An Artificial Intelligence Approach for the Kinodynamically Feasible Trajectory Planning of a Car-like Vehicle
Abstract
:1. Introduction
- It embeds provable kinodynamic feasibility in artificial intelligence-planned trajectories;
- It offers a sensitivity analysis of the most important parameters of the AI training with respect to the planning;
- It offers an analysis of some of AI feature effects upon planning.
2. Trajectory Planning Problem
2.1. System Model
- The longitudinal forces affecting the tires are due to brakes and engine torque only;
- The considered vehicle uses front-wheel drive, with an equal distribution of torque between front tires, and the braking torque is, instead, evenly distributed among all four tires;
- Tire aligning torques are neglected;
- Dissipative force is made up of drag, rolling friction, and gravity force.
- The slope is considered as an uncertain parameter;
- The vehicle forward velocity is constant.
2.2. Constrained Control Problem
2.3. Trajectory Feasibility
3. Feasible Trajectory Planning Algorithm
- Identify and evaluate the adjacent node with the most favorable heuristic value relative to ;
- Compute the projection of to the end point of the trajectory segment ;
- If condition (22) is satisfied and A is not the destination node, calculate and repeat the process.
Algorithm 1 The pseudocode for the planning algorithm. |
|
3.1. Artificial Intelligence-Based Heuristic
3.2. SVM-Improved Heuristics
- The length of the candidate segment;
- The change in direction;
- The x value in the relevant vector.
- is the input feature vector;
- N is the number of support vectors;
- defines the Lagrange multipliers for each support vector;
- defines the class labels of the support vectors, determining whether the input is acceptable or not for a trajectory;
- is the polynomial kernel function;
- b is the bias term.
3.3. LSTM-Improved Heuristics
- is the input instance at time step t, where comprises the length of the candidate segment, the change in direction, and the x value in the relevant vector.
- is the weight matrix associated with the input features.
- is the bias term.
- is the output (hidden state) at time t produced by applying the hyperbolic tangent () activation function.
4. Numerical Results and Discussion
4.1. Training and Scenario
Parameter | Value | Unit | Uncertainty (%) |
---|---|---|---|
Vehicle A | |||
Vehicle mass | 1550 | kg | 8 |
Yaw-axis moment of inertia of the vehicle | 1260 | kg/m2 | 10 |
Rear axle tires stiffness | 43,300 | N/rad | 15 |
Front axle tires stiffness | 63,700 | N/rad | 15 |
Forward velocity | 25 | m/s | 10 |
Vehicle B | |||
Vehicle mass | 1800 | kg | 8 |
Yaw-axis moment of inertia of the vehicle | 1500 | kg/m2 | 10 |
Rear axle tires stiffness | 43,300 | N/rad | 15 |
Front axle tires stiffness | 63,700 | N/rad | 15 |
Forward velocity | 20 | m/s | 10 |
Vehicle C | |||
Vehicle mass | 1550 | kg | 8 |
Yaw-axis moment of inertia of the vehicle | 1260 | kg/m2 | 10 |
Rear axle tires stiffness | 40,000 | N/rad | 15 |
Front axle tires stiffness | 60,000 | N/rad | 15 |
Forward velocity | 20 | m/s | 10 |
Vehicle D | |||
Vehicle mass | 1300 | kg | 8 |
Yaw-axis moment of inertia of the vehicle | 1056 | kg/m2 | 10 |
Rear axle tires stiffness | 43,300 | N/rad | 15 |
Front axle tires stiffness | 63,700 | N/rad | 15 |
Forward velocity | 25 | m/s | 10 |
- The change in pose (angle and tracking error) associated with each segment of the trajectory;
- The length of each trajectory segment;
- The feasible/unfeasible label for the trajectory followed by a candidate segment.
4.2. Algorithm Efficiency
4.3. Kf Parameter
- required the expansion of 181 nodes, with 5430 evaluations of LMIs;
- required the expansion of 174 nodes, with 5394 evaluations of LMIs;
- required the expansion of 174 nodes, with 4003 evaluations of LMIs.
4.4. Training Weights in SVM
4.5. Number of LSTM Layers
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Scordamaglia, V.; Nardi, V. A Set-Based Trajectory Planning Algorithm for a Network Controlled Skid-Steered Tracked Mobile Robot Subject to Skid and Slip Phenomena. J. Intell. Robot. Syst. 2021, 101, 15. [Google Scholar] [CrossRef]
- Dai, Y.; Xiang, C.; Zhang, Y.; Jiang, Y.; Qu, W.; Zhang, Q. A review of spatial robotic arm trajectory planning. Aerospace 2022, 9, 361. [Google Scholar] [CrossRef]
- Savsani, P.; Jhala, R.L.; Savsani, V.J. Comparative study of different metaheuristics for the trajectory planning of a robotic arm. IEEE Syst. J. 2014, 10, 697–708. [Google Scholar] [CrossRef]
- Ekrem, Ö.; Aksoy, B. Trajectory planning for a 6-axis robotic arm with particle swarm optimization algorithm. Eng. Appl. Artif. Intell. 2023, 122, 106099. [Google Scholar] [CrossRef]
- Zhang, T.; Li, H.; Fang, Y.; Luo, M.; Cao, K. Joint Dispatching and Cooperative Trajectory Planning for Multiple Autonomous Forklifts in a Warehouse: A Search-and-Learning-Based Approach. Electronics 2023, 12, 3820. [Google Scholar] [CrossRef]
- Belter, J.; Hering, M.; Weichbroth, P. Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review. Appl. Sci. 2023, 13, 9780. [Google Scholar] [CrossRef]
- Morello, R.; De Capua, C.; Lugarà, M.; Lamonaca, F.; Fabbiano, L. Risk model for landslide hazard assessment. IET Sci. Meas. Technol. 2014, 8, 129–134. [Google Scholar] [CrossRef]
- Scholz, S.; Berger, L. Optimization-based Trajectory Planning for Heat Conduction. In Proceedings of the 2024 25th International Carpathian Control Conference (ICCC), Krynica Zdrój, Poland, 22–24 May 2024; pp. 1–5. [Google Scholar]
- Rhein, S.D. Optimal Trajectory Planning for Multiphysics Problems Governed by Electromagnetic and Thermal Phenomena. Ph.D. Thesis, Universität Ulm, Ulm, Germnay, 2018. [Google Scholar]
- Fulco, G.; Ruffa, F.; Lugarà, M.; Filianoti, P.; de Capua, C. Automatic station for monitoring a microgrid. In Proceedings of the 24th IMEKO TC4 International Symposium and 22nd International Workshop on ADC and DAC Modelling and Testing IMEKO TC-4 2020, Palermo, Italy, 14–16 September 2020; pp. 309–314. [Google Scholar]
- Ruffa, F.; Fulco, G.; Lugarà, M.; Filianoti, P.; De Capua, C. A real-time smart charge controller to efficiency charge processes of LiFePO4 batteries. In Proceedings of the 24th IMEKO TC4 International Symposium and 22nd International Workshop on ADC and DAC Modelling and Testing, Palermo, Italy, 14–16 September 2020; pp. 162–167. [Google Scholar]
- Singh, S. Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey; Technical Report; National Center for Statistics and Analysis: Washington, DC, USA, 2015. [Google Scholar]
- Arena, F.; Ticali, D. The development of autonomous driving vehicles in tomorrow’s smart cities mobility. AIP Conf. Proc. 2018, 2040, 140007. [Google Scholar]
- On-Road Automated Driving (ORAD) Committee. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. 2021. Available online: https://doi.org/10.4271/J3016_202104 (accessed on 10 January 2025).
- Kinnear, N.; Stuttard, N.; Hynd, D.; Helman, S.; Edwards, M. Safe Performance of Other Activities in Conditionally Automated Vehicles: Automated Lane Keeping System; Technical Report; UK Department for Transport: London, UK, 2020. [Google Scholar]
- Silvestri, S.; Tricomi, G.; Bassolillo, S.R.; De Benedictis, R.; Ciampi, M. An Urban Intelligence Architecture for Heterogeneous Data and Application Integration, Deployment and Orchestration. Sensors 2024, 24, 2376. [Google Scholar] [CrossRef]
- Paden, B.; Čáp, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [Google Scholar] [CrossRef]
- Schürmann, B.; Heß, D.; Eilbrecht, J.; Stursberg, O.; Köster, F.; Althoff, M. Ensuring drivability of planned motions using formal methods. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–8. [Google Scholar]
- Burger, C.; Lauer, M. Cooperative multiple vehicle trajectory planning using miqp. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 602–607. [Google Scholar]
- Andersen, H.; Alonso-Mora, J.; Eng, Y.H.; Rus, D.; Ang, M.H. Trajectory Optimization and Situational Analysis Framework for Autonomous Overtaking With Visibility Maximization. IEEE Trans. Intell. Veh. 2020, 5, 7–20. [Google Scholar] [CrossRef]
- Pepy, R.; Lambert, A.; Mounier, H. Path planning using a dynamic vehicle model. In Proceedings of the 2006 2nd International Conference on Information & Communication Technologies, Damascus, Syria, 24–28 April 2006; Volume 1, pp. 781–786. [Google Scholar]
- D’Amato, E.; Nardi, V.A.; Notaro, I.; Scordamaglia, V. A Visibility Graph approach for path planning and real-time collision avoidance on maritime unmanned systems. In Proceedings of the 2021 International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Reggio Calabria, Italy, 4–6 October 2021; pp. 400–405. [Google Scholar] [CrossRef]
- Reif, J.; Sharir, M. Motion planning in the presence of moving obstacles. J. ACM (JACM) 1994, 41, 764–790. [Google Scholar] [CrossRef]
- Claussmann, L.; Revilloud, M.; Gruyer, D.; Glaser, S. A Review of Motion Planning for Highway Autonomous Driving. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1826–1848. [Google Scholar] [CrossRef]
- Villagra, J.; Milanés, V.; Pérez, J.; Godoy, J. Smooth path and speed planning for an automated public transport vehicle. Robot. Auton. Syst. 2012, 60, 252–265. [Google Scholar] [CrossRef]
- Bassolillo, S.; D’Amato, E.; Scapaticci, G.; Blasi, L.; Mattei, M. Ant Colony Algorithm for Path Planning of a Quadrotor UAV. In Proceedings of the Proceedings XXII AIDAA National Congress, Napoli, Italy, 9–12 September 2013. [Google Scholar]
- Bassolillo, S.; Blasi, L.; D’Amato, E.; Mattei, M.; Notaro, I. A recurrent planning strategy for uav optimum path identification in a dynamic environment based on bit-coded flight manoeuvres. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1–4 September 2020; pp. 676–685. [Google Scholar]
- Talamino, J.P.; Sanfeliu, A. Anticipatory kinodynamic motion planner for computing the best path and velocity trajectory in autonomous driving. Robot. Auton. Syst. 2019, 114, 93–105. [Google Scholar] [CrossRef]
- Festl, K.; Stolz, M.; Watzenig, D. Multi-Objective Path Tracking Control for Car-Like Vehicles With Differentially Bounded n-Smooth Output. IEEE Trans. Intell. Transp. Syst. 2024, 25, 8017–8027. [Google Scholar] [CrossRef]
- Kim, J.; Ahn, C. Real-time speed trajectory planning for minimum fuel consumption of a ground vehicle. IEEE Trans. Intell. Transp. Syst. 2019, 21, 2324–2338. [Google Scholar] [CrossRef]
- Elsner, J. Optimizing passenger comfort in cost functions for trajectory planning. arXiv 2018, arXiv:1811.06895. [Google Scholar]
- Typaldos, P.; Papageorgiou, M.; Papamichail, I. Optimization-based path-planning for connected and non-connected automated vehicles. Transp. Res. Part C Emerg. Technol. 2022, 134, 103487. [Google Scholar] [CrossRef]
- Bassolillo, S.R.; Raspaolo, G.; Blasi, L.; D’Amato, E.; Notaro, I. Path Planning for Fixed-Wing Unmanned Aerial Vehicles: An Integrated Approach with Theta* and Clothoids. Drones 2024, 8, 62. [Google Scholar] [CrossRef]
- Bounini, F.; Gingras, D.; Pollart, H.; Gruyer, D. Modified artificial potential field method for online path planning applications. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 180–185. [Google Scholar] [CrossRef]
- Boroujeni, Z.; Goehring, D.; Ulbrich, F.; Neumann, D.; Rojas, R. Flexible unit A-star trajectory planning for autonomous vehicles on structured road maps. In Proceedings of the 2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Vienna, Austria, 27–28 June 2017; pp. 7–12. [Google Scholar] [CrossRef]
- Fraichard, T. Trajectory planning in a dynamic workspace: A’state-time space’approach. Adv. Robot. 1998, 13, 75–94. [Google Scholar] [CrossRef]
- Kavraki, L.; Svestka, P.; Latombe, J.C.; Overmars, M. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [Google Scholar] [CrossRef]
- Qu, P.; Xue, J.; Ma, L.; Ma, C. A constrained VFH algorithm for motion planning of autonomous vehicles. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Republic of Korea, 28 June–1 July 2015; pp. 700–705. [Google Scholar] [CrossRef]
- Johnson, J.; Hauser, K. Optimal longitudinal control planning with moving obstacles. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013; pp. 605–611. [Google Scholar]
- Liu, C.; Lee, S.; Varnhagen, S.; Tseng, H.E. Path planning for autonomous vehicles using model predictive control. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 174–179. [Google Scholar] [CrossRef]
- Wang, Q.; Ayalew, B. Obstacle filtering algorithm for control of an autonomous road vehicle in public highway traffic. In Proceedings of the Dynamic Systems and Control Conference. American Society of Mechanical Engineers, Minneapolis, MN, USA, 12–14 October 2016; Volume 50701, p. V002T24A009. [Google Scholar]
- Pan, H.; Luo, M.; Wang, J.; Huang, T.; Sun, W. A Safe Motion Planning and Reliable Control Framework for Autonomous Vehicles. IEEE Trans. Intell. Veh. 2024, 9, 4780–4793. [Google Scholar] [CrossRef]
- Menon, A.G.; Bindu, S. Artificial intelligence-based trajectory planning for driverless vehicles—A review. In Recent Advances in Hybrid and Electric Automotive Technologies: Select Proceedings of HEAT 2021; Springer: Singapore, 2022; pp. 167–183. [Google Scholar]
- Mir, I.; Gul, F.; Mir, S.; Khan, M.A.; Saeed, N.; Abualigah, L.; Abuhaija, B.; Gandomi, A.H. A Survey of Trajectory Planning Techniques for Autonomous Systems. Electronics 2022, 11, 2801. [Google Scholar] [CrossRef]
- Madridano, Á.; Al-Kaff, A.; Martín, D.; de la Escalera, A. Trajectory planning for multi-robot systems: Methods and applications. Expert Syst. Appl. 2021, 173, 114660. [Google Scholar] [CrossRef]
- Janglova, D. Neural networks in mobile robot motion. Int. J. Adv. Robot. Syst. 2004, 1, 2. [Google Scholar] [CrossRef]
- Claussmann, L.; Carvalho, A.; Schildbach, G. A path planner for autonomous driving on highways using a human mimicry approach with Binary Decision Diagrams. In Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 15–17 July 2015; pp. 2976–2982. [Google Scholar] [CrossRef]
- Vallon, C.; Ercan, Z.; Carvalho, A.; Borrelli, F. A machine learning approach for personalized autonomous lane change initiation and control. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1590–1595. [Google Scholar] [CrossRef]
- Zhang, P.; Xiong, C.; Li, W.; Du, X.; Zhao, C. Path planning for mobile robot based on modified rapidly exploring random tree method and neural network. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418784221. [Google Scholar] [CrossRef]
- Morsali, M.; Frisk, E.; Åslund, J. Spatio-Temporal Planning in Multi-Vehicle Scenarios for Autonomous Vehicle Using Support Vector Machines. IEEE Trans. Intell. Veh. 2021, 6, 611–621. [Google Scholar] [CrossRef]
- Kim, T.; Lee, H.; Hong, S.; Lee, W. TOAST: Trajectory Optimization and Simultaneous Tracking Using Shared Neural Network Dynamics. IEEE Robot. Autom. Lett. 2022, 7, 9747–9754. [Google Scholar] [CrossRef]
- Bonnavaud, H.; Albore, A.; Rachelson, E. Learning State Reachability as a Graph in Translation Invariant Goal-based Reinforcement Learning Tasks. In Proceedings of the PRL Workshop Series—Bridging the Gap Between AI Planning and Reinforcement Learning, Brussels, Belgium, 14–16 September 2023. [Google Scholar]
- Hafner, D.; Lillicrap, T.; Ba, J.; Norouzi, M. Dream to control: Learning behaviors by latent imagination. arXiv 2019, arXiv:1912.01603. [Google Scholar]
- Wu, Z.; Yu, C.; Chen, C.; Hao, J.; Zhuo, H.H. Plan to predict: Learning an uncertainty-foreseeing model for model-based reinforcement learning. Adv. Neural Inf. Process. Syst. 2022, 35, 15849–15861. [Google Scholar]
- Nardi, V.A. Set-based trajectory planning for a car-like vehicle. In Proceedings of the 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT), Valetta, Malta, 1–4 July 2024; pp. 562–568. [Google Scholar] [CrossRef]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadelphia, PA, USA, 1994. [Google Scholar]
- Gillespie, T.D. Fundamentals of Vehicle Dynamics; Technical Report; SAE Technical Paper; SAE: Warrendale, PA, USA, 1992. [Google Scholar]
- Vicente, B.A.H.; James, S.S.; Anderson, S.R. Linear system identification versus physical modeling of lateral–longitudinal vehicle dynamics. IEEE Trans. Control Syst. Technol. 2020, 29, 1380–1387. [Google Scholar] [CrossRef]
- Posthumus-Cloosterman, M. Control over Communication Networks: Modeling, Analysis, and Synthesis. Ph.D. Thesis, Department of Mechanical, Technische Universiteit Eindhoven, Eindhoven, The Nederlands, 2008. [Google Scholar] [CrossRef]
- Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1984. [Google Scholar]
- Cummins, C.; Petoumenos, P.; Wang, Z.; Leather, H. End-to-End Deep Learning of Optimization Heuristics. In Proceedings of the 2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT), Portland, OR, USA, 9–13 September 2017; pp. 219–232. [Google Scholar] [CrossRef]
- Hochreiter, S. Long Short-Term Memory; Neural Computation MIT-Press: Cambridge, MA, USA, 1997. [Google Scholar]
Target A | Target B | Target C | Target D | ||
---|---|---|---|---|---|
Vehicle A | Baseline | 5430 | 6002 | 4001 | 3097 |
4003 | 7389 | 4769 | 3712 | ||
Vehicle B | Baseline | 4654 | 5132 | 3399 | 2604 |
5584 | 6055 | 3990 | 2922 | ||
Vehicle C | Baseline | 4490 | 5002 | 3288 | 2506 |
5239 | 5563 | 3941 | 3057 | ||
Vehicle D | Baseline | 5012 | 5540 | 3688 | 2799 |
5919 | 6795 | 4724 | 3507 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nardi, V.A.; Lanza, M.; Ruffa, F.; Scordamaglia, V. An Artificial Intelligence Approach for the Kinodynamically Feasible Trajectory Planning of a Car-like Vehicle. Appl. Sci. 2025, 15, 795. https://doi.org/10.3390/app15020795
Nardi VA, Lanza M, Ruffa F, Scordamaglia V. An Artificial Intelligence Approach for the Kinodynamically Feasible Trajectory Planning of a Car-like Vehicle. Applied Sciences. 2025; 15(2):795. https://doi.org/10.3390/app15020795
Chicago/Turabian StyleNardi, Vito Antonio, Marianna Lanza, Filippo Ruffa, and Valerio Scordamaglia. 2025. "An Artificial Intelligence Approach for the Kinodynamically Feasible Trajectory Planning of a Car-like Vehicle" Applied Sciences 15, no. 2: 795. https://doi.org/10.3390/app15020795
APA StyleNardi, V. A., Lanza, M., Ruffa, F., & Scordamaglia, V. (2025). An Artificial Intelligence Approach for the Kinodynamically Feasible Trajectory Planning of a Car-like Vehicle. Applied Sciences, 15(2), 795. https://doi.org/10.3390/app15020795