Assessment of City-Scale Rooftop Photovoltaic Integration and Urban Energy Autonomy Across Europe
Abstract
1. Introduction
2. Materials and Methods
2.1. Followed Methodology
2.2. Mathematical Formulation
3. Results
3.1. PV Energy Potential Results
3.2. Verification of the Followed Methodology
3.3. Avoided Greenhouse Gas Emissions
3.4. Expansion of the Methodology in Extra European Cities
3.5. Discussion on Methodological Sensitivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Nomenclature | |
A | City’s total area, km2 |
a | Constant for Acity calculation |
Acapita | City’s available surface area per capita, m2/capita |
Acity | City’s available surface area, km2 |
APV,Gross | Gross suitable area for PV installation |
APV,Net | Net suitable area for PV installation |
AS | City’s actual PV-suitable available surface, km2 |
c | Constant for Acity calculation |
d | Distance between PV arrays, m |
GHG | Greenhouse Gas |
GT | Incident solar irradiation, W/m2 |
L | PV module length, m |
P | Population, - |
PVEP | Photovoltaic Energy Potential, GWh |
Ut | Utilization factor, % |
Greek Symbols | |
β | PV tilt angle, ° |
γ | Sun azimuth angle, ° |
ηPV | Reference PV electrical efficiency, - |
ρ | Population density, m2/capita |
φ | Latitude angle, ° |
Superscripts and Subscripts | |
Gross | Total, overall value |
Net | Values after deduction |
Abbreviations | |
EU | European Union |
GIS | Geographic Information Systems |
PF | Packing factor |
PR | Performance Ratio |
PV | Photovoltaic system |
RTPV | Rooftop Photovoltaic system |
Appendix A. Information on Examined Cities
City | Population | Area, A [km2] | Density, ρ [m2/capita] | Building Area Density, D [m2/capita] |
---|---|---|---|---|
Athens | 646,391 | 38.0 | 59 | 51 |
Thessaloniki | 319,045 | 19.3 | 61 | 42 |
Patras | 142,389 | 28.0 | 197 | 84 |
Heraklion | 119,055 | 18.0 | 151 | 70 |
Larisa | 111,494 | 20.0 | 179 | 87 |
Volos | 70,671 | 10.0 | 142 | 71 |
Kalamata | 35,912 | 6.0 | 167 | 81 |
Ioannina | 60,763 | 9.0 | 148 | 63 |
Nicosia | 116,392 | 51.1 | 439 | 59 |
Rome | 2,273,412 | 394.0 | 173 | 60 |
Barcelona | 1,620,343 | 101.4 | 63 | 29 |
Madrid | 3,585,311 | 385.0 | 107 | 25 |
Paris | 2,102,650 | 105.4 | 50 | 27 |
London | 5,526,629 | 612.0 | 111 | 38 |
Bruxelles | 1,235,192 | 162.4 | 131 | 49 |
Berlin | 3,576,873 | 891.3 | 249 | 52 |
Munich | 1,512,491 | 310.7 | 205 | 51 |
Stockholm | 984,748 | 188.0 | 191 | 41 |
Copenhangen | 660,842 | 90.0 | 136 | 36 |
Warsaw | 1,863,056 | 517.2 | 278 | 45 |
Budapest | 1,706,851 | 525.2 | 308 | 40 |
Belgrade | 1,197,714 | 359.9 | 300 | 47 |
Bucharest | 1,716,961 | 240.0 | 140 | 48 |
Zurich | 406,822 | 91.0 | 224 | 58 |
Lisbon | 548,703 | 100.1 | 182 | 61 |
Amsterdam | 821,878 | 219.0 | 266 | 44 |
Vienna | 2,002,821 | 414.8 | 207 | 49 |
Prague | 1,357,326 | 496.2 | 366 | 44 |
Sofia | 717,897 | 281.0 | 391 | 83 |
Zagreb | 536,252 | 307.0 | 572 | 76 |
Tallinn | 453,864 | 159.2 | 351 | 37 |
Helsinki | 674,963 | 715.5 | 1060 | 56 |
Dublin | 592,713 | 117.8 | 199 | 43 |
Vilnius | 602,430 | 401.0 | 666 | 40 |
Riga | 609,489 | 304.0 | 499 | 36 |
Luxemburg | 132,778 | 51.5 | 388 | 70 |
Valletta | 5826 | 0.6 | 105 | 43 |
Ljubljana | 295,504 | 163.8 | 554 | 127 |
Bratislava | 660,000 | 367.6 | 557 | 44 |
Oslo | 517,497 | 144.0 | 278 | 55 |
City | Latitude, φ [°] | GT [kWh/m2] | Tilt Angle, β [°] | PF | PR | Weight Factor, W |
---|---|---|---|---|---|---|
Athens | 38.0 | 2081 | 33.0 | 0.54 | 0.77 | 0.105 |
Thessaloniki | 40.6 | 1898 | 34.0 | 0.51 | 0.77 | 0.202 |
Patras | 38.3 | 2010 | 32.0 | 0.55 | 0.77 | 0.389 |
Heraklion | 35.3 | 2063 | 29.0 | 0.60 | 0.76 | 0.256 |
Larisa | 39.6 | 1911 | 34.0 | 0.52 | 0.75 | 0.427 |
Volos | 39.4 | 1912 | 33.0 | 0.53 | 0.78 | 0.263 |
Kalamata | 37.0 | 2034 | 31.0 | 0.57 | 0.78 | 0.354 |
Ioannina | 39.7 | 1828 | 34.0 | 0.52 | 0.78 | 0.219 |
Nicosia | 35.2 | 2168 | 32.0 | 0.58 | 0.75 | 0.206 |
Rome | 41.9 | 1918 | 36.0 | 0.48 | 0.78 | 0.089 |
Barcelona | 41.4 | 1976 | 37.0 | 0.48 | 0.78 | 0.088 |
Madrid | 40.4 | 2102 | 37.0 | 0.49 | 0.78 | 0.089 |
Paris | 48.9 | 1423 | 38.0 | 0.68 | 0.80 | 0.088 |
London | 51.5 | 1270 | 40.0 | 0.66 | 0.81 | 0.098 |
Brussels | 50.9 | 1286 | 39.0 | 0.67 | 0.80 | 0.110 |
Berlin | 52.5 | 1326 | 40.0 | 0.65 | 0.80 | 0.102 |
Munich | 48.1 | 1407 | 39.0 | 0.69 | 0.79 | 0.105 |
Stockholm | 59.3 | 1229 | 44.0 | 0.58 | 0.81 | 0.105 |
Copenhangen | 55.7 | 1298 | 42.0 | 0.62 | 0.81 | 0.094 |
Warsaw | 52.2 | 1313 | 39.0 | 0.65 | 0.80 | 0.117 |
Belgrade | 44.8 | 1606 | 36.0 | 0.70 | 0.79 | 0.102 |
Bucharest | 44.4 | 1639 | 36.0 | 0.72 | 0.78 | 0.117 |
Budapest | 47.5 | 1506 | 35.0 | 0.72 | 0.78 | 0.113 |
Zurich | 47.4 | 1448 | 38.0 | 0.70 | 0.78 | 0.204 |
Lisbon | 38.7 | 2014 | 33.0 | 0.53 | 0.78 | 0.089 |
Amsterdam | 52.4 | 1279 | 39.0 | 0.65 | 0.81 | 0.113 |
Vienna | 48.2 | 1477 | 39.0 | 0.69 | 0.79 | 0.110 |
Prague | 50.1 | 1361 | 39.0 | 0.67 | 0.79 | 0.113 |
Sofia | 42.7 | 1563 | 36.0 | 0.73 | 0.79 | 0.124 |
Zagreb | 45.8 | 1554 | 37.0 | 0.71 | 0.78 | 0.102 |
Tallinn | 59.4 | 1166 | 42.0 | 0.58 | 0.80 | 0.200 |
Helsinki | 60.2 | 1188 | 43.0 | 0.57 | 0.80 | 0.094 |
Dublin | 53.3 | 1193 | 42.0 | 0.64 | 0.82 | 0.110 |
Vilnius | 54.7 | 1197 | 40.0 | 0.63 | 0.81 | 0.102 |
Riga | 57.0 | 1210 | 42.0 | 0.61 | 0.81 | 0.094 |
Luxemburg | 49.6 | 1340 | 37.0 | 0.68 | 0.80 | 0.256 |
Valletta | 35.9 | 2098 | 32.0 | 0.57 | 0.79 | 0.203 |
Ljubljana | 46.1 | 1441 | 34.0 | 0.72 | 0.78 | 1.287 |
Bratislava | 48.2 | 1509 | 39.0 | 0.69 | 0.79 | 0.113 |
Oslo | 59.9 | 1168 | 45.0 | 0.57 | 0.80 | 0.096 |
Appendix B. Results
City | AS [km2] | APV,Gross [km2] | APV,Net [km2] |
---|---|---|---|
Athens | 4.802 | 3.579 | 2.608 |
Thessaloniki | 1.991 | 1.728 | 0.993 |
Patras | 3.591 | 1.196 | 1.935 |
Heraklion | 1.983 | 0.946 | 1.165 |
Larisa | 3.193 | 0.920 | 1.646 |
Volos | 1.195 | 0.560 | 0.622 |
Kalamata | 0.817 | 0.293 | 0.457 |
Ioannina | 0.853 | 0.483 | 0.439 |
Nicosia | 1.629 | 1.488 | 0.962 |
Rome | 26.940 | 25.646 | 12.867 |
Barcelona | 9.346 | 7.963 | 4.542 |
Madrid | 27.299 | 25.120 | 13.715 |
Paris | 9.030 | 7.702 | 6.156 |
London | 48.533 | 41.316 | 31.861 |
Brussels | 12.771 | 10.937 | 8.464 |
Berlin | 41.848 | 36.446 | 27.078 |
Munich | 17.224 | 14.898 | 11.859 |
Stockholm | 10.058 | 8.562 | 5.856 |
Copenhangen | 6.061 | 5.159 | 3.738 |
Warsaw | 20.665 | 17.595 | 13.424 |
Budapest | 18.133 | 10.817 | 12.595 |
Belgrade | 13.627 | 15.137 | 9.813 |
Bucharest | 17.892 | 16.725 | 12.947 |
Zurich | 5.486 | 4.913 | 3.815 |
Lisbon | 6.610 | 6.421 | 3.510 |
Amsterdam | 8.945 | 8.111 | 5.799 |
Vienna | 22.364 | 19.128 | 15.383 |
Prague | 15.037 | 12.802 | 10.074 |
Sofia | 11.489 | 16.006 | 8.505 |
Zagreb | 7.668 | 7.912 | 5.449 |
Tallinn | 4.306 | 3.673 | 2.502 |
Helsinki | 9.648 | 7.194 | 5.540 |
Dublin | 6.223 | 5.298 | 3.976 |
Vilnius | 6.372 | 5.423 | 3.990 |
Riga | 6.313 | 5.373 | 3.818 |
Luxemburg | 2.290 | 2.321 | 1.544 |
Valletta | 0.051 | 0.044 | 0.030 |
Ljubljana | 9.436 | 2.686 | 6.684 |
Bratislava | 7.272 | 6.191 | 5.006 |
Oslo | 6.248 | 5.610 | 3.603 |
City | Consumption [kWh/capita] | PVEP [GWh] | PV Coverage |
---|---|---|---|
Athens | 2896 | 1045.8 | 36.1% |
Thessaloniki | 1436 | 364.0 | 25.4% |
Patras | 641 | 752.2 | 117.4% |
Heraklion | 536 | 454.9 | 84.9% |
Larisa | 502 | 587.8 | 117.2% |
Volos | 318 | 231.9 | 72.9% |
Kalamata | 162 | 181.4 | 112.3% |
Ioannina | 273 | 155.6 | 56.9% |
Nicosia | 445 | 390.0 | 87.6% |
Rome | 11,503 | 4798.2 | 41.7% |
Barcelona | 7940 | 1759.3 | 22.2% |
Madrid | 15,794 | 5600.1 | 35.5% |
Paris | 13,247 | 1750.7 | 13.2% |
London | 23,212 | 8200.0 | 35.3% |
Brussels | 8276 | 2188.6 | 26.4% |
Berlin | 20,853 | 7196.0 | 34.5% |
Munich | 8818 | 3300.3 | 37.4% |
Stockholm | 11,817 | 1457.9 | 12.3% |
Copenhangen | 3569 | 988.4 | 27.7% |
Warsaw | 7639 | 3528.4 | 46.2% |
Budapest | 7510 | 3732.7 | 49.7% |
Belgrade | 5390 | 3062.7 | 56.8% |
Bucharest | 4121 | 4135.5 | 100.4% |
Zurich | 2670 | 1074.2 | 40.2% |
Lisbon | 2623 | 1378.0 | 52.5% |
Amsterdam | 5647 | 1505.7 | 26.7% |
Vienna | 14,420 | 4489.0 | 31.1% |
Prague | 5192 | 2715.9 | 52.3% |
Sofia | 3302 | 2622.6 | 79.4% |
Zagreb | 3299 | 1643.5 | 49.8% |
Tallinn | 2632 | 581.5 | 22.1% |
Helsinki | 10,124 | 1318.1 | 13.0% |
Dublin | 3556 | 972.5 | 27.3% |
Vilnius | 2410 | 965.5 | 40.1% |
Riga | 2133 | 932.7 | 43.7% |
Luxemburg | 1258 | 415.4 | 33.0% |
Valletta | 27 | 12.3 | 44.9% |
Ljubljana | 1832 | 1888.2 | 103.1% |
Bratislava | 2904 | 1492.6 | 51.4% |
Oslo | 11,644 | 846.3 | 7.3% |
City | CO2-eq kg/kWh | GHG Emissions [kton] |
---|---|---|
Athens | 0.502 | 524.97 |
Thessaloniki | 0.502 | 182.74 |
Patras | 0.502 | 377.62 |
Heraklion | 0.502 | 228.35 |
Larisa | 0.502 | 295.09 |
Volos | 0.502 | 116.39 |
Kalamata | 0.502 | 91.06 |
Ioannina | 0.502 | 78.10 |
Nicosia | 0.833 | 324.85 |
Rome | 0.383 | 1837.71 |
Barcelona | 0.236 | 415.21 |
Madrid | 0.236 | 1321.61 |
Paris | 0.087 | 152.31 |
London | 0.315 | 2583.01 |
Brussels | 0.208 | 455.24 |
Berlin | 0.438 | 3151.87 |
Munich | 0.438 | 1445.52 |
Stockholm | 0.027 | 39.36 |
Copenhangen | 0.138 | 136.40 |
Warsaw | 0.877 | 3094.36 |
Budapest | 0.266 | 992.89 |
Belgrade | 1.046 | 3203.63 |
Bucharest | 0.418 | 1728.64 |
Zurich | 0.039 | 41.89 |
Lisbon | 0.248 | 341.75 |
Amsterdam | 0.406 | 611.30 |
Vienna | 0.281 | 1261.41 |
Prague | 0.59 | 1602.39 |
Sofia | 0.54 | 1416.21 |
Zagreb | 0.416 | 683.71 |
Tallinn | 0.351 | 204.10 |
Helsinki | 0.073 | 96.22 |
Dublin | 0.315 | 306.32 |
Vilnius | 0.1 | 96.55 |
Riga | 0.437 | 407.58 |
Luxemburg | 0.334 | 138.73 |
Valletta | 0.47 | 5.79 |
Ljubljana | 0.235 | 443.72 |
Bratislava | 0.396 | 591.08 |
Oslo | 0.022 | 18.62 |
Appendix C. Comparison of the Developed Methodology with Geospatial Data
City | City Total Area (Km2) | Geospatial Data (km2) | Developed Methodology (km2) | Deviation |
---|---|---|---|---|
Athens | 38 | 4.82 | 4.80 | 0.42% |
Munich | 310 | 16.59 | 17.22 | 3.66% |
Stockholm | 188 | 10.19 | 10.06 | 1.28% |
Barcelona | 102 | 9.22 | 9.35 | 1.41% |
References
- Kitsopoulou, A.; Bellos, E.; Lykas, P.; Sammoutos, C.; Vrachopoulos, M.G.; Tzivanidis, C. A Systematic Analysis of Phase Change Material and Optically Advanced Roof Coatings Integration for Athenian Climatic Conditions. Energies 2023, 16, 7521. [Google Scholar] [CrossRef]
- Kitsopoulou, A.; Bellos, E.; Tzivanidis, C. An Up-to-Date Review of Passive Building Envelope Technologies for Sustainable Design. Energies 2024, 17, 4039. [Google Scholar] [CrossRef]
- Bellos, E. Progress in Beam-down Solar Concentrating Systems. Prog. Energy Combust. Sci. 2023, 97, 101085. [Google Scholar] [CrossRef]
- Share of Electricity Production from Renewables. Available online: https://ourworldindata.org/grapher/share-electricity-renewables (accessed on 29 March 2024).
- The European Green Deal—European Commission. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 14 October 2024).
- D’Agostino, D.; Parker, D.; Melià, P.; Dotelli, G. Optimizing Photovoltaic Electric Generation and Roof Insulation in Existing Residential Buildings. Energy Build. 2022, 255, 111652. [Google Scholar] [CrossRef]
- Ziozas, N.; Kitsopoulou, A.; Bellos, E.; Iliadis, P.; Gonidaki, D.; Angelakoglou, K.; Nikolopoulos, N.; Ricciuti, S.; Viesi, D. Energy Performance Analysis of the Renovation Process in an Italian Cultural Heritage Building. Sustainability 2024, 16, 2784. [Google Scholar] [CrossRef]
- Kitsopoulou, A.; Pallantzas, D.; Bellos, E.; Tzivanidis, C. Mapping the Potential of Zero-Energy Building in Greece Using Roof Photovoltaics. Designs 2024, 8, 68. [Google Scholar] [CrossRef]
- Kapsalis, V.; Maduta, C.; Skandalos, N.; Bhuvad, S.S.; D’Agostino, D.; Yang, R.J.; Udayraj; Parker, D.; Karamanis, D. Bottom-up Energy Transition through Rooftop PV Upscaling: Remaining Issues and Emerging Upgrades towards NZEBs at Different Climatic Conditions. Renew. Sustain. Energy Transit. 2024, 5, 100083. [Google Scholar] [CrossRef]
- Molnár, G.; Cabeza, L.F.; Chatterjee, S.; Ürge-Vorsatz, D. Modelling the Building-Related Photovoltaic Power Production Potential in the Light of the EU’s Solar Rooftop Initiative. Appl. Energy 2024, 360, 122708. [Google Scholar] [CrossRef]
- McKenna, R.; Mulalic, I.; Soutar, I.; Weinand, J.M.; Price, J.; Petrović, S.; Mainzer, K. Exploring Trade-Offs between Landscape Impact, Land Use and Resource Quality for Onshore Variable Renewable Energy: An Application to Great Britain. Energy 2022, 250, 123754. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, F.; del Campo-Ávila, J.; Ferrer-Cuesta, M.; Mora-López, L. Data Driven Tools to Assess the Location of Photovoltaic Facilities in Urban Areas. Expert Syst. Appl. 2022, 203, 117349. [Google Scholar] [CrossRef]
- Gernaat, D.E.H.J.; de Boer, H.-S.; Dammeier, L.C.; van Vuuren, D.P. The Role of Residential Rooftop Photovoltaic in Long-Term Energy and Climate Scenarios. Appl. Energy 2020, 279, 115705. [Google Scholar] [CrossRef]
- IMAGE—Integrated Model to Assess the Global Environment|PBL Netherlands Environmental Assessment Agency. Available online: https://www.pbl.nl/en/image/home (accessed on 14 October 2024).
- Castellanos, S.; Sunter, D.A.; Kammen, D.M. Rooftop Solar Photovoltaic Potential in Cities: How Scalable Are Assessment Approaches? Environ. Res. Lett. 2017, 12, 125005. [Google Scholar] [CrossRef]
- Mainzer, K.; Fath, K.; McKenna, R.; Stengel, J.; Fichtner, W.; Schultmann, F. A High-Resolution Determination of the Technical Potential for Residential-Roof-Mounted Photovoltaic Systems in Germany. Sol. Energy 2014, 105, 715–731. [Google Scholar] [CrossRef]
- Defaix, P.R.; van Sark, W.G.J.H.M.; Worrell, E.; de Visser, E. Technical Potential for Photovoltaics on Buildings in the EU-27. Sol. Energy 2012, 86, 2644–2653. [Google Scholar] [CrossRef]
- Bódis, K.; Kougias, I.; Jäger-Waldau, A.; Taylor, N.; Szabó, S. A High-Resolution Geospatial Assessment of the Rooftop Solar Photovoltaic Potential in the European Union. Renew. Sustain. Energy Rev. 2019, 114, 109309. [Google Scholar] [CrossRef]
- Romero Rodríguez, L.; Duminil, E.; Sánchez Ramos, J.; Eicker, U. Assessment of the Photovoltaic Potential at Urban Level Based on 3D City Models: A Case Study and New Methodological Approach. Sol. Energy 2017, 146, 264–275. [Google Scholar] [CrossRef]
- Izquierdo, S.; Montañés, C.; Dopazo, C.; Fueyo, N. Roof-Top Solar Energy Potential under Performance-Based Building Energy Codes: The Case of Spain. Sol. Energy 2011, 85, 208–213. [Google Scholar] [CrossRef]
- Yang, Y.; Campana, P.E.; Stridh, B.; Yan, J. Potential Analysis of Roof-Mounted Solar Photovoltaics in Sweden. Appl. Energy 2020, 279, 115786. [Google Scholar] [CrossRef]
- Assouline, D.; Mohajeri, N.; Scartezzini, J.-L. Large-Scale Rooftop Solar Photovoltaic Technical Potential Estimation Using Random Forests. Appl. Energy 2018, 217, 189–211. [Google Scholar] [CrossRef]
- Phillips, C.; Elmore, R.; Melius, J.; Gagnon, P.; Margolis, R. A Data Mining Approach to Estimating Rooftop Photovoltaic Potential in the US. J. Appl. Stat. 2019, 46, 385–394. [Google Scholar] [CrossRef]
- Gassar, A.A.A.; Cha, S.H. Review of Geographic Information Systems-Based Rooftop Solar Photovoltaic Potential Estimation Approaches at Urban Scales. Appl. Energy 2021, 291, 116817. [Google Scholar] [CrossRef]
- JRC Photovoltaic Geographical Information System (PVGIS)—European Commission. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/#api_5.1 (accessed on 17 July 2025).
- Eurostat: Demography in Europe. 2024. Available online: https://ec.europa.eu/eurostat/cache/interactive-publications/demography/2024/00/index.html (accessed on 8 October 2024).
- European Commission. European Cities: Territorial Analysis of Characteristics and Trends; JRC Technical Reports; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Average Floor Area per Capita. Available online: https://entranze.enerdata.net/ (accessed on 22 February 2025).
- Ong, S.K.; Zhu, J. A Novel Maintenance System for Equipment Serviceability Improvement. CIRP Ann. 2013, 62, 39–42. [Google Scholar] [CrossRef]
- Gutschner, M.; Nowak, S.; Ruoss, D.; Toggweiler, P.; Schoen, T. Potential for Building Integrated Photovoltaics; Report IEA—PVPS T7-4; International Energy Agency: Paris, France, 2002. [Google Scholar]
- Martín-Chivelet, N. Photovoltaic Potential and Land-Use Estimation Methodology. Energy 2016, 94, 233–242. [Google Scholar] [CrossRef]
- Kostylyov, V.P.; Sachenko, A.V.; Evstigneev, M.; Sokolovskyi, I.O.; Shkrebtii, A.I. Characterization and Optimization of High-Efficiency Crystalline Silicon Solar Cells: Impact of Recombination in the Space Charge Region and Trap-Assisted Auger Exciton Recombination. J. Appl. Phys. 2025, 137, 023101. [Google Scholar] [CrossRef]
- IEC 61724:1998; Photovoltaic System Performance Monitoring Guidelines for Measurement, Data Exchange and Analysis. International Electrotechnical Commission: Geneva, Switzerland, 1998.
- Nordmann, T.; Clavadetscher, L.; van Sark, W.G.J.H.M.; Green, M. Analysis of Long-Term Performance of PV Systems Different Data Resolution for Different Purposes; International Energy Agency: Paris, France, 2014. [Google Scholar]
- Bastos, J.; Monforti-Ferrario, F.; Melica, G. GHG Emission Factors for Electricity Consumption; European Commission: Brussels, Belgium, 2024. [Google Scholar]
- Electricity and Heat Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_and_heat_statistics (accessed on 11 October 2024).
- Google Environmental Insights Explorer—Make Informed Decisions. Available online: https://insights.sustainability.google/ (accessed on 15 October 2024).
- SuPeRBE. Climate-Resilient Buildings: Adapting Architecture to Climate Change; Interreg Central Europe: Vienna, Austria, 2024. [Google Scholar]
- NEB—Built4People. European Partnership under Horizon Europe. Available online: https://built4people.eu (accessed on 9 October 2025).
PVEP [GWh] | |||
---|---|---|---|
City | Present Methodology | Google Insights | Deviation [%] |
Athens | 1046 | 979 | −6.8% |
Patras | 752 | 710 | −5.9% |
Ioannina | 156 | 192 | 19.0% |
Rome | 4798 | 5210 | 7.9% |
Barcelona | 1759 | 1760 | 0.0% |
Madrid | 5600 | 4770 | −17.4% |
Paris | 1751 | 1780 | 1.6% |
London | 8200 | 7440 | −10.2% |
Bruxelles | 2189 | 2530 | 13.5% |
Berlin | 7196 | 8100 | 11.2% |
Munich | 3300 | 3930 | 16.0% |
Stockholm | 1458 | 1800 | 19.0% |
Copenhangen | 988 | 1190 | 16.9% |
Warsaw | 3528 | 3800 | 7.1% |
Bucharest | 4136 | 3680 | −12.4% |
Zurich | 1074 | 1110 | 3.2% |
Amsterdam | 1506 | 1540 | 2.2% |
Vienna | 4489 | 4980 | 9.9% |
Zagreb | 1644 | 1620 | −1.5% |
Helsinki | 1318 | 1680 | 21.5% |
Luxemburg | 415 | 412 | −0.8% |
Country | Cities | APV,Net [km2] | PVEP [GWh] |
---|---|---|---|
Albania | Elbasan | 0.436 | 180 |
Austria | Klagenfurt | 2.213 | 660 |
Belgium | Antwerp | 6.330 | 1651 |
La Louvière | 1.713 | 454 | |
Leuven | 2.137 | 567 | |
Bosnia and Herzegovina | Sarajevo | 1.725 | 598 |
Bulgaria | Gabrovo | 0.195 | 70 |
Cyprus | Limassol | 0.768 | 385 |
Czech Republic | Liberec | 1.421 | 395 |
Denmark | Aarhus | 1.354 | 331 |
Sønderborg | 0.181 | 45 | |
Estonia | Tartu | 0.548 | 133 |
Finland | Espoo | 3.474 | 897 |
Lahti | 2.035 | 467 | |
Lappeenranta | 0.358 | 84 | |
Tampere | 2.408 | 544 | |
Turku | 2.063 | 553 | |
France | Angers Loire Metropole | 1.540 | 476 |
Bordeaux Metropole | 3.087 | 1032 | |
Dijon Metropole | 1.791 | 550 | |
Dunkerque | 1.833 | 507 | |
Grenoble-Alpes Metropole | 0.978 | 310 | |
Lyon | 3.149 | 992 | |
Marseille | 7.613 | 3056 | |
Nantes Metropole | 2.699 | 831 | |
Germany | Aachen | 3.298 | 905 |
Dortmund | 5.530 | 1460 | |
Dresden | 5.064 | 1408 | |
Frankfurt/Main | 6.795 | 1886 | |
Heidelberg | 1.782 | 501 | |
Leipzig | 5.446 | 1509 | |
Mannheim | 6.595 | 1896 | |
Münster | 4.561 | 1210 | |
Greece | Kozani | 0.170 | 71 |
Trikala | 0.271 | 111 | |
Hungary | Miskolc | 2.696 | 824 |
Pécs | 1.781 | 574 | |
Iceland | Reykjavík | 0.547 | 146 |
Ireland | Cork | 2.881 | 782 |
Italy | Bergamo | 2.505 | 859 |
Bologna | 4.545 | 1517 | |
Florence | 4.932 | 1673 | |
Milan | 9.371 | 3128 | |
Padova | 4.619 | 1550 | |
Parma | 3.498 | 1163 | |
Prato | 4.221 | 1460 | |
Turin | 7.157 | 2380 | |
Latvia | Liepāja | 0.492 | 137 |
Lithuania | Taurage | 0.131 | 35 |
Luxembourg | Differdange | 0.214 | 57 |
Malta | Gozo | 0.187 | 91 |
Montenegro | Podgorica | 1.749 | 697 |
The Netherlands | Eindhoven & Helmond | 1.565 | 403 |
Groningen | 1.738 | 432 | |
Rotterdam | 3.890 | 1009 | |
The Hague | 3.413 | 902 | |
Utrecht | 2.920 | 756 | |
Oslo | 3.064 | 849 | |
Norway | Stavanger | 1.127 | 344 |
Trondheim | 0.390 | 102 | |
Poland | Krakow | 5.549 | 1520 |
Łódź | 5.354 | 1481 | |
Rzeszow | 2.136 | 589 | |
Wrocław | 5.245 | 1476 | |
Portugal | Guimarães | 5.753 | 815 |
Porto | 1.870 | 834 | |
Romania | Cluj-Napoca | 2.618 | 918 |
Suceava | 0.572 | 195 | |
Slovakia | Košice | 1.235 | 367 |
Slovenia | Kranj | 0.241 | 81 |
Velenje | 0.156 | 55 | |
Spain | Seville | 2.778 | 1345 |
Valencia | 2.717 | 1263 | |
Valladolid | 1.282 | 583 | |
Vitoria-Gasteiz | 1.356 | 503 | |
Zaragoza | 1.385 | 648 | |
Sweden | Gävle | 1.282 | 298 |
Gothenburg | 4.592 | 1128 | |
Helsingborg | 1.777 | 447 | |
Lund | 0.979 | 250 | |
Malmö | 3.179 | 834 | |
Umeå | 1.422 | 359 | |
Turkey | Istanbul | 32.479 | 13,410 |
Izmir | 0.415 | 196 | |
United Kingdom | Bristol | 3.573 | 1117 |
Glasgow | 3.601 | 959 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsopoulos, G.; Kapsalis, V.; Tolis, A. Assessment of City-Scale Rooftop Photovoltaic Integration and Urban Energy Autonomy Across Europe. Appl. Sci. 2025, 15, 10950. https://doi.org/10.3390/app152010950
Mitsopoulos G, Kapsalis V, Tolis A. Assessment of City-Scale Rooftop Photovoltaic Integration and Urban Energy Autonomy Across Europe. Applied Sciences. 2025; 15(20):10950. https://doi.org/10.3390/app152010950
Chicago/Turabian StyleMitsopoulos, Georgios, Vasileios Kapsalis, and Athanasios Tolis. 2025. "Assessment of City-Scale Rooftop Photovoltaic Integration and Urban Energy Autonomy Across Europe" Applied Sciences 15, no. 20: 10950. https://doi.org/10.3390/app152010950
APA StyleMitsopoulos, G., Kapsalis, V., & Tolis, A. (2025). Assessment of City-Scale Rooftop Photovoltaic Integration and Urban Energy Autonomy Across Europe. Applied Sciences, 15(20), 10950. https://doi.org/10.3390/app152010950