Frequency-Aware and Interactive Spatial-Temporal Graph Convolutional Network for Traffic Flow Prediction
Abstract
1. Introduction
- 1.
- In the spatial dimension, we propose a dynamic adjacency matrix generation method that integrates both adaptive and dynamic matrices, together with a spatial interaction mechanism. Leveraging a dual-layer graph convolutional structure with varying sparsity, our approach models complex, multi-scale spatial dependencies and enable positive feedback learning for multi-scale interactions.
- 2.
- In the temporal dimension, we design a Gated Spectral Block (GSB) to uncover multi-scale temporal features and dynamically switch between dominant components. Leveraging FFT-based spectral decomposition and learnable filters, our module enables adaptive separation, deep feature extraction, and gated fusion of low- and high-frequency components, capturing the intricate interplay between trends and fluctuations.
- 3.
- We conduct extensive experiments on four widely-used real-world traffic datasets. Results demonstrate that FISTGCN achieves superior predictive performance while maintaining competitive computational efficiency.
2. Related Works
2.1. Traffic Flow Prediction
2.2. Graph Convolution Network
3. Notations, Definitions and Preliminaries
3.1. Problem Statement
| Notations | Definitions |
|---|---|
| The traffic spatial graph. | |
| V | The researched road segments sensors set. |
| N | Number of sensor nodes. |
| E | The connectivity among road sensors. |
| C | The traffic features dimension. |
| A | The adjacency matrix of the network . |
| T | The number of input historical steps. |
| The number of output predictable steps. | |
| D | The corresponding degree matrix of the adjacency matrix. |
| The normalized Laplacian matrix. | |
| The position embedding of positions in the series. | |
| , | The learnable node embedding. |
| d | The hidden dimension. |
| a | The feature dimensions of learnable node embedding. |
| L | Number of layers in the spatial-temporal encoder. |
| f | The traffic flow-prediction function. |
3.2. Preliminaries: Fast Fourier Transform
4. Methodology
4.1. Gated Embedding Layer
4.2. Spatial-Temporal Encoder Layer
4.2.1. Interactive Dynamic Graph Convolutional Block
Dynamic Graph Convolution
Spatial Interaction Learning
4.2.2. Gated Spectral Block
Fast Fourier Transformations
Adaptive Separation of Low and High Frequencies
Gated Fusion Unit
4.2.3. Fusion
4.3. Output Layer
4.4. Loss Function
5. Experimental Results and Analysis
5.1. Datasets
5.2. Experimental Setup
5.2.1. Experimental Settings
5.2.2. Baselines
- HA method forecasts traffic by using the average of historical traffic data.
- VAR is a statistical model that captures temporal dependencies between multiple traffic-related variables to predict future traffic flow.
- SVR uses a linear support vector machine to predict traffic conditions based on past data patterns.
- DCRNN models traffic flow as a diffusion process, utilizing diffusion GCN combined with GRU to effectively capture the spatial-temporal dependencies inherent in traffic data.
- STGCN integrates GCN with 1D convolution to model both spatial and temporal dependencies in traffic data.
- ASTGCN introduces spatial and temporal attention mechanisms to effectively capture the spatial-temporal correlations in traffic flow.
- GraphWaveNet employs gated TCN stacked with GCN to model spatial-temporal dependencies.
- MTGNN proposes a novel mix-hop propagation layer and a dilated inception layer to effectively capture spatial and temporal dependencies in time series data.
- AGCRN employs adaptive graph convolution in place of the GRU’s original linear transformation layer to more effectively capture spatial-temporal correlations in traffic flow.
- GMAN leverages distinct attention modules along the temporal and spatial dimensions to effectively capture spatial-temporal correlations.
- STSGCN employs a meticulously designed synchronous spatial-temporal modeling mechanism to effectively capture complex, localized spatial-temporal correlations.
- STFGNN proposes a robust hierarchical method that captures local spatial relations by leveraging temporal context from traffic states and trends.
- ASTGNN employs a temporal self-attention mechanism to capture sequence dynamics with global receptive fields and a dynamic graph convolution module to adaptively model spatial correlations.
- DGCRN employs hyper-networks to extract dynamic features from node attributes, generating filter parameters at each time step.
- DSTAGNN constructs a data-driven dynamic graph and uses a GNN with multi-head attention and multi-scale gated convolutions to model spatial-temporal dependencies.
- D2STGNN decouples diffusion and inherent traffic patterns and captures spatial-temporal dependencies through dynamic graph learning.
- MegaCRN employs a meta-graph learner with a Meta-Node Bank to dynamically generate spatial-temporal graph structures for traffic modeling.
- PDFormer captures dynamic spatial dependencies and models time delay with dual graph masks and a delay-aware module.
- PDG2Seq extracts periodic features using time points as indices, and combines these with dynamic traffic features to construct a Periodic Dynamic Graph for enhanced spatial-temporal feature extraction.
5.3. Experimental Results
5.3.1. Overall Comparison
5.3.2. Ablation Study
5.4. Computation Cost
5.5. Analysis of Component Effects of Gated Spectral Block
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, Z.; Fu, X.; Zhang, L.; Goh, R.S.M. Traffic Pattern Mining and Forecasting Technologies in Maritime Traffic Service Networks: A Comprehensive Survey. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1796–1825. [Google Scholar] [CrossRef]
- Xie, P.; Li, T.; Liu, J.; Du, S.; Yang, X.; Zhang, J. Urban flow prediction from spatiotemporal data using machine learning: A survey. Inf. Fusion 2020, 59, 1–12. [Google Scholar] [CrossRef]
- Williams, B.M.; Hoel, L.A. Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results. J. Transp. Eng. 2003, 129, 664–672. [Google Scholar] [CrossRef]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In Proceedings of the Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona Spain, 5–10 December 2016; Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2016; Volume 29. [Google Scholar]
- Xu, D.W.; Wang, Y.D.; Jia, L.M.; Qin, Y.; Dong, H.H. Real-time road traffic state prediction based on ARIMA and Kalman filter. Front. Inf. Technol. Electron. Eng. 2017, 18, 287–302. [Google Scholar] [CrossRef]
- Jozefowicz, R.; Zaremba, W.; Sutskever, I. An empirical exploration of recurrent network architectures. In Proceedings of the 32nd International Conference on Machine Learning—Volume 37, ICML’15, Lille, France, 7–9 July 2015; pp. 2342–2350. [Google Scholar]
- Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 1998, 6, 107–116. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar] [CrossRef]
- Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic Flow Prediction With Big Data: A Deep Learning Approach. Trans. Intell. Transport. Syst. 2015, 16, 865–873. [Google Scholar] [CrossRef]
- Bai, L.; Yao, L.; Kanhere, S.S.; Yang, Z.; Chu, J.; Wang, X. Passenger Demand Forecasting with Multi-Task Convolutional Recurrent Neural Networks. In Proceedings of the Advances in Knowledge Discovery and Data Mining: 23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, 14–17 April 2019; Part II. Springer: Berlin/Heidelberg, Germany, 2019; pp. 29–42. [Google Scholar] [CrossRef]
- Han, L.; Du, B.; Sun, L.; Fu, Y.; Lv, Y.; Xiong, H. Dynamic and Multi-faceted Spatio-temporal Deep Learning for Traffic Speed Forecasting. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD‘21, Virtually, 14–18 August 2021; ACM: New York, NY, USA, 2021; pp. 547–555. [Google Scholar] [CrossRef]
- Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3848–3858. [Google Scholar] [CrossRef]
- Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting. arXiv 2017, arXiv:1709.04875. [Google Scholar]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. arXiv 2018, arXiv:1707.01926. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Zhang, C. Graph WaveNet for Deep Spatial-Temporal Graph Modeling. arXiv 2019, arXiv:1906.00121. [Google Scholar]
- Bai, L.; Yao, L.; Li, C.; Wang, X.; Wang, C. Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting. In Proceedings of the Advances in Neural Information Processing Systems 33 (NeurIPS 2020), Virtual, 6–12 December 2020; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 17804–17815. [Google Scholar]
- Li, F.; Feng, J.; Yan, H.; Jin, G.; Yang, F.; Sun, F.; Jin, D.; Li, Y. Dynamic Graph Convolutional Recurrent Network for Traffic Prediction: Benchmark and Solution. ACM Trans. Knowl. Discov. Data 2023, 17, 9:1–9:21. [Google Scholar] [CrossRef]
- Lin, J.; Li, Z.; Li, Z.; Bai, L.; Zhao, R.; Zhang, C. Dynamic Causal Graph Convolutional Network for Traffic Prediction. In Proceedings of the 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), Auckland, New Zealand, 26–30 August 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Qin, Y.; Tao, X.; Fang, Y.; Luo, H.; Zhao, F.; Wang, C. DMGSTCN: Dynamic Multigraph Spatio–Temporal Convolution Network for Traffic Forecasting. IEEE Internet Things J. 2024, 11, 22208–22219. [Google Scholar] [CrossRef]
- Ju, W.; Zhao, Y.; Qin, Y.; Yi, S.; Yuan, J.; Xiao, Z.; Luo, X.; Yan, X.; Zhang, M. COOL: A Conjoint Perspective on Spatio-Temporal Graph Neural Network for Traffic Forecasting. Inf. Fusion 2024, 107, 102341. [Google Scholar] [CrossRef]
- Li, Y.; Shao, Z.; Xu, Y.; Qiu, Q.; Cao, Z.; Wang, F. Dynamic Frequency Domain Graph Convolutional Network for Traffic Forecasting. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 5245–5249. [Google Scholar] [CrossRef]
- Guo, C.; Chen, C.H.; Hwang, F.J.; Chang, C.C.; Chang, C.C. Multi-view spatiotemporal learning for traffic forecasting. Inf. Sci. 2024, 657, 119868. [Google Scholar] [CrossRef]
- Tunnicliffe Wilson, G. Time Series Analysis: Forecasting and Control, 5th Edition, by George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel and Greta M. Ljung, 2015. Published by John Wiley and Sons Inc., Hoboken, New Jersey, pp. 712. ISBN: 978-1-118-67502-1. J. Time Ser. Anal. 2016, 37, 709–711. [Google Scholar] [CrossRef]
- Lu, Z.; Zhou, C.; Wu, J.; Jiang, H.; Cui, S. Integrating Granger Causality and Vector Auto-Regression for Traffic Prediction of Large-Scale WLANs. KSII Trans. Internet Inf. Syst. 2016, 10, 136–151. [Google Scholar] [CrossRef]
- Dhiman, H.S.; Deb, D.; Guerrero, J.M. Hybrid machine intelligent SVR variants for wind forecasting and ramp events. Renew. Sustain. Energy Rev. 2019, 108, 369–379. [Google Scholar] [CrossRef]
- May, M.; Hecker, D.; Körner, C.; Scheider, S.; Schulz, D. A Vector-Geometry Based Spatial kNN-Algorithm for Traffic Frequency Predictions. In Proceedings of the 2008 IEEE International Conference on Data Mining Workshops, Pisa, Italy, 15–19 December 2008; pp. 442–447. [Google Scholar] [CrossRef]
- Song, C.; Lin, Y.; Guo, S.; Wan, H. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; AAAI Press: Palo Alto, CA, USA, 2020; Volume 34, pp. 914–921. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, K.; Zhang, S.; Chen, Q.; Xu, J. Dynamic graph convolutional networks based on spatiotemporal data embedding for traffic flow forecasting. Knowl. Based Syst. 2022, 250, 109028. [Google Scholar] [CrossRef]
- Kong, J.; Fan, X.; Zuo, M.; Deveci, M.; Jin, X.; Zhong, K. ADCT-Net: Adaptive traffic forecasting neural network via dual-graphic cross-fused transformer. Inf. Fusion 2024, 103, 102122. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, X.; Hu, Y.; Duan, F.; Guo, K.; Wang, B.; Gao, J.; Yin, B. Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction. IEEE Trans. Intell. Transp. Syst. 2022, 23, 23680–23693. [Google Scholar] [CrossRef]
- Xu, Y.; Han, L.; Zhu, T.; Sun, L.; Du, B.; Lv, W. Generic Dynamic Graph Convolutional Network for traffic flow forecasting. Inf. Fusion 2023, 100, 101946. [Google Scholar] [CrossRef]
- Lin, H.; Bai, R.; Jia, W.; Yang, X.; You, Y. Preserving Dynamic Attention for Long-Term Spatial-Temporal Prediction. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July 2020; pp. 36–46. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y.; Chen, L.; Zhang, C. Bidirectional Spatial-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 6913–6925. [Google Scholar] [CrossRef]
- Zheng, C.; Fan, X.; Wang, C.; Qi, J. GMAN: A Graph Multi-Attention Network for Traffic Prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; AAAI Press: Palo Alto, CA, USA, 2020; Volume 34, pp. 1234–1241. [Google Scholar] [CrossRef]
- Jiang, J.; Han, C.; Zhao, W.X.; Wang, J. PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for Traffic Flow Prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; AAAI Press: Palo Alto, CA, USA, 2023; Volume 37, pp. 4365–4373. [Google Scholar] [CrossRef]
- Yan, X.; Gan, X.; Tang, J.; Zhang, D.; Wang, R. ProSTformer: Progressive Space-Time Self-Attention Model for Short-Term Traffic Flow Forecasting. IEEE Trans. Intell. Transp. Syst. 2024, 25, 10802–10816. [Google Scholar] [CrossRef]
- Guo, S.; Lin, Y.; Feng, N.; Song, C.; Wan, H. Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; AAAI Press: Palo Alto, CA, USA, 2019; Volume 33, pp. 922–929. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Chang, X.; Zhang, C. Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD‘20, Virtual, 6–10 July 2020; pp. 753–763. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Z. Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 19–21 May 2021; AAAI Press: Palo Alto, CA, USA, 2021; Volume 35, pp. 4189–4196. [Google Scholar] [CrossRef]
- Lan, S.; Ma, Y.; Huang, W.; Wang, W.; Yang, H.; Li, P. DSTAGNN: Dynamic Spatial-Temporal Aware Graph Neural Network for Traffic Flow Forecasting. In Proceedings of the 39th International Conference on Machine Learning, PMLR, Baltimore, MA, USA, 17–23 July 2022; Proceedings of Machine Learning Research (PMLR). Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S., Eds.; PMLR: Baltimore, MD, USA, 2022; Volume 162, pp. 11906–11917. [Google Scholar]
- Shao, Z.; Zhang, Z.; Wei, W.; Wang, F.; Xu, Y.; Cao, X.; Jensen, C.S. Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting. arXiv 2022, arXiv:2206.09112. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, Z.; Yong, J.; Jeph, P.; Chen, Q.; Kobayashi, Y.; Song, X.; Fukushima, S.; Suzumura, T. Spatio-Temporal Meta-Graph Learning for Traffic Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; AAAI Press: Palo Alto, CA, USA, 2023; Volume 37, pp. 8078–8086. [Google Scholar] [CrossRef]
- Fan, J.; Weng, W.; Chen, Q.; Wu, H.; Wu, J. PDG2Seq: Periodic Dynamic Graph to Sequence Model for Traffic Flow Prediction. Neural Netw. 2025, 183, 106941. [Google Scholar] [CrossRef]
- Guo, S.; Lin, Y.; Wan, H.; Li, X.; Cong, G. Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting. IEEE Trans. Knowl. Data Eng. 2022, 34, 5415–5428. [Google Scholar] [CrossRef]




| Model | Temporal Module | Spatial Module | Graph Relations |
|---|---|---|---|
| STGCN | CNN | GNN | Static |
| STSGCN | GCN | GCN | Static |
| DCRNN | RNN | GNN | Static |
| GraphWaveNet | TCN | GCN | Static |
| AGCRN | RNN | GCN | Static |
| STDE-DGCN | CNN | GCN | Static |
| ADCT-Net | Attention | GCN | Static |
| DDSTGCN | TCN | GCN | Dynamic |
| GDGCN | TGCN | GCN | Dynamic |
| Bi-STAT | Attention | Attention | Dynamic |
| GMAN | Attention | Attention | Dynamic |
| PDFormer | Attention | Attention | Dynamic |
| DSAN-ST | Attention | Attention | None |
| ProSTformer | Attention | CNN | None |
| Dataset | Sensors | Edges | Time Range | Time Steps |
|---|---|---|---|---|
| PeMS03 | 358 | 547 | 09/2018–11/2018 | 26,208 |
| PeMS04 | 307 | 340 | 01/2018–02/2018 | 16,992 |
| PeMS07 | 883 | 866 | 05/2017–08/2017 | 28,224 |
| PeMS08 | 170 | 295 | 07/2016–08/2016 | 17,856 |
| Method | PeMS03 | PeMS04 | PeMS07 | PeMS08 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | |
| HA | 30.08 | 46.22 | 28.64% | 38.51 | 55.75 | 28.21% | 45.32 | 65.74 | 21.56% | 31.99 | 46.49 | 20.28% |
| VAR | 23.65 | 38.26 | 24.51% | 24.54 | 38.61 | 17.24% | 50.22 | 75.63 | 32.22% | 19.19 | 29.81 | 13.10% |
| SVR | 21.97 | 35.29 | 21.51% | 28.70 | 44.56 | 19.20% | 32.49 | 50.22 | 14.26% | 23.25 | 36.16 | 14.64% |
| DCRNN | 15.53 | 27.18 | 15.62% | 19.63 | 31.26 | 13.59% | 21.16 | 34.14 | 9.02% | 15.22 | 24.17 | 10.21% |
| STGCN | 15.65 | 27.31 | 15.39% | 19.57 | 31.38 | 13.44% | 21.74 | 35.27 | 9.24% | 16.08 | 25.39 | 10.60% |
| ASTGCN | 17.34 | 29.56 | 17.21% | 22.93 | 35.22 | 16.56% | 24.01 | 37.87 | 10.73% | 18.25 | 28.06 | 11.64% |
| GraphWaveNet | 14.80 | 25.88 | 14.92% | 18.54 | 30.09 | 12.71% | 19.84 | 32.86 | 8.44% | 14.54 | 23.67 | 9.41% |
| MTGNN | 14.88 | 25.24 | 15.47% | 18.96 | 31.05 | 13.65% | 20.98 | 34.40 | 9.31% | 15.12 | 24.23 | 9.65% |
| AGCRN | 15.29 | 26.95 | 15.15% | 19.83 | 32.26 | 12.97% | 20.57 | 34.40 | 8.74% | 15.95 | 25.22 | 10.09% |
| GMAN | 16.52 | 27.18 | 17.36% | 18.84 | 30.75 | 13.25% | 20.97 | 34.20 | 9.05% | 14.57 | 24.71 | 9.98% |
| STSGCN | 17.48 | 29.21 | 16.78% | 21.19 | 33.65 | 13.90% | 24.26 | 39.03 | 10.21% | 17.13 | 26.80 | 10.96% |
| STFGNN | 16.77 | 28.34 | 16.30% | 19.83 | 31.88 | 13.02% | 22.07 | 35.80 | 9.21% | 16.64 | 26.22 | 10.60% |
| ASTGNN | 14.78 | 25.00 | 14.79% | 18.60 | 30.91 | 12.36% | 20.62 | 34.00 | 8.86% | 15.00 | 24.70 | 9.50% |
| DGCRN | 14.80 | 25.94 | 15.04% | 18.80 | 30.65 | 12.82% | 20.48 | 33.25 | 9.06% | 14.60 | 24.16 | 9.33% |
| DSTAGNN | 15.57 | 27.21 | 14.68% | 19.30 | 31.46 | 12.70% | 21.42 | 34.51 | 9.01% | 15.67 | 24.77 | 9.94% |
| D2STGNN | 14.88 | 26.01 | 15.12% | 18.34 | 29.93 | 12.81% | 19.68 | 33.19 | 8.43% | 14.35 | 24.18 | 9.33% |
| MegaCRN | 14.84 | 26.25 | 15.16% | 18.70 | 30.52 | 12.76% | 19.89 | 33.12 | 8.47% | 14.68 | 23.68 | 9.53% |
| PDFormer | 14.76 | 25.56 | 15.51% | 18.32 | 29.96 | 12.10% | 19.83 | 32.87 | 8.52% | 13.58 | 23.51 | 9.04% |
| PDG2Seq | 14.62 | 25.47 | 14.88% | 18.24 | 30.08 | 12.09% | 19.28 | 33.04 | 8.07% | 13.60 | 23.37 | 8.99% |
| FISTGCN | 14.43 | 24.94 | 14.76% | 18.06 | 29.92 | 12.05% | 19.46 | 32.72 | 8.24% | 13.23 | 22.76 | 8.75% |
| Methods | PeMS04 | PeMS08 | ||||
|---|---|---|---|---|---|---|
| MAE | RMSE | MAPE (%) | MAE | RMSE | MAPE (%) | |
| w/o GE | 18.31 | 30.29 | 12.16 | 13.31 | 23.04 | 8.87 |
| w/o DG | 18.31 | 30.60 | 12.15 | 13.43 | 23.05 | 8.85 |
| w/o IL | 18.15 | 30.25 | 12.10 | 13.39 | 23.06 | 8.81 |
| w/o HF | 18.15 | 30.18 | 12.18 | 13.32 | 22.94 | 8.81 |
| w/o LF | 18.40 | 30.87 | 12.34 | 13.49 | 23.17 | 8.89 |
| FISTGCN | 18.06 | 29.92 | 12.05 | 13.23 | 22.75 | 8.75 |
| Dataset | Model | Params (Total) | Training Time (s/epoch) | Inference (s) | GPU Memory (GB) |
|---|---|---|---|---|---|
| PeMS04 | PDFormer | 531,165 | 118.2 | 13.2 | 5.24 |
| PDG2Seq | 1,153,053 | 63.8 | 6.3 | 2.59 | |
| FISTGCN | 486,909 | 52.8 | 7.5 | 3.95 | |
| PeMS08 | PDFormer | 531,165 | 50.5 | 5.4 | 2.07 |
| PDG2Seq | 1,151,957 | 54.1 | 5.4 | 1.82 | |
| FISTGCN | 473,973 | 35.1 | 3.9 | 1.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, G.; Wu, H.; Wu, H.; Cao, J.; Zhao, M. Frequency-Aware and Interactive Spatial-Temporal Graph Convolutional Network for Traffic Flow Prediction. Appl. Sci. 2025, 15, 11254. https://doi.org/10.3390/app152011254
Teng G, Wu H, Wu H, Cao J, Zhao M. Frequency-Aware and Interactive Spatial-Temporal Graph Convolutional Network for Traffic Flow Prediction. Applied Sciences. 2025; 15(20):11254. https://doi.org/10.3390/app152011254
Chicago/Turabian StyleTeng, Guoqing, Han Wu, Hao Wu, Jiahao Cao, and Meng Zhao. 2025. "Frequency-Aware and Interactive Spatial-Temporal Graph Convolutional Network for Traffic Flow Prediction" Applied Sciences 15, no. 20: 11254. https://doi.org/10.3390/app152011254
APA StyleTeng, G., Wu, H., Wu, H., Cao, J., & Zhao, M. (2025). Frequency-Aware and Interactive Spatial-Temporal Graph Convolutional Network for Traffic Flow Prediction. Applied Sciences, 15(20), 11254. https://doi.org/10.3390/app152011254

