Rare Earth Elements: A Review of Primary Sources, Applications, Business Investment, and Characterization Techniques
Featured Application
Abstract
1. Introduction
2. Rare Earth Elements: Source, Typical Minerals, and Worldwide and Brazilian Reserves
3. Industrial Applications of Rare Earth Elements
4. Business Investment and Technological Applications of Rare Earth Elements
4.1. Rare Earth Mining Activities in China
4.2. Rare Earth Mining Activities in the United States
4.3. Rare Earth Mining Activities in Australia
4.4. Rare Earth Mining Activities in Myanmar (Formerly Burma)
4.5. Other Featured Rare Earth Mining Activities
5. Characterization Techniques for Minerals Bearing Rare Earth Elements
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AAS | Atomic Absorption Spectrometry |
| D2EHPA | di-(2-ethyl hexyl) phosphoric acid |
| DP-LIBS | Double-pulse LIBS |
| EDS | Energy-Dispersive X-ray Spectroscopy |
| EPMA | Electron Probe Micro Analyzer |
| ESG | Company’s Environmental, Social and Governance |
| HAADF-STEM | High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy |
| HREE | Heavy Rare Earth Elements |
| HR-ICP-MS | High-Resolution Inductively Coupled Plasma Mass Spectrometry |
| HRTEM | High-Resolution Transmission Electron Microscopy |
| HRTEM-EDS/SAED | High Resolution Transmission Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy and Selective Area Diffraction Pattern |
| IAD | Ion Adsorption-type Deposits |
| ICP-AES | Inductively Coupled Plasma Atomic Emission Spectroscopy |
| ICP-OES | Inductively Coupled Plasma Optical Emission Spectroscopy |
| ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
| ICP-MS/MS | Inductively Coupled Plasma Tandem Mass Spectrometry |
| INAA | Instrumental Neutron Activation Analysis |
| IOCG | Iron Oxide Copper-Gold |
| IoT | Internet of Things |
| IR | Infrared light |
| LA-ICP-MS | Laser Ablation Inductively Coupled Plasma Mass Spectrometry |
| LCA | Life-Cycle Analysis |
| LIBS | Laser-Induced Breakdown Spectroscopy |
| LOD | Limit of Detection |
| LREE | Light Rare Earth Elements |
| MC-ICP-MS | Multi-Collector Inductively Coupled Plasma Mass Spectrometry |
| MIP-AES | Microwave Induced Plasma Atomic Emission Spectrometry |
| NIR | Near-Infrared |
| P507 | 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester |
| PEC | Photoelectrochemical |
| PersL | Persistent Luminescence |
| REE | Rare Earth Elements |
| REM | Rare Earth Minerals |
| RE-MOFs | Rare Earth Metal–Organic Frameworks |
| REO | Rare Earth Oxides |
| SAED | Selected Area Electron Diffraction |
| SIMS | Secondary Ion Mass Spectrometry or Ion Microprobe |
| SWIR | Shortwave-Infrared |
| TBP | tributyl phosphate |
| TEM | Transmission Electron Microscopy |
| TODGA | N,N,N′,N′-tetraoctyldiglycolamide |
| UV | Ultraviolet light |
| VNIR | Visible-Near-Infrared |
| XRD | X-ray Diffractometry |
| XRF | X-ray Fluorescence |
References
- Patel, K.S.; Sharma, S.; Maity, J.P.; Martín-Ramos, P.; Fiket, Ž.; Bhattacharya, P.; Zhu, Y. Occurrence of Uranium, Thorium and Rare Earth Elements in the Environment: A Review. Front. Environ. Sci. 2023, 10, 1058053. [Google Scholar] [CrossRef]
- Shuai, Z.; Zhu, Y.; Gao, P.; Han, Y. Rare Earth Elements Resources and Beneficiation: A Review. Miner. Eng. 2024, 218, 109011. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, J.; Geng, Y.; Ye, X.; Ma, S.; Hao, X.; Xin, W.; Chai, Y. A Review of the Main Rare Earth Ore Smelting Processes in the World: From Traditional Methods to New Technologies. J. Rare Earths, 2025; In Press. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, B.; Schreiner, B. Separation Hydrometallurgy of Rare Earth Elements; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-28233-6. [Google Scholar]
- Takehara, L.; Shintaku, I.; Rabelo, D.M.; Silveira, F.V. Avaliação do Potencial de Terras Raras no Brasil; CPRM: Brasília, Brazil, 2015.
- de Amorim, J.C.; Ferreira, A.L.O.; Mendonça, A.M.G.D.; Barros Neto, J.; da Silva, A.B.; Santos, T.O.; de Lima, P.T.B.; Nogueira, H.C.N.; de Moraes, T.F.P.; Siqueira, M.L. Mineral monazita, fonte de elementos terras raras, numa jazida importante da Paraíba. In Desvendando a Engenharia: Sua Abrangência e Multidisciplinaridade; Editora Científica Digital: São Paulo, Brazil, 2021; Volume 2, pp. 339–353. [Google Scholar]
- Ismail, N.A.; Aziz, M.A.A.; Yunus, M.Y.M.; Hisyam, A. Selection of Extractant in Rare Earth Solvent Extraction System: A Review. Int. J. Recent Technol. Eng. 2019, 8, 728–743. [Google Scholar]
- Merroune, A.; Brahim, J.A.; Berrada, M.; Essakhraoui, M.; Achiou, B.; Mazouz, H.; Beniazza, R. A Comprehensive Review on Solvent Extraction Technologies of Rare Earth Elements from Different Acidic Media: Current Challenges and Future Perspectives. J. Ind. Eng. Chem. 2024, 139, 1–17. [Google Scholar] [CrossRef]
- Ge, X.; Zhang, H.; Huang, X.; Liu, Z.; Lin, X.; Xu, K. Enhanced Solvent Extraction of Rare Earth Elements in Ultra-High Phase Ratio with Pore-Throat Microchannels. Sep. Purif. Technol. 2025, 353, 128513. [Google Scholar] [CrossRef]
- Udawattha, D.S.; Alam, S. Predicting the Distribution Coefficient in the Solvent Extraction of Rare Earth Elements. Sep. Purif. Technol. 2025, 377, 134382. [Google Scholar] [CrossRef]
- Alves, R.C.; Nascimento, M.; Paulino, J.F.; Afonso, J.C. Selection of a Hydrometallurgical Process for Rare Earths Extraction from a Brazilian Monazite. Hydrometallurgy 2021, 200, 105556. [Google Scholar] [CrossRef]
- Belova, V.V. Development of Solvent Extraction Methods for Recovering Rare Earth Metals. Theor. Found. Chem. Eng. 2017, 51, 599–609. [Google Scholar] [CrossRef]
- Quijada-Maldonado, E.; Romero, J. Solvent Extraction of Rare-Earth Elements with Ionic Liquids: Toward a Selective and Sustainable Extraction of These Valuable Elements. Curr. Opin. Green Sustain. Chem. 2021, 27, 100428. [Google Scholar] [CrossRef]
- Dewulf, B.; Cool, V.; Li, Z.; Binnemans, K. Effect of Polar Molecular Organic Solvents on Non-Aqueous Solvent Extraction of Rare-Earth Elements. Sep. Purif. Technol. 2022, 294, 121197. [Google Scholar] [CrossRef]
- Atanassova, M.; Kukeva, R.; Kurteva, V. New Sustainable Solvent Extraction Pathways for Rare Earth Metals via Oximes Molecules. Molecules 2023, 28, 7467. [Google Scholar] [CrossRef] [PubMed]
- Belfqueh, S.; Chapron, S.; Giusti, F.; Pellet-Rostaing, S.; Seron, A.; Menad, N.; Arrachart, G. Selective Recovery of Rare Earth Elements from Acetic Leachate of NdFeB Magnet by Solvent Extraction. Sep. Purif. Technol. 2024, 339, 126701. [Google Scholar] [CrossRef]
- Delić, M.; Ristić, M.; Đolić, M.; Perić-Grujić, A.; Onjia, A. Dispersive Liquid–Liquid Chelate Microextraction of Rare Earth Elements: Optimization and Greenness Evaluation. Metals 2025, 15, 52. [Google Scholar] [CrossRef]
- Salehi, H.; Maroufi, S.; Nekouei, R.K.; Sahajwalla, V. Solvent Extraction Systems for Selective Isolation of Light Rare Earth Elements with High Selectivity for Sm and La. Rare Met. 2025, 44, 2071–2084. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2023; U.S. Geological Survey: Reston, VA, USA, 2023.
- Zhang, H.; Jiang, J. The Evolving Impact of Renewable Energy Investment on the Rare Earth Trade Network: An Industrial Chain Perspective. Energy 2025, 332, 137195. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, H.; Sun, D.; Yan, F.; Liu, C.; Zhang, X.; Dong, L. Analysis of Slope Stability in Ion-Adsorption Rare Earth Mine Under In Situ Leaching Condition. Appl. Sci. 2025, 15, 6677. [Google Scholar] [CrossRef]
- Behrsing, T.; Blair, V.L.; Jaroschik, F.; Deacon, G.B.; Junk, P.C. Rare Earths—The Answer to Everything. Molecules 2024, 29, 688. [Google Scholar] [CrossRef]
- Keith, M.; Hayes, S.M.; Ciobanu, C.L.; Fougerouse, D.; Reich, M. Editorial: Micro-to Nano-Analytical Challenges towards Trace Element Characterization of Ore Minerals: New Perspectives and Applications for Sustainable Georesources. Front. Earth Sci. 2023, 11, 1227737. [Google Scholar] [CrossRef]
- Smith, M.P.; Moore, K.; Kavecsánszki, D.; Finch, A.A.; Kynicky, J.; Wall, F. From Mantle to Critical Zone: A Review of Large and Giant Sized Deposits of the Rare Earth Elements. Geosci. Front. 2016, 7, 315–334. [Google Scholar] [CrossRef]
- Martins, C.; Lima, P.C.R.; Teixeira, L.S.; Teixeira, M.P.; de Queiroz Filho, A.P. Minerais Estratégicos e Terras-Raras; Edições Câmara: Brasília, Brazil, 2014. [Google Scholar]
- Silva, C.M.; Lode, S.; Aasly, K.; Kowalczuk, P.B. Early-Stage Application of Process Mineralogy Methodologies for Mineral Tracking in Flotation of Rare Earth Elements (REE)-Bearing Minerals from a Deposit in Norway. Miner. Eng. 2023, 202, 108268. [Google Scholar] [CrossRef]
- Pathapati, S.V.S.H.; Free, M.L.; Sarswat, P.K. A Comparative Study on Recent Developments for Individual Rare Earth Elements Separation. Processes 2023, 11, 2070. [Google Scholar] [CrossRef]
- Julapong, P.; Numprasanthai, A.; Tangwattananukul, L.; Juntarasakul, O.; Srichonphaisarn, P.; Aikawa, K.; Park, I.; Ito, M.; Tabelin, C.B.; Phengsaart, T. Rare Earth Elements Recovery from Primary and Secondary Resources Using Flotation: A Systematic Review. Appl. Sci. 2023, 13, 8364. [Google Scholar] [CrossRef]
- Ralph, J. Database of Minerals, Rocks, Meteorites and Their Locations. Available online: https://www.mindat.org/ (accessed on 13 September 2023).
- Shivaramaiah, R.; Anderko, A.; Riman, R.E.; Navrotsky, A. Thermodynamics of Bastnaesite: A Major Rare Earth Ore Mineral. Am. Mineral. 2016, 101, 1129–1134. [Google Scholar] [CrossRef]
- Srinivasan, S.G.; Shivaramaiah, R.; Kent, P.R.C.; Stack, A.G.; Navrotsky, A.; Riman, R.; Anderko, A.; Bryantsev, V.S. Crystal Structures, Surface Stability, and Water Adsorption Energies of La-Bastnäsite via Density Functional Theory and Experimental Studies. J. Phys. Chem. C 2016, 120, 16767–16781. [Google Scholar] [CrossRef]
- da Silva, Y.J.A.B.; do Nascimento, C.W.A.; da Silva, Y.J.A.B.; Biondi, C.M.; Silva, C.M.C.A.C. Rare Earth Element Concentrations in Brazilian Benchmark Soils. Rev. Bras. Cienc. Solo 2016, 40, e0150413. [Google Scholar] [CrossRef]
- Liu, S.-L.; Fan, H.-R.; Liu, X.; Meng, J.; Butcher, A.R.; Yann, L.; Yang, K.-F.; Li, X.-C. Global Rare Earth Elements Projects: New Developments and Supply Chains. Ore Geol. Rev. 2023, 157, 105428. [Google Scholar] [CrossRef]
- Liu, X.; Tournassat, C.; Grangeon, S.; Kalinichev, A.G.; Takahashi, Y.; Marques Fernandes, M. Molecular-Level Understanding of Metal Ion Retention in Clay-Rich Materials. Nat. Rev. Earth Environ. 2022, 3, 461–476. [Google Scholar] [CrossRef]
- Li, M.Y.H.; Zhou, M.-F. The Role of Clay Minerals in Formation of the Regolith-Hosted Heavy Rare Earth Element Deposits. Am. Mineral. 2020, 105, 92–108. [Google Scholar] [CrossRef]
- Borst, A.M.; Smith, M.P.; Finch, A.A.; Estrade, G.; Villanova-de-Benavent, C.; Nason, P.; Marquis, E.; Horsburgh, N.J.; Goodenough, K.M.; Xu, C.; et al. Adsorption of Rare Earth Elements in Regolith-Hosted Clay Deposits. Nat. Commun. 2020, 11, 4386. [Google Scholar] [CrossRef]
- Wang, G.; Xu, J.; Ran, L.; Zhu, R.; Ling, B.; Liang, X.; Kang, S.; Wang, Y.; Wei, J.; Ma, L.; et al. A Green and Efficient Technology to Recover Rare Earth Elements from Weathering Crusts. Nat. Sustain. 2022, 6, 81–92. [Google Scholar] [CrossRef]
- Nassar, N.T.; Lederer, G.W.; Padilla, A.J.; Gambogi, J.; Cordier, D.J.; Brainard, J.L.; Lessard, J.D.; Charab, R. Rock-to-Metal Ratios of the Rare Earth Elements. J. Clean. Prod. 2023, 405, 136958. [Google Scholar] [CrossRef]
- Shanthi Bhavan, J.; Joy, J.; Pazhani, A. Identification and Recovery of Rare Earth Elements from Electronic Waste: Material Characterization and Recovery Strategies. Mater. Today Commun. 2023, 36, 106921. [Google Scholar] [CrossRef]
- El Ouardi, Y.; Virolainen, S.; Massima Mouele, E.S.; Laatikainen, M.; Repo, E.; Laatikainen, K. The Recent Progress of Ion Exchange for the Separation of Rare Earths from Secondary Resources—A Review. Hydrometallurgy 2023, 218, 106047. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Sumaries 2025; U.S. Geological Survey: Reston, VA, USA, 2025.
- Sousa Filho, P.; Galaço, A.; Serra, O. Rare Earths: Periodic Table, Discovery, Exploration in Brazil and Applications. Quim Nova 2019, 42, 1208–1224. [Google Scholar] [CrossRef]
- Brasil Brasil Pode Se Tornar Um dos Cinco Maiores Produtores de Terras Raras do Mundo Nos Próximos Anos. Available online: https://www.gov.br/mme/pt-br/assuntos/noticias/brasil-pode-se-tornar-um-dos-cinco-maiores-produtores-de-terras-raras-do-mundo-nos-proximos-anos (accessed on 3 September 2023).
- Chen, P.; Ilton, E.S.; Wang, Z.; Rosso, K.M.; Zhang, X. Global Rare Earth Element Resources: A Concise Review. Appl. Geochem. 2024, 175, 106158. [Google Scholar] [CrossRef]
- Takehara, L.; Silveira, F.V.; Santos, R.V. Potentiality of Rare Earth Elements in Brazil. In Rare Earths Industry: Technological, Economic, and Environmental Implications; Elsevier Inc.: New York, NY, USA, 2015; pp. 57–72. ISBN 9780128023280. [Google Scholar] [CrossRef]
- Brasil. Sumário Mineral 2017; ANM: Brasília, DF, Brazil, 2019; 201p.
- Brasil. Sumário Mineral 2013; Departamento Nacional de Produção Mineral: Brasília, Brazil, 2013; Volume 33.
- Santos, J.E.S. Rare Earth Mining in Brazil: Building a Better Future. Rev. DCS 2025, 22, 1–23. [Google Scholar] [CrossRef]
- Zimmermann, T.; Gößling-Reisemann, S. Critical Materials and Dissipative Losses: A Screening Study. Sci. Total Environ. 2013, 461–462, 774–780. [Google Scholar] [CrossRef]
- Reck, B.K.; Graedel, T.E. Challenges in Metal Recycling. Science 2012, 337, 690–695. [Google Scholar] [CrossRef]
- Du, X.; Graedel, T.E. Uncovering the Global Life Cycles of the Rare Earth Elements. Sci. Rep. 2011, 1, 145. [Google Scholar] [CrossRef]
- Gaustad, G.; Williams, E.; Leader, A. Rare Earth Metals from Secondary Sources: Review of Potential Supply from Waste and Byproducts. Resour. Conserv. Recycl. 2021, 167, 105213. [Google Scholar] [CrossRef]
- Gupta, A.; Williams, E.; Gaustad, G. Forecasting Revenue from Primary and Secondary Sources of Rare Earth Elements. Resour. Conserv. Recycl. 2024, 207, 107612. [Google Scholar] [CrossRef]
- Fujita, Y.; McCall, S.K.; Ginosar, D. Recycling Rare Earths: Perspectives and Recent Advances. MRS Bull. 2022, 47, 283–288. [Google Scholar] [CrossRef]
- Prados, T.M.; Barroso, T.L.C.T.; Forster-Carneiro, T.; Lovón-Canchumani, G.A.; Colpini, L.M.S. Life Cycle Assessment and Circular Economy in the Production of Rare Earth Magnets: An Updated and Comprehensive Review. Clean Technol. Environ. Policy 2025, 27, 471–494. [Google Scholar] [CrossRef]
- Haque, N.; Hughes, A.; Lim, S.; Vernon, C. Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact. Resources 2014, 3, 614–635. [Google Scholar] [CrossRef]
- Weng, Z.H.; Jowitt, S.M.; Mudd, G.M.; Haque, N. Assessing Rare Earth Element Mineral Deposit Types and Links to Environmental Impacts. Appl. Earth Sci. 2013, 122, 83–96. [Google Scholar] [CrossRef]
- Nassar, N.T.; Fortier, S.M. Methodology and Technical Input for the 2021 Review and Revision of the U.S. Critical Minerals List; U.S. Geological Survey: Reston, VA, USA, 2021.
- Balaram, V. Rare Earth Elements: A Review of Applications, Occurrence, Exploration, Analysis, Recycling, and Environmental Impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Yan, C.; Huang, X. Review on Progress of Rare Earth Science and Technology in 2024. J. Rare Earths 2025, 43, 2029–2052. [Google Scholar] [CrossRef]
- Opare, E.O.; Struhs, E.; Mirkouei, A. A Comparative State-of-Technology Review and Future Directions for Rare Earth Element Separation. Renew. Sustain. Energy Rev. 2021, 143, 110917. [Google Scholar] [CrossRef]
- Nemova, G. Brief Review of Recent Developments in Fiber Lasers. Appl. Sci. 2024, 14, 2323. [Google Scholar] [CrossRef]
- Tongyu, G.; Yongxi, Z.; Zhao, Q.; Chenger, W.; Mobin, D.; Xia, Z.; Xiaoxia, C.; Yuanhong, L.; Ronghui, L. Development Status of Rare Earth Luminescence Material. J. Alloys Compd. 2025, 1037, 182399. [Google Scholar] [CrossRef]
- Zhu, Z.; Ayoub, I.; He, J.; Yang, J.; Zhang, H.; Zhu, Z.; Hao, Q.; Cai, Z.; Ola, O.; Tiwari, S.K. Magnesium Alloys with Rare-Earth Elements: Research Trends Applications, and Future Prospect. J. Magnes. Alloys 2025, 13, 3524–3563. [Google Scholar] [CrossRef]
- Ren, Z.; Yu, H.; Tong, X.; Zhang, J.; Wang, Y.; Xu, S.; Li, X.; Chen, B. Blue Light-Excited Zero-Thermal-Quenching near-Infrared Garnet CaY2Sc2Al2SiO12:Cr3+/Yb3+ Phosphors for Pc-LED Application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 343, 126581. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, Q.; Li, K.; Feng, Y.; Fu, Y.; Li, Y.; Zhang, Y.; Qian, X.; Wei, B.; Du, P. Regulating the Broadband Near-Infrared Emission of Eu2+-Doped Ca3Sc2Si3O12 Phosphors through Constructing Defect for Diversified Applications. Chem. Eng. J. 2024, 496, 154360. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Kiong, T.S.; Ismail, A.F. Pioneering Sustainable Energy Solutions with Rare-Earth Nanomaterials: Exploring Pathways for Energy Conversion and Storage. Int. J. Hydrogen Energy 2024, 93, 607–649. [Google Scholar] [CrossRef]
- Rezende, T.K.L.; Carneiro, J.A.; Barbosa, H.P.; Sardela Junior, M.R.; Ferrari, J.L. Recent Advances in Rare Earth Oxides Applied to Energy Conversion: A Short Review. Ceram. Int. 2025, 51, 5583–5596. [Google Scholar] [CrossRef]
- Ansari, A.A.; Nazeeruddin, M.K.; Tavakoli, M.M. Organic-Inorganic Upconversion Nanoparticles Hybrid in Dye-Sensitized Solar Cells. Coord. Chem. Rev. 2021, 436, 213805. [Google Scholar] [CrossRef]
- Peelman, S.; Sun, Z.H.I.; Sietsma, J.; Yang, Y. Leaching of Rare Earth Elements: Review of Past and Present Technologies. In Rare Earths Industry; Elsevier: Amsterdam, The Netherlands, 2016; pp. 319–334. [Google Scholar] [CrossRef]
- Shayan, M.E.; Najafi, G.; Ghobadian, B.; Gorjian, S.; Mazlan, M.; Samami, M.; Shabanzadeh, A. Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis. Sustainability 2022, 14, 3566. [Google Scholar] [CrossRef]
- Depraiter, L.; Goutte, S. The Role and Challenges of Rare Earths in the Energy Transition. Resour. Policy 2023, 86, 104137. [Google Scholar] [CrossRef]
- Veeramani, K.; Janani, G.; Kim, J.; Surendran, S.; Lim, J.; Jesudass, S.C.; Mahadik, S.; Lee, H.; Kim, T.; Kim, J.K.; et al. Hydrogen and Value-Added Products Yield from Hybrid Water Electrolysis: A Critical Review on Recent Developments. Renew. Sustain. Energy Rev. 2023, 177, 113227. [Google Scholar] [CrossRef]
- Guarieiro, L.L.N.; Anjos, J.P.; Silva, L.A.; Santos, A.A.; Calixto, E.E.S.; Pessoa, F.L.P.; Almeida, J.L.G.; Andrade Filho, M.; Marinho, F.S.; Rocha, G.O.; et al. Technological Perspectives and Economic Aspects of Green Hydrogen in the Energetic Transition: Challenges for Chemistry. J. Braz. Chem. Soc. 2022, 33, 844–869. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Kiong, T.S.; Ismail, A.F. Revolutionizing Water Splitting: The Role of Light Rare Earth Elements (LREEs) in Photoelectrochemical and Electrochemical Advances. Coord. Chem. Rev. 2025, 543, 216917. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Kiong, T.S.; Ismail, A.F. Leveraging Heavy Rare Earth Elements (H-REEs) in Electrodes to Boost the Efficiency of Photoelectrochemical and Electrochemical Water Splitting. Int. J. Hydrogen Energy 2025, 177, 151569. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Q.; Cheng, H.; Li, X.; Yu, N.; Pan, M.; Yu, Y.; Fang, J.; Hu, X.; Ge, H.; et al. Review of the Research on Oxides in Low-Temperature Magnetic Refrigeration. J. Eur. Ceram. Soc. 2023, 43, 6665–6680. [Google Scholar] [CrossRef]
- Zarkevich, N.A.; Johnson, D.D.; Pecharsky, V.K. High-Throughput Search for Caloric Materials: The CaloriCool Approach. J. Phys. D Appl. Phys. 2018, 51, 024002. [Google Scholar] [CrossRef]
- Orts-Arroyo, M.; Rabelo, R.; Carrasco-Berlanga, A.; Moliner, N.; Cano, J.; Julve, M.; Lloret, F.; De Munno, G.; Ruiz-García, R.; Mayans, J.; et al. Field-Induced Slow Magnetic Relaxation and Magnetocaloric Effects in an Oxalato-Bridged Gadolinium(iii)-Based 2D MOF. Dalton Trans. 2021, 50, 3801–3805. [Google Scholar] [CrossRef]
- Zhong, X.; Hu, J.; Yao, S.; Zhang, R.; Wang, J.; Cai, D.; Luo, T.; Peng, Y.; Liu, S.; Wen, H. Gd(iii)-Based Inorganic Polymers, Metal–Organic Frameworks and Coordination Polymers for Magnetic Refrigeration. CrystEngComm 2022, 24, 2370–2382. [Google Scholar] [CrossRef]
- Li, Z.; Wang, K.; Cao, C.; Zheng, T.; Wen, H.; Liu, S. Highly Stable Rare Earth Metal-Organic Frameworks for Proton Conduction and Magnetic Refrigeration. J. Mol. Struct. 2025, 1320, 139645. [Google Scholar] [CrossRef]
- Zhang, F.; Batuk, M.; Hadermann, J.; Manfredi, G.; Mariën, A.; Vanmeensel, K.; Inokoshi, M.; Van Meerbeek, B.; Naert, I.; Vleugels, J. Effect of Cation Dopant Radius on the Hydrothermal Stability of Tetragonal Zirconia: Grain Boundary Segregation and Oxygen Vacancy Annihilation. Acta Mater. 2016, 106, 48–58. [Google Scholar] [CrossRef]
- Kalaivani, S.; Ezhilan, M.; Deepa, M.; Kannan, S. Rare Earth Doped Zirconia: Structure, Physicochemical Properties and Recent Advancements in Technological Applications. Prog. Solid State Chem. 2025, 79, 100524. [Google Scholar] [CrossRef]
- Srigurunathan, K.; Meenambal, R.; Guleria, A.; Kumar, D.; Ferreira, J.M.F.; Kannan, S. Unveiling the Effects of Rare-Earth Substitutions on the Structure, Mechanical, Optical, and Imaging Features of ZrO2 for Biomedical Applications. ACS Biomater. Sci. Eng. 2019, 5, 1725–1743. [Google Scholar] [CrossRef]
- Thiel, C.W.; Böttger, T.; Cone, R.L. Rare-Earth-Doped Materials for Applications in Quantum Information Storage and Signal Processing. J. Lumin. 2011, 131, 353–361. [Google Scholar] [CrossRef]
- Macfarlane, R.M. High-Resolution Laser Spectroscopy of Rare-Earth Doped Insulators: A Personal Perspective. J. Lumin. 2002, 100, 1–20. [Google Scholar] [CrossRef]
- Zhong, T.; Goldner, P. Emerging Rare-Earth Doped Material Platforms for Quantum Nanophotonics. Nanophotonics 2019, 8, 2003–2015. [Google Scholar] [CrossRef]
- Kunkel, N.; Goldner, P. Recent Advances in Rare Earth Doped Inorganic Crystalline Materials for Quantum Information Processing. Z Anorg. Allg. Chem. 2018, 644, 66–76. [Google Scholar] [CrossRef]
- Bartholomew, J.G.; Lima, K.O.; Ferrier, A.; Kinos, A.; Karlsson, J.; Rippe, L.; Walther, A.; Scheblykin, I.; Kröll, S.; Goldner, P. High-Resolution Spectroscopic Techniques for Studying Rare-Earth Ions in Nanoparticles. J. Lumin. 2023, 257, 119743. [Google Scholar] [CrossRef]
- Ruskuc, A. Single Rare-Earth Ions in Solid-State Hosts: A Platform for Quantum Networks; California Institute of Technology (Caltech): Pasadena, CA, USA, 2024. [Google Scholar]
- Ruskuc, A.; Wu, C.-J.; Green, E.; Hermans, S.L.N.; Pajak, W.; Choi, J.; Faraon, A. Multiplexed Entanglement of Multi-Emitter Quantum Network Nodes. Nature 2025, 639, 54–59. [Google Scholar] [CrossRef]
- Hermans, S.; Green, E.; Liu, E.; Riera Moral, A.; Ruskuc, A.; Wu, C.J.; Faraon, A. Single Rare-Earth Ions Coupled to a Dense Nuclear Spin Bath: A Challenge and a Resource. In Proceedings of the Quantum Nanophotonic Materials, Devices, and Systems, San Diego, CA, USA, 18–23 August 2024; Aharonovich, I., Soci, C., Sheldon, M.T., Eds.; SPIE: Bellingham, DC, USA, 2024; p. 3. [Google Scholar] [CrossRef]
- CRIRSCO. Exploration Targets, Exploration Results, Mineral Resources and Mineral Reserves; ICMM: London, UK, 2019; 78p, Available online: https://crirsco.com/wp-content/uploads/2023/10/The-CRIRSCO-International-Reporting-Template.pdf (accessed on 1 August 2025).
- Zhu, D.; Chen, T.; Zhen, N.; Niu, R. Monitoring the Effects of Open-Pit Mining on the Eco-Environment Using a Moving Window-Based Remote Sensing Ecological Index. Environ. Sci. Pollut. Res. 2020, 27, 15716–15728. [Google Scholar] [CrossRef]
- Jowitt, S.M.; Werner, T.T.; Weng, Z.; Mudd, G.M. Recycling of the Rare Earth Elements. Curr. Opin. Green Sustain. Chem. 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Yun, Y.; Stopic, S.; Friedrich, B. Valorization of Rare Earth Elements from a Steenstrupine Concentrate Via a Combined Hydrometallurgical and Pyrometallurgical Method. Minerals 2020, 10, 248. [Google Scholar] [CrossRef]
- China Northern Rare Earth Group High-Tech Co., Ltd. About China Northern. Available online: https://www.reht.com/ (accessed on 22 October 2023).
- International Organization for Standardization ISO 9000 Family–Quality Management. Available online: https://www.iso.org/standards/popular/iso-9000-family (accessed on 8 October 2025).
- International Organization for Standardization ISO 14000 Family–Environmental Management. Available online: https://www.iso.org/standards/popular/iso-14000-family (accessed on 8 October 2025).
- China Rare Earth Resources and Technology Co., Ltd. About China Rare Earth. Available online: http://www.cmreltd.com/index.html (accessed on 5 November 2023).
- MP Materials What We Do. Available online: https://mpmaterials.com/ (accessed on 2 September 2023).
- Energy Fuels New Releases. Available online: https://www.energyfuels.com (accessed on 2 September 2023).
- NioCorp Critical Mineral Security New. Available online: https://www.niocorp.com/home/ (accessed on 10 October 2023).
- Lynas Rare Earths About Lynas. Available online: https://lynasrareearths.com/ (accessed on 10 October 2023).
- Iluka Resources Ltd. About Iluka. Available online: https://iluka.com/ (accessed on 12 October 2023).
- Arafura. Available online: https://www.arultd.com/investor/asx-announcements/asx-announcements-2023/ (accessed on 1 December 2024).
- Awng, M.H. Myanmar’s Environment Hit by Rare Earth Mining Boom. Available online: https://earthjournalism.net/stories/myanmars-environment-hit-by-rare-earth-mining-boom (accessed on 7 November 2023).
- Lv, A.; Patton, D. Myanmar Rare Earth Mines Still Awaiting Notice to Restart–Sources. Available online: https://www.reuters.com/article/myanmar-rareearths-mining-idUSKBN30L0MU (accessed on 7 November 2023).
- Aclara | Environmentally Friendly Rare Earths. Available online: https://www.aclara-re.com/ (accessed on 1 December 2024).
- Balaram, V. Advances in Analytical Techniques and Applications in Exploration, Mining, Extraction, and Metallurgical Studies of Rare Earth Elements. Minerals 2023, 13, 1031. [Google Scholar] [CrossRef]
- Gatiboni, T.L.; Iop, G.D.; Diehl, L.O.; Flores, E.M.M.; Muller, E.I.; Mello, P.A. An Ultrasound-assisted Sample Preparation Method of Carbonatite Rock for Determination of Rare Earth Elements by Inductively Coupled Plasma Mass Spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, e8732. [Google Scholar] [CrossRef]
- DCTech Laboratory Technologies Critérios para Seleção da Melhor Técnica de Absorção Atômica para Detecção de Metais. Available online: https://www.dctech.com.br/criterios-para-selecao-da-melhor-tecnica-de-absorcao-atomica-para-deteccao-de-metais (accessed on 28 August 2023).
- Jordens, A.; Cheng, Y.P.; Waters, K.E. A Review of the Beneficiation of Rare Earth Element Bearing Minerals. Miner. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]
- Pinto, F.G.; Junior, R.E.; Saint’Pierre, T.D. Sample Preparation for Determination of Rare Earth Elements in Geological Samples by ICP-MS: A Critical Review. Anal. Lett. 2012, 45, 1537–1556. [Google Scholar] [CrossRef]
- Whitty-Léveillé, L.; Turgeon, K.; Bazin, C.; Larivière, D. A Comparative Study of Sample Dissolution Techniques and Plasma-Based Instruments for the Precise and Accurate Quantification of REEs in Mineral Matrices. Anal. Chim. Acta 2017, 961, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Zawisza, B.; Pytlakowska, K.; Feist, B.; Polowniak, M.; Kita, A.; Sitko, R. Determination of Rare Earth Elements by Spectroscopic Techniques: A Review. J. Anal. At. Spectrom. 2011, 26, 2373. [Google Scholar] [CrossRef]
- Carvalho, L.; Reis, A.T.; Soares, E.; Tavares, C.; Monteiro, R.J.R.; Figueira, P.; Henriques, B.; Vale, C.; Pereira, E. A Single Digestion Procedure for Determination of Major, Trace, and Rare Earth Elements in Sediments. Water Air Soil Pollut. 2020, 231, 541. [Google Scholar] [CrossRef]
- Bispo, F.H.A.; de Menezes, M.D.; Fontana, A.; Sarkis, J.E.S.; Gonçalves, C.M.; de Carvalho, T.S.; Curi, N.; Guilherme, L.R.G. Rare Earth Elements (REEs): Geochemical Patterns and Contamination Aspects in Brazilian Benchmark Soils. Environ. Pollut. 2021, 289, 117972. [Google Scholar] [CrossRef]
- Rieger, P.; Magnall, J.M.; Gleeson, S.A.; Oelze, M. Pyrite Chemistry Records a Multistage Ore Forming System at the Proterozoic George Fisher Massive Sulfide Zn-Pb-Ag Deposit, Mount Isa, Australia. Front. Earth Sci. 2023, 11, 892759. [Google Scholar] [CrossRef]
- Luo, S.; Cao, J.; Yan, H.; Yi, J. TEM Observations of Particles Based on Sampling in Gas and Soil at the Dongshengmiao Polymetallic Pyrite Deposit, Inner Mongolia, Northern China. J. Geochem. Explor. 2015, 158, 95–111. [Google Scholar] [CrossRef]
- Lu, M.; Cao, J.; Wang, Z.; Wang, G. Characteristics of Naturally Formed Nanoparticles in Various Media and Their Prospecting Significance in Chaihulanzi Deposit. Minerals 2022, 12, 1289. [Google Scholar] [CrossRef]
- Marguí, E.; Queralt, I.; de Almeida, E. X-Ray Fluorescence Spectrometry for Environmental Analysis: Basic Principles, Instrumentation, Applications and Recent Trends. Chemosphere 2022, 303, 135006. [Google Scholar] [CrossRef] [PubMed]
- Akhmetzhanov, T.F.; Pashkova, G.V.; Chubarov, V.M.; Labutin, T.A.; Popov, A.M. Three Calibration Techniques Combined with Sample-Effective Design of Experiment Based on Latin Hypercube Sampling for Direct Detection of Lanthanides in REE-Rich Ores Using TXRF and WDXRF. J. Anal. At. Spectrom. 2021, 36, 224–232. [Google Scholar] [CrossRef]
- Schramm, R. Use of X-Ray Fluorescence Analysis for the Determination of Rare Earth Elements. Phys. Sci. Rev. 2016, 1, 20160061. [Google Scholar] [CrossRef]
- El-Taher, A. Rare Earth Elements Content in Geological Samples from Eastern Desert, Egypt, Determined by Instrumental Neutron Activation Analysis. Appl. Radiat. Isot. 2010, 68, 1859–1863. [Google Scholar] [CrossRef]
- Adeti, P.J.; Amoako, G.; Tandoh, J.B.; Gyampo, O.; Ahiamadjie, H.; Amable, A.S.K.; Kansaana, C.; Annan, R.A.T.; Bamford, A. Rare-Earth Element Comparative Analysis in Chosen Geological Samples Using Nuclear-Related Analytical Techniques. Nucl. Instrum. Methods Phys. Res. B 2023, 540, 122–128. [Google Scholar] [CrossRef]
- Afgan, M.S.; Hou, Z.; Song, W.; Liu, J.; Song, Y.; Gu, W.; Wang, Z. On the Spectral Identification and Wavelength Dependence of Rare-Earth Ore Emission by Laser-Induced Breakdown Spectroscopy. Chemosensors 2022, 10, 350. [Google Scholar] [CrossRef]
- Gaft, M.; Raichlin, Y.; Pelascini, F.; Panzer, G.; Ros, V.M. Imaging Rare-Earth Elements in Minerals by Laser-Induced Plasma Spectroscopy: Molecular Emission and Plasma-Induced Luminescence. Spectrochim. Acta Part B Spectrosc. 2019, 151, 12–19. [Google Scholar] [CrossRef]
- Villanova-de-Benavent, C.; Proenza, J.A.; Torró, L.; Aiglsperger, T.; Domènech, C.; Domínguez-Carretero, D.; Llovet, X.; Suñer, P.; Ramírez, A.; Rodríguez, J. REE Ultra-Rich Karst Bauxite Deposits in the Pedernales Peninsula, Dominican Republic: Mineralogy of REE Phosphates and Carbonates. Ore Geol. Rev. 2023, 157, 105422. [Google Scholar] [CrossRef]
- Jo, J.; Shin, D. Geochemical Characteristics of REE-Enriched Weathered Anorthosite Complex in Hadong District, South Korea. Geochem. J. 2023, 57, 13–27. [Google Scholar] [CrossRef]
- Sano, Y.; Terada, K.; Hidaka, H.; Nishio, Y.; Amakawa, H.; Nozaki, Y. Ion-Microprobe Analysis of Rare Earth Elements in Oceanic Basalt Glass. Anal. Sci. 1999, 15, 743–748. [Google Scholar] [CrossRef]
- Wu, L.; Ma, L.; Huang, G.; Li, J.; Xu, H. Distribution and Speciation of Rare Earth Elements in Coal Fly Ash from the Qianxi Power Plant, Guizhou Province, Southwest China. Minerals 2022, 12, 1089. [Google Scholar] [CrossRef]
- Ling, X.X.; Li, Q.L.; Liu, Y.; Yang, Y.H.; Liu, Y.; Tang, G.Q.; Li, X.H. In Situ SIMS Th–Pb Dating of Bastnaesite: Constraint on the Mineralization Time of the Himalayan Mianning–Dechang Rare Earth Element Deposits. J. Anal. At. Spectrom. 2016, 31, 1680–1687. [Google Scholar] [CrossRef]
- Shi, L.; Sano, Y.; Takahata, N.; Koike, M.; Morita, T.; Koyama, Y.; Kagoshima, T.; Li, Y.; Xu, S.; Liu, C. NanoSIMS Analysis of Rare Earth Elements in Silicate Glass and Zircon: Implications for Partition Coefficients. Front. Chem. 2022, 10, 844953. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qiao, W.; Chen, D.; Wu, P.; Xie, Y.; Chen, X. Anomalous Concentrations of Rare Earth Elements in Acid Mine Drainage and Implications for Rare Earth Resources from Late Permian Coal Seams in Northern Guizhou. Sci. Total Environ. 2023, 879, 163051. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhang, L.; Wen, Z.; Nie, T.; Zhang, N.; Zhou, C. The Mechanism Study on the Integrated Process of NaOH Treatment and Citric Acid Leaching for Rare Earth Elements Recovery from Coal Fly Ash. J. Environ. Chem. Eng. 2023, 11, 109921. [Google Scholar] [CrossRef]
- Palozzi, J.; Bailey, J.G.; Tran, Q.A.; Stanger, R. A Characterization of Rare Earth Elements in Coal Ash Generated during the Utilization of Australian Coals. Int. J. Coal Prep. Util. 2023, 43, 2106–2135. [Google Scholar] [CrossRef]
- Sarker, S.K.; Bruckard, W.; Haque, N.; Roychand, R.; Bhuiyan, M.; Pramanik, B.K. Characterization of a Carbonatite-Derived Mining Tailing for the Assessment of Rare Earth Potential. Process Saf. Environ. Prot. 2023, 173, 154–162. [Google Scholar] [CrossRef]
- Jin, X.; Zhan, Y.; Xu, Z.; Fang, J.; Zhou, N.; Qu, D.; Yang, G. Plasma Image-Calibrated Double-Pulse Laser-Induced Breakdown Spectroscopy for High-Precision Quantification of Light Rare Earth Elements in Geological Matrix. Anal. Chem. 2025, 97, 21125–21133. [Google Scholar] [CrossRef]
- Qasim, M.; Khan, S.D. Detection and Relative Quantification of Neodymium in Sillai Patti Carbonatite Using Decision Tree Classification of the Hyperspectral Data. Sensors 2022, 22, 7537. [Google Scholar] [CrossRef]
- Boesche, N.; Rogass, C.; Lubitz, C.; Brell, M.; Herrmann, S.; Mielke, C.; Tonn, S.; Appelt, O.; Altenberger, U.; Kaufmann, H. Hyperspectral REE (Rare Earth Element) Mapping of Outcrops—Applications for Neodymium Detection. Remote. Sens. 2015, 7, 5160–5186. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Tangestani, M.H. Potential of Sentinel-2 MSI Data in Targeting Rare Earth Element (Nd3+) Bearing Minerals in Esfordi Phosphate Deposit, Iran. Egypt. J. Remote Sens. Space Sci. 2022, 25, 697–710. [Google Scholar] [CrossRef]
- Booysen, R.; Jackisch, R.; Lorenz, S.; Zimmermann, R.; Kirsch, M.; Nex, P.A.M.; Gloaguen, R. Detection of REEs with Lightweight UAV-Based Hyperspectral Imaging. Sci. Rep. 2020, 10, 17450. [Google Scholar] [CrossRef]
- Turner, D.J.; Rivard, B.; Groat, L.A. Visible and Short-Wave Infrared Reflectance Spectroscopy of Selected REE-Bearing Silicate Minerals. Am. Mineral. 2018, 103, 927–943. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, T.; Pan, X. Potential of Visible and Near-Infrared Reflectance Spectroscopy for the Determination of Rare Earth Elements in Soil. Geoderma 2017, 306, 120–126. [Google Scholar] [CrossRef]
- Maia, A.J.; da Silva, Y.J.A.B.; do Nascimento, C.W.A.; Veras, G.; Escobar, M.E.O.; Cunha, C.S.M.; da Silva, Y.J.A.B.; Nascimento, R.C.; Pereira, L.H.S. Near-Infrared Spectroscopy for the Prediction of Rare Earth Elements in Soils from the Largest Uranium-Phosphate Deposit in Brazil Using PLS, IPLS, and ISPA-PLS Models. Environ. Monit. Assess. 2020, 192, 675. [Google Scholar] [CrossRef]



| Mineral | General Formula | Group A Elements | Group B Elements | Example of Crystalline Structure (System/Class/Space Group) |
|---|---|---|---|---|
| Monazite | ABO4 | REE3+, Th4+, U4+, Y3+ | P5+, As5+, Si4+ | Ce(PO4)—Monoclinic:2/m:P21/n![]() a = 6.790 Å, b = 7.020 Å, c = 6.467 Å β = 103.6° |
| Bastnasite | AB(CO3) | REE3+, Th4+, Y3+ | F−, OH− | LaF(CO3)—Hexagonal:6 m2:P62m![]() a = 7.180 Å, c = 4.912 Å |
| Xenotime | ABO4 | Y3+, Yb3+ | P5+ | Y(PO4)—Tetragonal:4/mmm (4/m 2/m 2/m):I41/amd![]() a = 6.884–6.902 Å, c = 6.021–6.038 Å |
| Application Sectors | Use of REEs | Technological Applications | REEs Employed |
|---|---|---|---|
| Catalyst | 75% |
| ![]() ![]() |
| Ceramics, Glass and Polishing | 10% |
| ![]() ![]() ![]() |
| Phosphorus and others | 10% |
| ![]() ![]() ![]() |
| Metallurgy and metallic alloys | 5% |
| ![]() ![]() ![]() ![]() |
| Matrices | Analytical Techniques 1 | Sample Digestion | Dominant Elements 2 | LOD 3 | Ref. |
|---|---|---|---|---|---|
| Topsoil | ICP-OES | HNO3 (65%)—HCl (37%)—(3:1, v/v) | REEs | Uninformed | [32] |
| Reference minerals | MIP-AES ICP-AES ICP-MS ICP-MS/MS | HNO3 (65%)—HCl (37%)—(1:4, v/v)/ HNO3 (65%)—HF (40%)—(10:1, v/v)/ alkaline fusion (LiBO2 e LiBr) | REEs | 1–80 µg L−1 0.5–11 µg L−1 0.01–0.09 µg L−1 0.002–0.02 µg L−1 | [115] |
| Marine sediments | ICP-OES ICP-MS | HNO3 (65%)-HF (40%)—(3:1, v/v) | 42 elements, including REEs | 0.02–210 µg L−1 0.0023–4.3 µg L−1 | [117] |
| Topsoil | ICP-MS | HNO3 (65%)-HCl (37%)—(3:1, v/v) | REEs | Uninformed | [118] |
| Pyrite deposit | LA-ICP-MS | Not applicable | Zn, Pb, Ag, Cu | 0.02–6 mg L−1 | [119] |
| Soil and upward gas flow nanoparticles | HRTEM-EDS/SAED | Not applicable | Fe, Cu, Zn, Pb in addition to Pt and Y in some samples | Uninformed | [120] |
| Soil, upward gas flow nanoparticles, deep faults, shallow and deep aquifer | HRTEM-EDS/SAED | Not applicable | Au, Ag, Fe, Cu, Zn, Pb, Sn, As, Mo, Bi | Uninformed | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medeiros, F.F.d.; Wentz, A.P.; Castro, B.A.S.; Rodrigues, F.D.; Alves, S.S.; Korn, M.d.G.A.; Bettini, J.; Anjos, J.P.d.; Guarieiro, L.L.N. Rare Earth Elements: A Review of Primary Sources, Applications, Business Investment, and Characterization Techniques. Appl. Sci. 2025, 15, 10949. https://doi.org/10.3390/app152010949
Medeiros FFd, Wentz AP, Castro BAS, Rodrigues FD, Alves SS, Korn MdGA, Bettini J, Anjos JPd, Guarieiro LLN. Rare Earth Elements: A Review of Primary Sources, Applications, Business Investment, and Characterization Techniques. Applied Sciences. 2025; 15(20):10949. https://doi.org/10.3390/app152010949
Chicago/Turabian StyleMedeiros, Fabiano Ferreira de, Alexandre Pereira Wentz, Beatriz Almeida Santos Castro, Fabricio Dias Rodrigues, Sara Silva Alves, Maria das Graças Andrade Korn, Jefferson Bettini, Jeancarlo Pereira dos Anjos, and Lílian Lefol Nani Guarieiro. 2025. "Rare Earth Elements: A Review of Primary Sources, Applications, Business Investment, and Characterization Techniques" Applied Sciences 15, no. 20: 10949. https://doi.org/10.3390/app152010949
APA StyleMedeiros, F. F. d., Wentz, A. P., Castro, B. A. S., Rodrigues, F. D., Alves, S. S., Korn, M. d. G. A., Bettini, J., Anjos, J. P. d., & Guarieiro, L. L. N. (2025). Rare Earth Elements: A Review of Primary Sources, Applications, Business Investment, and Characterization Techniques. Applied Sciences, 15(20), 10949. https://doi.org/10.3390/app152010949
















