Generative AI Chatbots Across Domains: A Systematic Review
Abstract
1. Introduction
2. Research Methodology
2.1. Study Selection Criteria
2.2. Reviewing Process
3. Results and Findings
3.1. In Which Sectors Have Generative AI Chatbots Been Implemented, and What Are Their Primary Use Cases in Each Domain?
3.2. What Types of Generative AI Models Are Used in Chatbot Applications Across Different Domains?
3.3. What Are the Reported Limitations and Challenges in Applying Generative AI Chatbots?
3.4. What Directions Does Current Research Suggest for Future Development and Deployment of Generative AI Chatbots?
4. Discussion
4.1. Challenges and Sectoral Insights
4.2. Model Usage and Integration Patterns
4.3. Design Limitations and Evaluation Gaps
4.4. Future Directions: Toward Human-Centered, Adaptive Systems
- Enhancing domain-specific accuracy and reducing hallucination: through the adoption of RAG frameworks, real-time data integration, and domain-specific fine-tuning.
- Bridging domain adaptation gaps: developing training strategies that incorporate sector-specific datasets, terminology, and task objectives.
- Improving evaluation methodology: implementing long-term, user-centered studies to assess chatbot reliability, adaptability, and trust over time.
- Advancing personalization and usability: building adaptive, multimodal interfaces that can respond to diverse user needs and interaction preferences.
- Strengthening privacy, security, and ethical safeguards: including encryption, explainability, liveness detection, and user education mechanisms to ensure responsible deployment.
4.5. Ethical Considerations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
LLMs | Large Language Models |
RAG | Retrieval-Augmented Generation |
STEM | Science, Technology, Engineering, and Mathematics |
SLR | Systematic Literature Review |
References
- Samonte, M.J.; Arlando, R.D.C.; Joquiño, N.A.P.; Manongas, J.B.; Poblete, J.O. Applications of Artificial Intelligence in Conversational Agents: A Systematic Literature Review of AI in Chatbots. In Proceedings of the 2024 IEEE 4th International Conference on Software Engineering and Artificial Intelligence (SEAI), Xiamen, China, 21–23 June 2024; pp. 289–295. [Google Scholar] [CrossRef]
- Tanvir, S.H.; Kim, G.J. WIP: Generative and Custom Chatbots in Computer Programming Education and Their Effectiveness A Systematic Literature Review. In Proceedings of the 2024 IEEE Frontiers in Education Conference (FIE), Washington, DC, USA, 13–16 October 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Arabelli, R.; Gupta, S.; Prakash, N.; Ali, Z. Natural Language Generation in AI: Developing Human-like Text Through Deep Learning. In Proceedings of the 2025 First International Conference on Advances in Computer Science, Electrical, Electronics, and Communication Technologies (CE2CT), Bhimtal, Nainital, India, 21–22 February 2025; pp. 1411–1415. [Google Scholar] [CrossRef]
- Talyshinskii, A.; Naik, N.; Hameed, B.M.Z.; Juliebø-Jones, P.; Somani, B.K. Potential of AI-Driven Chatbots in Urology: Revolutionizing Patient Care Through Artificial Intelligence. Curr. Urol. Rep. 2024, 25, 9–18. [Google Scholar] [CrossRef]
- Lin, C.C.; Huang, A.Y.Q.; Yang, S.J.H. A Review of AI-Driven Conversational Chatbots Implementation Methodologies and Challenges (1999–2022). Sustainability 2023, 15, 4012. [Google Scholar] [CrossRef]
- Elhiny, L.; Ye, X.; Speidel, U.; Manoharan, S. A Systematic Review of Recent Research on Chatbots. In Proceedings of the 2023 International Conference on Electrical, Communication and Computer Engineering (ICECCE), Dubai, United Arab Emirates, 30–31 December 2023; pp. 1–9. [Google Scholar] [CrossRef]
- Miklosik, A.; Evans, N.; Qureshi, A.M.A. The Use of Chatbots in Digital Business Transformation: A Systematic Literature Review. IEEE Access 2021, 9, 106530–106539. [Google Scholar] [CrossRef]
- Nicolescu, L.; Tudorache, M.T. Human-Computer Interaction in Customer Service: The Experience with AI Chatbots—A Systematic Literature Review. Electronics 2022, 11, 1579. [Google Scholar] [CrossRef]
- OpenAI. GPT-3.5. Web Page, OpenAI. 2023. Available online: https://openai.com (accessed on 1 August 2023).
- Khan, U.H.; Khan, M.H.; Ali, R. Large Language Model based Educational Virtual Assistant using RAG Framework. Procedia Comput. Sci. 2025, 252, 905–911. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Li, M.; Yu, E.; Rhee, D.; Amith, M.; Tang, L.; Savas, L.S.; Cui, L.; Tao, C. VaxBot-HPV: A GPT-based chatbot for answering HPV vaccine-related questions. JAMIA Open 2025, 8, ooaf005. [Google Scholar] [CrossRef] [PubMed]
- Cinquin, O. Steering veridical large language model analyses by correcting and enriching generated database queries: First steps toward ChatGPT bioinformatics. Briefings Bioinform. 2025, 26, bbaf045. [Google Scholar] [CrossRef]
- Barrit, S.; Torcida, N.; Mazeraud, A.; Boulogne, S.; Benoit, J.; Carette, T.; Carron, T.; Delsaut, B.; Diab, E.; Kermorvant, H.; et al. Specialized Large Language Model Outperforms Neurologists at Complex Diagnosis in Blinded Case-Based Evaluation. Brain Sci. 2025, 15, 347. [Google Scholar] [CrossRef]
- Roshani, M.A.; Zhou, X.; Qiang, Y.; Suresh, S.; Hicks, S.; Sethuraman, U.; Zhu, D. Generative Large Language Model—Powered Conversational AI App for Personalized Risk Assessment: Case Study in COVID-19. JMIR AI 2025, 4, e67363. [Google Scholar] [CrossRef]
- Liu, W.; Li, J.; Tang, Y.; Zhao, Y.; Liu, C.; Song, M.; Ju, Z.; Kumar, S.V.; Lu, Y.; Akbani, R.; et al. DrBioRight 2.0: An LLM-powered bioinformatics chatbot for large-scale cancer functional proteomics analysis. Nat. Commun. 2025, 16, 2256. [Google Scholar] [CrossRef]
- Routray, S.; Samir, D.; Pushya, G.; Srivastava, J. Early Detection of Dementia Using a Large Language Model-Powered Chatbot. In Proceedings of the 2024 Eighth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, Solan, India, 18–20 December 2024; pp. 719–724. [Google Scholar] [CrossRef]
- Fraser, H.; Crossland, D.; Bacher, I.; Ranney, M.; Madsen, T.; Hilliard, R. Comparison of Diagnostic and Triage Accuracy of Ada Health and WebMD Symptom Checkers, ChatGPT, and Physicians for Patients in an Emergency Department: Clinical Data Analysis Study. JMIR mHealth uHealth 2023, 11, e49995. [Google Scholar] [CrossRef] [PubMed]
- Elfayoumi, M.; AbouElazm, M.; Mohamed, O.; Abuhmed, T.; El-Sappagh, S. Knowledge Augmented Significant Language Model-Based Chatbot for Explainable Diabetes Mellitus Prediction. In Proceedings of the 2025 19th International Conference on Ubiquitous Information Management and Communication (IMCOM), Bangkok, Thailand, 3–5 January 2025; pp. 1–8. [Google Scholar] [CrossRef]
- Amrutkar, G.; Awari, O.; Chikmurge, D.; Kharat, S. Medical Chatbot using Gamma LLMV2 and Comparison Using BERT Models. In Proceedings of the 2025 3rd International Conference on Intelligent Systems, Advanced Computing and Communication (ISACC), Silchar, India, 27–28 February 2025; pp. 1055–1060. [Google Scholar] [CrossRef]
- Patil, R.; Yeolekar, S.; Khade, O.; Kadam, Y.; Ingole, P.; Patil, S. AyUR-bot: A Revolutionary Ayurvedic Chatbot Empowered by Generative AI. In Proceedings of the 2024 8th International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 23–24 August 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Gupta, D.; Swami, V.; Shukla, D.; Nimala, K. Design and Implementation of an AI-Driven Mental Health Chatbot: A Generative AI Model. In Proceedings of the 2024 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India, 12–13 December 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Fallah, A.; Keramati, A.; Nazari, M.A.; Mirfazeli, F.S. Automating Theory of Mind Assessment with a LLaMA-3-Powered Chatbot: Enhancing Faux Pas Detection in Autism. In Proceedings of the 2024 14th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 19–20 November 2024; pp. 365–372. [Google Scholar] [CrossRef]
- Zhang, S.; Song, J. A chatbot based question and answer system for the auxiliary diagnosis of chronic diseases based on large language model. Sci. Rep. 2024, 14, 17118. [Google Scholar] [CrossRef] [PubMed]
- Bricker, J.B.; Sullivan, B.; Mull, K.; Santiago-Torres, M.; Ferres, J.M.L. Conversational Chatbot for Cigarette Smoking Cessation: Results From the 11-Step User-Centered Design Development Process and Randomized Controlled Trial. JMIR mHealth uHealth 2024, 12, e57318. [Google Scholar] [CrossRef] [PubMed]
- Vidivelli, S.; Ramachandran, M.; Dharunbalaji, A. Efficiency-Driven Custom Chatbot Development: Unleashing LangChain, RAG, and Performance-Optimized LLM Fusion. Comput. Mater. Contin. 2024, 80, 2423–2442. [Google Scholar] [CrossRef]
- Alghamdi, H.M.; Mostafa, A. Towards Reliable Healthcare LLM Agents: A Case Study for Pilgrims during Hajj. Information 2024, 15, 371. [Google Scholar] [CrossRef]
- Liu, W.; Kan, H.; Jiang, Y.; Geng, Y.; Nie, Y.; Yang, M. MED-ChatGPT CoPilot: A ChatGPT medical assistant for case mining and adjunctive therapy. Front. Med. 2024, 11, 1460553. [Google Scholar] [CrossRef]
- Sree, Y.B.; Sathvik, A.; Hema Akshit, D.S.; Kumar, O.; Pranav Rao, B.S. Retrieval-Augmented Generation Based Large Language Model Chatbot for Improving Diagnosis for Physical and Mental Health. In Proceedings of the 2024 6th International Conference on Electrical, Control and Instrumentation Engineering (ICECIE), Pattaya, Thailand, 23–23 November 2024; pp. 1–8. [Google Scholar] [CrossRef]
- Peñas, R.T.L.; Cajote, R.D. Philippine Region-Based Food and Nutrition Cross-Reference Using Fine-Tuned Generative ChatBot. In Proceedings of the 2024 2nd World Conference on Communication & Computing (WCONF), Raipur, India, 12–14 July 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Siddique, S.; Alsayoud, F. Multi-Tiered RAG-Based Chatbot for Mental Health Support. In Proceedings of the 2025 Eighth International Women in Data Science Conference at Prince Sultan University (WiDS PSU), Riyadh, Saudi Arabia, 13–14 April 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Vakayil, S.; Juliet, D.S.; J, A.; Vakayil, S. RAG-Based LLM Chatbot Using Llama-2. In Proceedings of the 2024 7th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 23–24 April 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Kang, C.; Novak, D.; Urbanova, K.; Cheng, Y.; Hu, Y. Domain-Specific Improvement on Psychotherapy Chatbot Using Assistant. In Proceedings of the 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), Seoul, Republic of Korea, 14–19 April 2024; pp. 351–355. [Google Scholar] [CrossRef]
- Vasaniya, R.; Visodiya, M.; Patel, A.K. TechAssist: A RAG-Based Chatbot for Accessing Technical Information from StackOverflow. In Proceedings of the 2025 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 18–19 January 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Pandey, T.; Yadav, A.; Sharma, J.; Singhal, S. Design based Retrieval Augmented Generation Oriented Education Chatbot: Edubot. In Proceedings of the 2024 2nd International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT), Faridabad, India, 28–29 November 2024; Volume 1, pp. 1278–1283. [Google Scholar] [CrossRef]
- Neupane, S.; Hossain, E.; Keith, J.; Tripathi, H.; Ghiasi, F.; Golilarz, N.A.; Amirlatifi, A.; Mittal, S.; Rahimi, S. From Questions to Insightful Answers: Building an Informed Chatbot for University Resources. In Proceedings of the 2024 IEEE Frontiers in Education Conference (FIE), Washington, DC, USA, 13–16 October 2024; pp. 1–9. [Google Scholar] [CrossRef]
- Comia, L.V. Chatbot for Student Descipline Handbook-Related Queries: A RAG-Based LLM Using Llama-3 Approach. In Proceedings of the 2025 11th International Conference on Web Research (ICWR), Tehran, Iran, 16–17 April 2025; pp. 306–312. [Google Scholar] [CrossRef]
- Omri, S.; Abdelkader, M.; Hamdi, M. SafetyRAG: Towards Safe Large Language Model-Based Application through Retrieval-Augmented Generation. J. Adv. Inf. Technol. 2025, 16, 243–250. [Google Scholar] [CrossRef]
- Arikkat, D.R.; Abhinav, M.; Binu, N.; Parvathi, M.; Biju, N.; Arunima, K.S.; Vinod, P.; KA, R.R.; Conti, M. IntellBot: Retrieval Augmented LLM Chatbot for Cyber Threat Knowledge Delivery. In Proceedings of the 2024 IEEE 16th International Conference on Computational Intelligence and Communication Networks (CICN), Indore, India, 22–23 December 2024; pp. 644–651. [Google Scholar] [CrossRef]
- Rosari, H.S.; Girinoto; Novita Yasa, R.; Qomariasih, N.; Anindya Wijayanti, R. SiJesi: Large Language Model Chatbot with Augmented Retrieval Approach Generation and Prompt Engineering. In Proceedings of the 2024 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM), Surabaya, Indonesia, 19–20 November 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Seby, J.; Kostakos, P. CYGENT: A cybersecurity conversational agent with log summarization powered by GPT-3. In Proceedings of the 2024 3rd International Conference on Artificial Intelligence for Internet of Things (AIIoT), Vellore, India, 3–4 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Sufi, F. Just-in-Time News: An AI Chatbot for the Modern Information Age. AI 2025, 6, 22. [Google Scholar] [CrossRef]
- Sufi, F.; Alsulami, M. AI-Driven Chatbot for Real-Time News Automation. Mathematics 2025, 13, 850. [Google Scholar] [CrossRef]
- Baviskar, V.; Sabale, T.; Jachak, P.; Tapkir, C. News Article Analysis Chatbot using Generative AI. In Proceedings of the 2025 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI), Chennai, India, 28–29 March 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Lee, H.C.; Hung, K.; Man, G.M.T.; Ho, R.; Leung, M. Development of an RAG-Based LLM Chatbot for Enhancing Technical Support Service. In Proceedings of the TENCON 2024 - 2024 IEEE Region 10 Conference (TENCON), Singapore, 1–4 December 2024; pp. 1080–1083. [Google Scholar] [CrossRef]
- Medeiros, T.; Medeiros, M.; Azevedo, M.; Silva, M.; Silva, I.; Costa, D.G. Analysis of Language-Model-Powered Chatbots for Query Resolution in PDF-Based Automotive Manuals. Vehicles 2023, 5, 1384–1399. [Google Scholar] [CrossRef]
- Kiangala, K.S.; Wang, Z. An experimental hybrid customized AI and generative AI chatbot human machine interface to improve a factory troubleshooting downtime in the context of Industry 5.0. Int. J. Adv. Manuf. Technol. 2024, 132, 2715–2733. [Google Scholar] [CrossRef]
- Patel, V.; Tejani, P.; Parekh, J.; Huang, K.; Tan, X. Developing A Chatbot: A Hybrid Approach Using Deep Learning and RAG. In Proceedings of the 2024 IEEE/WIC International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Bangkok, Thailand, 9–12 December 2024; pp. 273–280. [Google Scholar] [CrossRef]
- Faruqui, N.; Raju, N.V.D.S.S.V.P.; Sivakumar, S.; Patel, N.; Vengaramkode Bhaskaran, S.; Khanam, S.; Bhuiyan, T. Gen-Optimizer: A Generative AI Framework for Strategic Business Cost Optimization. Computers 2025, 14, 59. [Google Scholar] [CrossRef]
- Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Küttler, H.; Lewis, M.; Yih, W.t.; Rocktäschel, T.; et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. arXiv 2021, arXiv:2005.11401. [Google Scholar] [CrossRef]
- Meta. Llama. Web Page, Meta. 2024. Available online: https://llama.meta.com (accessed on 1 August 2024).
- Mistral AI. Mistral 7B Instruct. Web Page, Mistral AI. 2023. Available online: https://mistral.ai (accessed on 1 August 2024).
- Mistral AI. Mistral-7B-Instruct-v0.2. Web Page, Mistral AI/Hugging Face. 2023. Available online: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2 (accessed on 1 August 2024).
- Microsoft. Copilot. Web Page, Microsoft. 2023. Available online: https://copilot.microsoft.com/ (accessed on 1 August 2024).
- Google. Gemini. Web Page, Google. 2024. Available online: https://gemini.google.com/ (accessed on 1 August 2024).
Sector | Use Case | Sample Size (Concise) | Articles |
---|---|---|---|
Healthcare/Medical | Vaccine Awareness | 451 docs; 202 + 39 Q–A pairs | [12] |
Bioinformatics Support | Not reported | [13] | |
Neurology Diagnosis | 13 neurologists; 5 samples; 20 AI evals | [14] | |
Personalized Risk Assessment (COVID-19) | 393 participants | [15] | |
Cancer Proteomics Analysis | ≈9000 samples | [16] | |
Early Dementia Detection | 500 participants | [17] | |
Symptom Checker/Medical Triage Support | 40 participants (30 diagnosis; 37 triage) | [18] | |
Explainable Diabetes Risk Prediction | 100,000 samples | [19] | |
General Medical Consultation | Not reported | [20] | |
Ayurvedic Consultation | Not reported | [21] | |
AI Therapy Assistant | 10 evaluated samples | [22] | |
Autism Support | 1 participant + translator | [23] | |
Chronic Disease Auxiliary Diagnosis | 64 participants + 1200 samples | [24] | |
Smoking Cessation Support | 404 participants | [25] | |
Dental Support | Not reported | [26] | |
Pilgrim Health Support | 50 participants + 150 synthetic samples | [27] | |
Clinical Case Analysis | 241 samples (306 papers; 300 MedQA Qs) | [28] | |
Physical and Mental Health Diagnosis Support | Not reported | [29] | |
Nutrition Guidance | 30 web sources + 100 Q-A pairs | [30] | |
Mental Health Support | 7 evaluated samples | [31] | |
Sexual harassment victim support | Not reported | [32] | |
Psychotherapy Support | 1179 transcripts | [33] | |
Education | Programming Q&A Support | 10M Q–A pairs | [34] |
Educational Assistant | 50 participants | [35] | |
Not reported | [10] | ||
University Information Assistant | 50 participants | [36] | |
7 evaluated samples | [37] | ||
Cybersecurity | LLM Safety/Security | 100 samples | [38] |
2447 docs + 400 eval samples | [39] | ||
Cyber Incident Response Chatbot | 19 participants | [40] | |
Security Log Summarization Chatbot | 101 samples | [41] | |
Media and Journalism | Journalism, Media, News Analysis | 35 participants; 989k samples | [42] |
1,306,518 samples | [43] | ||
Not reported | [44] | ||
Technical Support Service | IT Helpdesk Assistant | 75 samples | [45] |
Customer Service | Automotive Manual Query Assistant | 1 sample (4.8 MB) | [46] |
Industry and Manufacturing | Factory Troubleshooting Support | 15,000 samples | [47] |
E-commerce | Online Shopping Customer Support | 10,000 samples | [48] |
Enterprise and Management | Business Cost Optimization | 25,000 Q–A pairs | [49] |
Domain | LLM Model | Performance Score | Articles |
---|---|---|---|
Healthcare/Medical | ChatGPT 3.5 | 59% Triage Agreement | [18] |
ChatGPT 4.0 | 76% Triage Agreement | [18] | |
Claude + GPT | 87% ACC | [17] | |
Flan-T5-xl-T | 0.69 Zero-Shot AUC and 0.70 32-Shot AUC | [15] | |
GPT | - | [29] | |
GPT-2 | 0.97 ACC | [24] | |
GPT-3.5 (base) | 0.80 Answer Relevancy | [12] | |
GPT-3.5 (fine-tuned) | - | [25] | |
GPT-3.5 (Prompt) | 0.76 ACC | [19] | |
GPT-4 | 0.83 Answer Relevancy/58.1% Success Rate | [12,16] | |
GPT-4 (GPT-4-1106-preview) | 77.33% ACC | [28] | |
GPT-4 Turbo | 86.17% ACC | [14] | |
GPT-4o | - | [13,16] | |
Gamma LLM v2 | 95% ACC | [20] | |
Gemma2 (Prompt) | 0.83 ACC | [19] | |
Gemma2 (RAG) | 0.85 ACC | [19] | |
LLaMA | 93% ACC | [22] | |
LLaMA-3-70b-chat-hf | - | [23] | |
LLaMA2-7b | 0.59 Zero-Shot AUC and 0.67 32-Shot AUC | [15] | |
Llama 2 | 0.87 F1-Score | [21] | |
Llama 3 | ≈90% Success Rate/87% ACC | [16,27] | |
Llama 3.1 (Baseline) | 0.77 ACC | [19] | |
Llama 3.1 (Prompt) | 0.86 ACC | [19] | |
Llama 3.1 (RAG) | 0.85 ACC | [19] | |
T0-3b-T | 0.75 Zero-Shot AUC and 0.65 32-Shot AUC | [15] | |
T0pp(8bit)-T | 0.67 Zero-Shot AUC | [15] | |
TinyLlama-1.1B-Chat-v1.0 | 91% ROUGE | [26] | |
Mental Health | ChatGLM2-6B | 32.8 Rouge and 56.4 Fluency | [33] |
GPT-3.5-Turbo | 0.94 Faith | [31] | |
GPT-4 | - | [33] | |
Llama-2-7b (Meta) | 95% ACC | [32] | |
fine-tuned LLaMA-2-7B | 22.4 Rouge and 30.3 Fluency | [33] | |
Food and Nutrition | Meta LLaMA 2 7B HF | 0.63 BERTScore F1 | [30] |
Meta LLaMA 3 7B Instruct | 0.69 BERTScore F1 | [30] | |
Mistral 7B Instruct v0.2 | 0.64 BERTScore F1 | [30] | |
Education | GPT-3.5-turbo | 0.96 RAGAS mean score | [36] |
Llama-3-3B-Instruct | 0.92 mean similarity score | [37] | |
Meta-LLaMA-2-7B-Chat-HF | ≈0.84 BLEU (avg) | [10] | |
Mistral 7B Instruct | 91% ACC | [34] | |
Mistral x86 model | ≈0.89 contextual relevance score | [35] | |
Cybersecurity | GPT-3 family | 97% BERTScore | [41] |
GPT-3.5-turbo | 94.8% ACC/87% ACC | [38,39] | |
GPT-3.5-turbo-012 | 86.47% UAT Score | [40] | |
Gemma-7B | 61% ACC | [38] | |
Llama-2-13B | 58% ACC | [38] | |
Mistral-7B-instruct | 56% ACC | [38] | |
Media and Journalism | Google Gemini + Microsoft Copilot | 97% ACC | [42] |
Google Gemini | 0.94 F1 | [43] | |
LLaMA 3 | - | [44] | |
Microsoft Copilot | - | [43] | |
Enterprise and Management | Custom Transformer-based | 93.2% ACC | [49] |
Customer Service | GPT-3 (text-davinci-003) | - | [46] |
E-commerce | GPT-3.5 | 99.7% ACC | [48] |
Manufacturing | GPT-3.5 | - | [47] |
Technical Support Service | GPT-3.5-turbo | 0.35 ROUGE-L | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldhafeeri, L.; Aljumah, F.; Thabyan, F.; Alabbad, M.; AlShahrani, S.; Alanazi, F.; Al-Nafjan, A. Generative AI Chatbots Across Domains: A Systematic Review. Appl. Sci. 2025, 15, 11220. https://doi.org/10.3390/app152011220
Aldhafeeri L, Aljumah F, Thabyan F, Alabbad M, AlShahrani S, Alanazi F, Al-Nafjan A. Generative AI Chatbots Across Domains: A Systematic Review. Applied Sciences. 2025; 15(20):11220. https://doi.org/10.3390/app152011220
Chicago/Turabian StyleAldhafeeri, Lama, Fay Aljumah, Fajr Thabyan, Maram Alabbad, Sultanh AlShahrani, Fawzia Alanazi, and Abeer Al-Nafjan. 2025. "Generative AI Chatbots Across Domains: A Systematic Review" Applied Sciences 15, no. 20: 11220. https://doi.org/10.3390/app152011220
APA StyleAldhafeeri, L., Aljumah, F., Thabyan, F., Alabbad, M., AlShahrani, S., Alanazi, F., & Al-Nafjan, A. (2025). Generative AI Chatbots Across Domains: A Systematic Review. Applied Sciences, 15(20), 11220. https://doi.org/10.3390/app152011220