Impact of Retention Agents on Functional Properties of Recycled Paper in Sustainable Manufacturing
Abstract
1. Introduction
2. Materials and Methods
2.1. Fibrous Materials and Retention Agent
2.2. Preparation of Pulps
2.3. Washing of Wastepaper
2.4. Preparation of Paper Sheets
2.5. Analysis of the Paper Properties
- IB: breaking length [m].
- FB: tensile force at break [N].
- σTb: width-related force at break [N·m−1].
- σTW: force-at-break index [Nm·g−1].
- εT: strain at break [%].
- WTb: energy absorption [J·m−2].
- WTW: energy absorption index [J·g−1].
- Eb: tensile stiffness [N·m−1].
- Ew: tensile stiffness index [Nm·g−1].
- E*: Young’s modulus [MPa].
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, J.; Zhang, M. Disassembly, refinement, and reassembly: From ancient papermaking to modern materials processing. J. Bioresour. Bioprod. 2024, 25, 15. [Google Scholar] [CrossRef]
- Li, H.; Du, Y.; Wu, X.; Zhan, H. Effect of molecular weight and degree of substitution of quaternary chitosan on its adsorption and flocculation properties for potential retention-aids in alkaline papermaking. Colloids Surf. A Physicochem. Eng. Asp. 2004, 242, 1–8. [Google Scholar] [CrossRef]
- Miranda, R.; Nicu, R.; Bobu, E.; Blanco, A. Efficiency of chitosan and their combination with bentonite as retention aids in papermaking. BioResources 2016, 11, 10448–10468. [Google Scholar] [CrossRef]
- Koshani, R.; Tavakolian, M.; van de Ven, T.G. Cellulose-based dispersants and flocculants. J. Mater. Chem. B 2020, 8, 10502–10526. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Rana, V.; Joshi, G.; Gupta, P.K.; Sharma, A. Valorization of Wheat Straw for the Paper Industry: Pre-extraction of Reducing Sugars and Its Effect on Pulping and Papermaking Properties. ACS Omega 2020, 5, 30704–30715. [Google Scholar] [CrossRef] [PubMed]
- Lossmann, K.; Hecht, R.; Saame, J.; Heering, A.; Leito, I.; Kipper, K. Retention mechanisms of acidic and basic analytes on the Pentafluorophenyl stationary phase using fluorinated eluent additives. J. Chromatogr. A 2022, 1666, 462850. [Google Scholar] [CrossRef]
- You, Y.; Zhang, J.; Sun, X. Fabrication of a novel high-performance leather waste-based composite retention aid. RSC Adv. 2019, 9, 16271–16277. [Google Scholar] [CrossRef] [PubMed]
- Dichiara, A.B.; Song, A.; Goodman, S.M.; He, D.; Bai, J. Smart papers comprising carbon nanotubes and cellulose microfibers for multifunctional sensing applications. J. Mater. Chem. A 2017, 5, 20161–20169. [Google Scholar] [CrossRef]
- Karim, Z.; Svedberg, A. Controlled retention and drainage of microfibrillated cellulose in continuous paper production. New J. Chem. 2020, 44, 13796–13806. [Google Scholar] [CrossRef]
- Dong, Y.; Shen, Y.; Ge, D.; Bian, C.; Yuan, H.; Zhu, N. A sodium dichloroisocyanurate-based conditioning process for the improvement of sludge dewaterability and mechanism studies. J. Environ. Manag. 2021, 284, 112020. [Google Scholar] [CrossRef]
- Zhao, C.; Shao, S.; Zhou, Y.; Yang, Y.; Shao, Y.; Zhang, L.; Zhou, Y.; Xie, L.; Luo, L. Optimization of flocculation conditions for soluble cadmium removal using the composite flocculant of green anion polyacrylamide and PAC by response surface methodology. Sci. Total Environ. 2018, 645, 267–276. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, C.; Hu, J.; Huang, M.; Zhao, L.; He, J.; Zhang, S.; Shen, F.; Tian, D. Cascade utilization of crop straw through a FeCl3-mediated deep eutectic solvent biorefinery: Lignin-containing cellulose nanofibers flocculant fabrication followed by fertilizer production. Chem. Eng. J. 2023, 472, 144823. [Google Scholar] [CrossRef]
- Ren, J.; Wei, H.; Li, A.; Yang, H. Efficient removal of phosphorus from turbid water using chemical sedimentation by FeCl3 in conjunction with a starch-based flocculant. Water Res. 2020, 170, 115361. [Google Scholar] [CrossRef]
- Thakur, M.K.; Thakur, V.K.; Gupta, R.K.; Pappu, A. Synthesis and applications of biodegradable soy based graft copolymers: A review. ACS Sustain. Chem. Eng. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Sharma, M.; Aguado, R.; Murtinho, D.; Valente, A.J.M.; Mendes, A.P.; Ferreira, P.J.T. A review on cationic starch and nanocellulose as paper coating components. Int. J. Biol. Macromol. 2020, 162, 578–598. [Google Scholar] [CrossRef]
- Abdallah, A.F.; Jawaid, M.; Mohamed, A.Z.; Paridah, M.T.; Abdullah, U.H. Performance of nanofibrillated cellulose with chitosan as a wet-end additive for paper applications. Ind. Crops Prod. 2023, 203, 117219. [Google Scholar] [CrossRef]
- Gal, M.R.; Rahmaninia, M.; Hubbe, M.A. A comprehensive review of chitosan applications in paper science and technologies. Carbohydr. Polym. 2023, 309, 120665. [Google Scholar] [CrossRef] [PubMed]
- Harikrishnan, M.P.; Thampi, A.; Nandhu Lal, A.M.; Warrier, A.S.; Basil, M.; Kothakota, A. Effect of chitosan-based bio coating on mechanical, structural and physical characteristics of microfiber based paper packaging: An alternative to wood pulp/plastic packaging. Int. J. Biol. Macromol. 2023, 253, 126888. [Google Scholar] [CrossRef]
- Rojas-Reyna, R.; Schwarz, S.; Heinrich, G.; Petzold, G.; Schütze, S.; Bohrisch, J. Flocculation efficiency of modified water soluble chitosan versus commonly used commercial polyelectrolytes. Carbohydr. Polym. 2010, 81, 317–322. [Google Scholar] [CrossRef]
- Thakur, V.K.; Voicu, S.I. Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydr. Polym. 2016, 146, 148–165. [Google Scholar] [CrossRef] [PubMed]
- Azmana, M.; Mahmood, S.; Hilles, A.R.; Rahman, A.; Arifin, M.A.B.; Ahmed, S. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. Int. J. Biol. Macromol. 2021, 185, 832–848. [Google Scholar] [CrossRef] [PubMed]
- Pöhler, T.; Mautner, A.; Aguilar-Sanchez, A.; Hansmann, B.; Kunnari, V.; Grönroos, A.; Rissanen, V.; Siqueira, G.; Mathew, A.P.; Tammelin, T. Pilot-scale modification of polyethersulfone membrane with a size and charge selective nanocellulose layer. Sep. Purif. Technol. 2022, 285, 120341. [Google Scholar] [CrossRef]
- Kutsevol, N.; Kuziv, Y.; Cabrera, T.; Husson, S.M.; DeVol, T.A.; Bliznyuk, V. Biodegradable star-like polymer flocculants for rapid, efficient purification of water contaminated with industrial radionuclides. Sep. Purif. Technol. 2021, 273, 118630. [Google Scholar] [CrossRef]
- Chakraborty, S.; Dutta, S.; Chatterjee, R.; Chanda, J.; Pal, S.; Bandyopadhyay, A. Flocculation of low concentration kaolin suspension using architecturally modified Xanthan gum: Effect of grafting to hyperbranching. J. Taiwan Inst. Chem. Eng. 2023, 150, 105066. [Google Scholar] [CrossRef]
- Fischer, W.J.; Mayr, M.; Spirk, S.; Reishofer, D.; Jagiello, L.A.; Schmiedt, R.; Colson, J.; Zankel, A.; Bauer, W. Pulp fines—Characterization, sheet formation, and comparison to microfibrillated cellulose. Polymers. 2017, 9, 366. [Google Scholar] [CrossRef]
- Blanco, Á.; Negro, C.; Tijero, J. Developments in Flocculation; Pira International: Leatherhead, UK, 2001. [Google Scholar]
- Feng, X.; Zhang, Y.; Wang, G.; Miao, M.; Shi, L. Dual-surface modification of calcium sulfate whisker with sodium hexametaphosphate/silica and use as new water-resistant reinforcing fillers in papermaking. Powder Technol. 2015, 271, 1–6. [Google Scholar] [CrossRef]
- Mohamed, D.; Denis, C.; Nabila, E.; Mohammed, L.H.; Ibrahim, F.Z.; Evelyne, M. Biobased polymers and cationic microfibrillated cellulose as retention and drainage aids in papermaking: Comparison between softwood and bagasse pulps. Ind. Crops Prod. 2015, 72, 34–45. [Google Scholar]
- Su, N. Preparation and performance of retention and drainage aid made of cationic spherical polyelectrolyte brushes. e-Polymers 2022, 22, 676–685. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, X.; Fu, K.; Li, H.; Huang, C.; Yuan, S. Synthesis and application of cationic spherical polyelectrolyte brushes as retention and drainage aid in bleached eucalyptus kraft pulp. J. Ind. Eng. Chem. 2015, 31, 309–316. [Google Scholar] [CrossRef]
- PN-EN 643:2014-03; Papier i Tektura—Europejski Wykaz Znormalizowanych Odmian Papieru i Tektury do Recyklingu. Available online: https://sklep.pkn.pl/pn-en-643-2014-03e.html (accessed on 13 February 2024).
- Małachowska, E.; Lipkiewicz, A.; Dubowik, M.; Przybysz, P. Which wastepaper should not be processed? Sustainability 2023, 15, 2850. [Google Scholar] [CrossRef]
- ISO 5263-1:2004; Pulps, Laboratory Wet Disintegration, Part 1: Disintegration of Chemical Pulps. ISO: Geneva, Switzerland, 2004.
- PN-EN ISO 5269-2 (2007); Masy Włókniste—Przygotowanie Arkusików Laboratoryjnych do Badań Fizycznych—Część 2: Metoda Rapid-Kothen. Polish Committee for Standardization: Warsaw, Poland, 2007.
- ISO 536:2019; Paper and Board, Determination of Grammage. ISO: Geneva, Switzerland, 2019.
- ISO 187:2022; Paper, Board and Pulps, Standard Atmosphere for Conditioning and Testing and Procedure for Monitoring the Atmosphere and Conditioning of Samples. ISO: Geneva, Switzerland, 2022.
- ISO 8791-2:2013—TMI 58-27; Paper and Board, Determination of Roughness/Smoothness (Air Leak Methods), Part 2: Bendtsen method. ISO: Geneva, Switzerland, 2013.
- ISO 5636-3:2013—TMI 58-27; Paper and Board, Determination of Air Permeance (Medium Range), Part 3: Bendtsen Method. ISO: Geneva, Switzerland, 2013.
- PN-EN ISO 1924-2:2010; Papier i Tektura—Oznaczanie Właściwości Przy Działaniu Sił Rozciągających—Część 2: Badanie Przy Stałej Prędkości Rozciągania (20 mm/min). ISO: Geneva, Switzerland, 2010.
- Kamel, S.; El-Sakhawy, M.; Nada, A.M.A. Mechanical properties of the paper sheets treated with different polymers. Thermochim. Acta 2004, 421, 81–85. [Google Scholar] [CrossRef]
- Nada, A.M.A.; El-Sakhawy, M.; Kamel, S.; Eid, M.A.M.; Adel, A.M. Mechanical and electrical properties of paper sheets treated with chitosan and its derivatives. Carbohydr. Polym. 2006, 63, 113–121. [Google Scholar] [CrossRef]
- Bajpai, P. Biotechnology for Pulp and Paper Processing; Springer: Singapore, 2018. [Google Scholar]
Retention Agent Addition [%] | Air Permeability | |
---|---|---|
[mL/min] | ||
1.3 | 3.2 | |
Ref. | 5000 | 5000 |
0.1 | 5000 | 5000 |
0.2 | 5000 | 5000 |
0.3 | 5000 | 5000 |
0.4 | 5000 | 5000 |
0.5 | 5000 | 5000 |
0.6 | 5000 | 5000 |
0.8 | 5000 | 5000 |
1.0 | 5000 | 5000 |
Retention Agent Addition | IB | FB | σTb | σTW | εT | WTb | WTW | Eb | Ew | E* |
---|---|---|---|---|---|---|---|---|---|---|
[%] | [m] | [N] | [N/m] | [Nm/g] | [%] | [J/m2] | [J/g] | [N/m] | [Nm/g] | [MPa] |
Ref. | 2700 | 30.9 | 2095 | 26.4 | 1.60 | 22.1 | 0.278 | 320,667 | 4033 | 2915 |
0.1 | 2300 | 27.5 | 1853 | 22.8 | 1.45 | 17.9 | 0.220 | 305,500 | 3753 | 2777 |
0.2 | 1800 | 20.7 | 1425 | 17.9 | 0.92 | 8.4 | 0.105 | 295,167 | 3693 | 2683 |
0.3 | 1800 | 21.3 | 1431 | 17.7 | 0.88 | 7.6 | 0.093 | 292,383 | 3611 | 2623 |
0.4 | 1700 | 19.4 | 1338 | 16.5 | 0.78 | 7.2 | 0.089 | 289,817 | 3579 | 2600 |
0.5 | 1750 | 19.3 | 1353 | 17.0 | 0.83 | 6.7 | 0.085 | 288,333 | 3622 | 2622 |
0.6 | 1850 | 21.3 | 1465 | 18.1 | 1.08 | 11.0 | 0.136 | 283,483 | 3501 | 2543 |
0.8 | 2000 | 22.9 | 1578 | 19.5 | 1.25 | 12.5 | 0.154 | 279,767 | 3455 | 2510 |
1.0 | 2150 | 24.5 | 1685 | 21.2 | 1.40 | 15.5 | 0.194 | 276,833 | 3477 | 2515 |
Retention Agent Addition | IB | FB | σTb | σTW | εT | WTb | WTW | Eb | Ew | E* |
---|---|---|---|---|---|---|---|---|---|---|
[%] | [m] | [N] | [N/m] | [Nm/g] | [%] | [J/m2] | [J/g] | [N/m] | [Nm/g] | [MPa] |
Ref. | 3750 | 42.6 | 2932 | 36.2 | 2.53 | 54.2 | 0.669 | 408,133 | 5040 | 3662 |
0.1 | 3200 | 36.6 | 2524 | 31.2 | 2.37 | 46.0 | 0.568 | 383,817 | 4740 | 3444 |
0.2 | 2600 | 29.3 | 2018 | 24.9 | 1.42 | 21.2 | 0.262 | 376,967 | 4655 | 3382 |
0.3 | 2450 | 27.6 | 1899 | 23.4 | 1.35 | 17.9 | 0.221 | 373,000 | 4606 | 3346 |
0.4 | 2450 | 27.7 | 1907 | 23.5 | 1.23 | 18.3 | 0.226 | 372,867 | 4604 | 3345 |
0.5 | 2450 | 27.8 | 1912 | 23.6 | 1.33 | 16.4 | 0.203 | 365,733 | 4516 | 3281 |
0.6 | 2600 | 29.4 | 2022 | 25.0 | 1.67 | 27.2 | 0.336 | 356,433 | 4401 | 3198 |
0.8 | 2600 | 29.7 | 2048 | 25.3 | 1.97 | 30.0 | 0.371 | 354,900 | 4383 | 3184 |
1.0 | 3050 | 34.8 | 2395 | 29.6 | 2.13 | 37.7 | 0.466 | 347,217 | 4288 | 3115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Małachowska, E. Impact of Retention Agents on Functional Properties of Recycled Paper in Sustainable Manufacturing. Appl. Sci. 2025, 15, 875. https://doi.org/10.3390/app15020875
Małachowska E. Impact of Retention Agents on Functional Properties of Recycled Paper in Sustainable Manufacturing. Applied Sciences. 2025; 15(2):875. https://doi.org/10.3390/app15020875
Chicago/Turabian StyleMałachowska, Edyta. 2025. "Impact of Retention Agents on Functional Properties of Recycled Paper in Sustainable Manufacturing" Applied Sciences 15, no. 2: 875. https://doi.org/10.3390/app15020875
APA StyleMałachowska, E. (2025). Impact of Retention Agents on Functional Properties of Recycled Paper in Sustainable Manufacturing. Applied Sciences, 15(2), 875. https://doi.org/10.3390/app15020875