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Qin, Z.; Tang, J. UAV target detection algorithm based on improved YOLOv8. IEEE Access 2023, 11, 116534–116544. [Google Scholar] [CrossRef]
- Wang, S. Automated non-PPE detection on construction sites using YOLOv10 and transformer architectures for surveillance and body worn cameras with benchmark datasets. Sci. Rep. 2025, 15, 27043. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eum, I.; Kim, J.; Wang, S.; Kim, J. Heavy Equipment Detection on Construction Sites Using You Only Look Once (YOLO-Version 10) with Transformer Architectures. Appl. Sci. 2025, 15, 2320. [Google Scholar] [CrossRef]
- Zhen, J.; Xie, B. Fused attention mechanism-based ore sorting network. arXiv 2024, arXiv:2405.02785. [Google Scholar]
- Bo, J.; Zhang, C.; Fan, C.; Li, H. Ore Conveyor Belt Sundries Detection Based on Improved YOLOv3. J. Comput. Eng. Appl. 2021, 21, 248–255. [Google Scholar]
- Yao, R.; Qi, P.; Hua, D.; Zhang, X.; Lu, H.; Liu, X. A Foreign Object Detection Method for Belt Conveyors Based on an Improved YOLOX Model. Technologies 2023, 11, 114. [Google Scholar] [CrossRef]
- Li, D.; Wang, G.; Zhang, Y.; Wang, S. Coal gangue detection and recognition algorithm based on deformable convolution YOLOv3. IET Image Process. 2022, 16, 134–144. [Google Scholar] [CrossRef]
- Hamerly, G.; Elkan, C. Learning the k in k-means. Adv. Neural Inf. Process. Syst. 2003, 16. [Google Scholar]
- Wood, S. mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation; University of Bath: Bath, UK, 2012. [Google Scholar]
- Mungoli, N. Adaptive feature fusion: Enhancing generalization in deep learning models. arXiv 2023, arXiv:2304.03290. [Google Scholar]
- Zheng, F.; Chen, X.; Chen, X.; Li, H.; Guo, X.; Liu, W.; Pun, C.-M.; Zhou, S. ASSNet: Adaptive Semantic Segmentation Network for Microtumors and Multi-Organ Segmentation. arXiv 2024, arXiv:2409.07779. [Google Scholar]
- Xiang, J.; Shi, H.; Huang, X.; Chen, D. Improving Graphite Ore Grade Identification with a Novel FRCNN-PGR Method Based on Deep Learning. Appl. Sci. 2023, 13, 5179. [Google Scholar] [CrossRef]
- Qiu, Z.; Huang, X.; Li, S.; Wang, J. Stellar-YOLO: A Graphite Ore Grade Detection Method Based on Improved YOLO11. Symmetry 2025, 17, 966. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, Y.; Ge, Y.; Zhao, S.; Song, L.; Yue, X.; Shan, Y. UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio Video Point Cloud Time-Series and Image Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 5513–5524. [Google Scholar]
- Zhang, X.; Zeng, H.; Zhang, L. Edge-oriented convolution block for real-time super resolution on mobile devices. In Proceedings of the 29th ACM International Conference on Multimedia, Online, 20–24 October 2021; pp. 4034–4043. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. PANet: Path Aggregation Network for Instance Segmentation. arXiv 2018, arXiv:1803.01534. [Google Scholar]
- Yang, G.; Lei, J.; Zhu, Z.; Cheng, S.; Feng, Z.; Liang, R. AFPN: Asymptotic Feature Pyramid Network for Object Detection. In Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Honolulu, HI, USA, 1–4 October 2023; IEEE: New York, NY, USA, 2023; pp. 2184–2189. [Google Scholar]
- Liu, Z.; Gao, G.; Sun, L.; Fang, L. IPG-net: Image pyramid guidance network for small object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 13–19 June 2020; pp. 1026–1027. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar]
- Tong, Z.; Chen, Y.; Xu, Z.; Yu, R. Wise-IoU: Bounding box regression loss with dynamic focusing mechanism. arXiv 2023, arXiv:2301.10051. [Google Scholar]
- Luo, W.; Li, Y.; Urtasun, R.; Zemel, R. Understanding the effective receptive field in deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2016, 29. [Google Scholar]
- Pan, X.; Ren, Y.; Sheng, K.; Dong, W.; Yuan, H.; Guo, X.; Ma, C.; Xu, C. Dynamic refinement network for oriented and densely packed object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11207–11216. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Liu, B.; Zhao, B.; Liu, E. Small object detection algorithm based on improved YOLOv8 for remote sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 1734–1747. [Google Scholar] [CrossRef]
- Liu, Q.; Lv, J.; Zhang, C. MAE-YOLOv8-based small object detection of green crisp plum in real complex orchard environments. Comput. Electron. Agric. 2024, 226, 109458. [Google Scholar] [CrossRef]
- Luo, D.; Xue, Y.; Deng, X.; Yang, B.; Chen, H.; Mo, Z. Citrus Diseases and Pests Detection Model Based on Self-Attention YOLOV8. IEEE Access 2023, 11, 139872–139881. [Google Scholar] [CrossRef]












| Parameter | Parameter Value |
|---|---|
| Operating system | Ubuntu 18.04 |
| Number of digits | 32 |
| Running memory | 64 GB |
| Graphics | GeForce RTX 4090 |
| Memory | 24 GB |
| CPU | Intel(R) Xeon(R) Platinum i9-13900k |
| Deep learning framework | Pytorch 1.11 |
| CUDA version | 11.1 |
| Cudnnversion | 8.0.4 |
| Module | P (%) | R (%) | Map50 (%) | Params |
|---|---|---|---|---|
| CIoU | 88.3 | 73.4 | 84.3 | 22.7 |
| DIoU | 87.5 | 71.7 | 85.8 | 23.5 |
| WIOU | 90.5 | 72.6 | 87.4 | 22.5 |
| BiFPN | 89.8 | 83.9 | 91.9 | 22.2 |
| CSwin | 90.7 | 83.2 | 90.7 | 22.0 |
| PAFPN | 92.5 | 84.9 | 89.9 | 22.6 |
| GELAN | 86.9 | 77.6 | 89.7 | 24.9 |
| CSPDarknet | 88.7 | 76.9 | 85.4 | 23.5 |
| C2f_UniRepLKNetBlock | 91.2 | 80.1 | 88.2 | 22.6 |
| Model | WIOU | C2f_UniRepLKNetBlock | PAFPN | P (%) | R (%) | Map50 (%) | Params |
|---|---|---|---|---|---|---|---|
| YOLOV8 | × | × | × | 86.8 | 70.4 | 84.3 | 22.5 |
| YOLOv8-1 | √ | × | × | 90.5 | 72.6 | 87.4 | 22.5 |
| YOLOv8-2 | × | √ | × | 91.2 | 80.1 | 88.2 | 22.6 |
| YOLOv8-3 | × | × | √ | 92.5 | 84.9 | 89.9 | 22.6 |
| Model | WIOU | C2f_UniRepLKNetBlock | PAFPN | P (%) | R (%) | Map50 (%) | Params |
|---|---|---|---|---|---|---|---|
| YOLOV8 | × | × | × | 86.8 | 70.4 | 84.3 | 22.5 |
| YOLOv8-1 | √ | × | × | 90.5 | 72.6 | 87.4 | 22.5 |
| YOLOv8-2 | √ | √ | × | 93.2 | 82.1 | 91.4 | 22.5 |
| YOLOv8-3 | √ | √ | √ | 95.5 | 85.90 | 93.9 | 21.2 |
| Model | Param | Precision | Recall | F1-Score | mAP50% |
|---|---|---|---|---|---|
| YOLOV4s | 9.42 | 77.91 | 67.45 | 0.723 | 78.44 |
| YOLOV5s | 17.8 | 81.46 | 76.29 | 0.787 | 82.28 |
| YOLOv7-tiny | 14.4 | 82.17 | 73.45 | 0.776 | 78.51 |
| YOLOv10s | 17.8 | 85.38 | 77.93 | 0.815 | 85.61 |
| Faster R-CNN | 37.2 | 77.81 | 81.65 | 0.796 | 83.63 |
| RE-DETR-1 | 28.5 | 79.80 | 72.47 | 0.759 | 77.66 |
| SSD | 34.2 | 83.42 | 73.19 | 0.779 | 81.24 |
| DW-YOLOV8 | 21.2 | 95.54 | 85.90 | 0.904 | 93.88 |
| Model | Precision | Recall | F1-Score | mAP50% |
|---|---|---|---|---|
| LAR-YOLOv8 | 0.829 | 0.857 | 0.890 | 0.908 |
| MAE-YOLOv8 | 0.923 | 82.0 | 0.868 | 0.894 |
| Light-SA YOLOv8 | 0.926 | 0.894 | 0.919 | 0.925 |
| DW-YOLOV8 | 0.955 | 85.90 | 0.904 | 0.939 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Huang, X.; Yu, Y. DW-YOLO: A Model for Identifying Surface Characteristics and Distinguishing Grades of Graphite Ore. Appl. Sci. 2025, 15, 11321. https://doi.org/10.3390/app152111321
Zhang X, Huang X, Yu Y. DW-YOLO: A Model for Identifying Surface Characteristics and Distinguishing Grades of Graphite Ore. Applied Sciences. 2025; 15(21):11321. https://doi.org/10.3390/app152111321
Chicago/Turabian StyleZhang, Xin, Xueyu Huang, and Yuxing Yu. 2025. "DW-YOLO: A Model for Identifying Surface Characteristics and Distinguishing Grades of Graphite Ore" Applied Sciences 15, no. 21: 11321. https://doi.org/10.3390/app152111321
APA StyleZhang, X., Huang, X., & Yu, Y. (2025). DW-YOLO: A Model for Identifying Surface Characteristics and Distinguishing Grades of Graphite Ore. Applied Sciences, 15(21), 11321. https://doi.org/10.3390/app152111321
