Particulate Matter During Food Preparation on a Barbecue: A Case Study of an Electric Barbecue
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Reconsideration of the National Ambient Air Quality Standards for Particulate Matter; Office of the Federal Register: Washington, DC, USA, 2024. [Google Scholar]
- Lee, Y.-Y.; Park, H.; Seo, Y.; Yun, J.; Kwon, J.; Park, K.-W.; Han, S.-B.; Oh, K.C.; Jeon, J.-M.; Cho, K.-S. Emission Characteristics of Particulate Matter, Odors, and Volatile Organic Compounds from the Grilling of Pork. Environ. Res. 2020, 183, 109162. [Google Scholar] [CrossRef] [PubMed]
- Jelonek, Z.; Drobniak, A.; Mastalerz, M.; Jelonek, I. Emissions during Grilling with Wood Pellets and Chips. Atmos. Environ. X 2021, 12, 100140. [Google Scholar] [CrossRef]
- ElSharkawy, M.F.; Ibrahim, O.A. Impact of the Restaurant Chimney Emissions on the Outdoor Air Quality. Atmosphere 2022, 13, 261. [Google Scholar] [CrossRef]
- Alves, C.A.; Evtyugina, M.; Vicente, E.; Vicente, A.; Gonçalves, C.; Neto, A.I.; Nunes, T.; Kováts, N. Outdoor Charcoal Grilling: Particulate and Gas-Phase Emissions, Organic Speciation and Ecotoxicological Assessment. Atmos. Environ. 2022, 285, 119240. [Google Scholar] [CrossRef]
- Saito, E.; Tanaka, N.; Miyazaki, A.; Tsuzaki, M. Concentration and Particle Size Distribution of Polycyclic Aromatic Hydrocarbons Formed by Thermal Cooking. Food Chem. 2014, 153, 285–291. [Google Scholar] [CrossRef]
- Zhang, S.; Peng, S.-C.; Chen, T.-H.; Wang, J.-Z. Evaluation of Inhalation Exposure to Carcinogenic PM10-Bound PAHs of People at Night Markets of an Urban Area in a Metropolis in Eastern China. Aerosol. Air. Qual. Res. 2015, 15, 1944–1954. [Google Scholar] [CrossRef]
- Wu, C.C.; Bao, L.J.; Guo, Y.; Li, S.M.; Zeng, E.Y. Barbecue Fumes: An Overlooked Source of Health Hazards in Outdoor Settings? Environ. Sci. Technol. 2015, 49, 10607–10615. [Google Scholar] [CrossRef]
- Badyda, A.J.; Widziewicz, K.; Rogula-Kozłowska, W.; Majewski, G.; Jureczko, I. Inhalation Exposure to PM-Bound Polycyclic Aromatic Hydrocarbons Released from Barbecue Grills Powered by Gas, Lump Charcoal, and Charcoal Briquettes. In Pulmonary Disorders and Therapy; Pokorski, M., Ed.; Advances in Experimental Medicine and Biology; Springer LLC: New York, NY, USA, 2018; Volume 1023, pp. 11–27. ISBN 978-3-319-73702-7. [Google Scholar]
- Badyda, A.J.; Rogula-Kozłowska, W.; Majewski, G.; Bralewska, K.; Widziewicz-Rzońca, K.; Piekarska, B.; Rogulski, M.; Bihałowicz, J.S. Inhalation Risk to PAHs and BTEX during Barbecuing: The Role of Fuel/Food Type and Route of Exposure. J. Hazard. Mater. 2022, 440, 129635. [Google Scholar] [CrossRef]
- Lyu, J.; Shi, Y.; Chen, C.; Zhang, X.; Chu, W.; Lian, Z. Characteristics of PM2.5 Emissions from Six Types of Commercial Cooking in Chinese Cities and Their Health Effects. Environ. Pollut. 2022, 313, 120180. [Google Scholar] [CrossRef]
- Figueiredo, D.; Vicente, E.D.; Gonçalves, C.; Lopes, I.; Oliveira, H.; Alves, C.A. Outdoor Charcoal Combustion in Barbecue Grills: Potential Cytotoxic, Oxidative Stress and Mutagenic Effects. Atmos. Environ. 2024, 322, 120383. [Google Scholar] [CrossRef]
- Lenssen, E.S.; Pieters, R.H.H.; Nijmeijer, S.M.; Oldenwening, M.; Meliefste, K.; Hoek, G. Short-Term Associations between Barbecue Fumes and Respiratory Health in Young Adults. Environ. Res. 2022, 204, 111868. [Google Scholar] [CrossRef] [PubMed]
- Thangavel, P.; Park, D.; Lee, Y.-C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. IJERPH 2022, 19, 7511. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, Y.; Tang, X.; Zhu, J.; Zhu, T. Estimating Adult Mortality Attributable to PM2.5 Exposure in China with Assimilated PM2.5 Concentrations Based on a Ground Monitoring Network. Sci. Total Environ. 2016, 568, 1253–1262. [Google Scholar] [CrossRef]
- Wei, T.; Tang, M. Biological Effects of Airborne Fine Particulate Matter (PM2.5) Exposure on Pulmonary Immune System. Environ. Toxicol. Pharmacol. 2018, 60, 195–201. [Google Scholar] [CrossRef]
- European Environment Agency. European Union 8th Environment Action Programme: Monitoring Report on Progress Towards the 8th EAP Objectives, 2023rd ed.; European Environment Agency: Copenhagen, Denmark, 2023. [Google Scholar]
- Kim, H.; Lee, S.-b. Charcoal Grill Restaurants Deteriorate Outdoor Air Quality by Emitting Volatile Organic Compounds. Pol. J. Environ. Stud. 2012, 21, 1667–1673. [Google Scholar]
- Susaya, J.; Kim, K.-H.; Ahn, J.-W.; Jung, M.-C.; Kang, C.-H. BBQ Charcoal Combustion as an Important Source of Trace Metal Exposure to Humans. J. Hazard. Mater. 2010, 176, 932–937. [Google Scholar] [CrossRef]
- Torkmahalleh, M.A.; Gorjinezhad, S.; Keles, M.; Unluevcek, H.S.; Azgin, C.; Cihan, E.; Tanis, B.; Soy, N.; Ozaslan, N.; Ozturk, F.; et al. A Controlled Study for the Characterization of PM2.5 Emitted during Grilling Ground Beef Meat. J. Aerosol. Sci. 2017, 103, 132–140. [Google Scholar] [CrossRef]
- Farhadian, A.; Jinap, S.; Hanifah, H.N.; Zaidul, I.S. Effects of Meat Preheating and Wrapping on the Levels of Polycyclic Aromatic Hydrocarbons in Charcoal-Grilled Meat. Food Chem. 2011, 124, 141–146. [Google Scholar] [CrossRef]
- Kafouris, D.; Koukkidou, A.; Christou, E.; Hadjigeorgiou, M.; Yiannopoulos, S. Determination of Polycyclic Aromatic Hydrocarbons in Traditionally Smoked Meat Products and Charcoal Grilled Meat in Cyprus. Meat Sci. 2020, 164, 108088. [Google Scholar] [CrossRef]
- Onopiuk, A.; Kołodziejczak, K.; Szpicer, A.; Wojtasik-Kalinowska, I.; Wierzbicka, A.; Półtorak, A. Analysis of Factors That Influence the PAH Profile and Amount in Meat Products Subjected to Thermal Processing. Trends Food Sci. Technol. 2021, 115, 366–379. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, B.; Liu, C.; Lin, H.; Yang, X.; Zhang, Y. Indoor SVOC Pollution in China: A Review. Chin. Sci. Bull. 2010, 55, 1469–1478. [Google Scholar] [CrossRef]
- Ramesh, A.; Archibong, A.E. Reproductive Toxicity of Polycyclic Aromatic Hydrocarbons. In Reproductive and Developmental Toxicology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 577–591. ISBN 978-0-12-382032-7. [Google Scholar]
- Patra, S.; Madhuri, R.; Sharma, P.K. Role of Nanomaterials as an Emerging Trend Towards the Detection of Winged Contaminants. In Nanotechnology in Oil and Gas Industries; Saleh, T.A., Ed.; Topics in Mining, Metallurgy and Materials Engineering; Springer International Publishing: Cham, Switzerland, 2018; pp. 245–289. ISBN 978-3-319-60629-3. [Google Scholar]
- Sampaio, G.R.; Guizellini, G.M.; Da Silva, S.A.; De Almeida, A.P.; Pinaffi-Langley, A.C.C.; Rogero, M.M.; De Camargo, A.C.; Torres, E.A.F.S. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. Int. J. Mol. Sci. 2021, 22, 6010. [Google Scholar] [CrossRef] [PubMed]
- Jindal, S.; Chaudhary, Y.; Aggarwal, K.K. Toxicity of Polyaromatic Hydrocarbons and Their Biodegradation in the Environment. In Green Chemistry Approaches to Environmental Sustainability; Elsevier: Amsterdam, The Netherlands, 2024; pp. 43–66. ISBN 978-0-443-18959-3. [Google Scholar]
- Rouf, Z.; Dar, I.Y.; Javaid, M.; Dar, M.Y.; Jehangir, A. Volatile Organic Compounds Emission from Building Sector and Its Adverse Effects on Human Health. In Ecological and Health Effects of Building Materials; Malik, J.A., Marathe, S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 67–86. ISBN 978-3-030-76072-4. [Google Scholar]
- Leachi, H.F.L.; Marziale, M.H.P.; Martins, J.T.; Aroni, P.; Galdino, M.J.Q.; Ribeiro, R.P. Polycyclic Aromatic Hydrocarbons and Development of Respiratory and Cardiovascular Diseases in Workers. Rev. Bras. Enferm. 2020, 73, e20180965. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Kim, H.J.; Sohn, J.R.; Seo, J.H. Occupational Exposure to VOCs and Carbonyl Compounds in Beauty Salons and Health Risks Associated with It in South Korea. Ecotoxicol. Environ. Saf. 2023, 256, 114873. [Google Scholar] [CrossRef]
- Li, L.; Cheng, Y.; Dai, Q.; Liu, B.; Wu, J.; Bi, X.; Choe, T.-H.; Feng, Y. Chemical Characterization and Health Risk Assessment of VOCs and PM2.5-Bound PAHs Emitted from Typical Chinese Residential Cooking. Atmos. Environ. 2022, 291, 119392. [Google Scholar] [CrossRef]
- Over 60% Electric Grills Posed Safety Risks 1 with Potential Fire Hazard Beware of Health Impacts of Indoor Cooking Fumes. Available online: https://www.consumer.org.hk/tc/article/545-electric-bbq-grills/545-electric-bbq-grills-test-samples (accessed on 10 December 2024).
- Ding, C.; Ni, H.-G.; Zeng, H. Human Exposure to Parent and Halogenated Polycyclic Aromatic Hydrocarbons via Food Consumption in Shenzhen, China. Sci. Total Environ. 2013, 443, 857–863. [Google Scholar] [CrossRef]
- Sówka, I.; Chlebowska-Styś, A.; Pachurka, Ł.; Rogula-Kozłowska, W.; Mathews, B. Analysis of Particulate Matter Concentration Variability and Origin in Selected Urban Areas in Poland. Sustainability 2019, 11, 5735. [Google Scholar] [CrossRef]
- Querol, X. PM10 and PM2.5 Source Apportionment in the Barcelona Metropolitan Area, Catalonia, Spain. Atmos. Environ. 2001, 35, 6407–6419. [Google Scholar] [CrossRef]
- Mach, T.; Rogula-Kozłowska, W.; Bralewska, K.; Majewski, G.; Rogula-Kopiec, P.; Rybak, J. Impact of Municipal, Road Traffic, and Natural Sources on PM10: The Hourly Variability at a Rural Site in Poland. Energies 2021, 14, 2654. [Google Scholar] [CrossRef]
- Mach, T.; Bihałowicz, J.S.; Rybak, J.; Rogula-Kozłowska, W. Elemental Composition and Origin of PM10 in a Fire Station in Poland. Real-Time Results from the XRF Analysis. Environ. Prot. Eng. 2023, 49, 57–72. [Google Scholar] [CrossRef]
- Suleman, R.; Hui, T.; Wang, Z.; Alarcon-Rojo, A.D.; Liu, H.; Zhang, D. Semi-Quantitative and Qualitative Distinction of Aromatic and Flavour Compounds in Charcoal Grilled, Electric Barbecue Grilled, Infrared Grilled and Superheated-Steam Roasted Lamb Meat Patties Using GC/MC, E-Nose and E-Tongue. Separations 2022, 9, 71. [Google Scholar] [CrossRef]
- Geng, S.; Dorling, K.C.; Prenzel, T.M.; Albrecht, S. Grill and Chill: A Comprehensive Analysis of the Environmental Impacts of Private Household Barbecuing in Germany. Sustainability 2024, 16, 1041. [Google Scholar] [CrossRef]
- Polish Language: What’s Majówka in Poland? Available online: https://onlinepolishcourse.com/whats-majowka-in-poland/ (accessed on 26 September 2024).
- G. Ballester Valor OGIMET. Available online: https://www.ogimet.com/home.phtml.en (accessed on 3 November 2024).
- OpenStreetMap Contributors OpenStreetMap. Available online: https://openstreetmap.org/ (accessed on 25 October 2023).
- Palas GmbH AQ Guard. Available online: https://www.palas.de/en/product/aq-guard (accessed on 17 September 2024).
- Palas GmbH MonoDust 1500. Available online: https://www.palas.de/en/product/monodust1500 (accessed on 11 December 2024).
- Philips Buy the Philips Table Grill HD4419/20R1 Table Grill. Available online: https://www.philips.com/c-p/HD4419_20R1/table-grill (accessed on 3 November 2024).
- mlu-recordum Airpointer 4D—JCT NextGen AQMS. Available online: https://jct-aq.com/products/airpointer4d/ (accessed on 3 November 2024).
- PALAS GmbH Fidas® 200 EN 16450 Approved Fine Dust Measurement Device for Simultaneous Measurement of PM2.5 and PM10. Available online: https://www.palas.de/en/product/fidas200 (accessed on 15 September 2023).
- TÜV Rheinland Energy & Environment GmbH. CERTIFICATE of Product Conformity (QAL1). Available online: https://www.palas.de/file/Wn8698/application/octet-stream/Palas+T%C3%9CV+Certificate+Fidas+System (accessed on 11 December 2024).
- GUGiK Download Service (WCS). Available online: https://www.geoportal.gov.pl/en/services/download-service-wcs/ (accessed on 11 October 2022).
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009; ISBN 1-4414-1269-7. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Ikeda, Y. Zenodo. Yuzie007/Mpltern: 1.0.4. 2024. Available online: https://zenodo.org/records/11068993 (accessed on 11 December 2024).
- QGIS Development Team. QGIS Geographic Information System, Version 3.22. Open Source Geospatial Foundation Project. QGIS: Białowieża, Poland, 2021.
- Gysel, N.; Welch, W.A.; Chen, C.-L.; Dixit, P.; Cocker, D.R.; Karavalakis, G. Particulate Matter Emissions and Gaseous Air Toxic Pollutants from Commercial Meat Cooking Operations. J. Environ. Sci. 2018, 65, 162–170. [Google Scholar] [CrossRef]
- Xu, C.; Chen, J.; Zhang, X.; Cai, K.; Chen, C.; Xu, B. Emission Characteristics and Quantitative Assessment of the Health Risks of Cooking Fumes during Outdoor Barbecuing. Environ. Pollut. 2023, 323, 121319. [Google Scholar] [CrossRef]
- Waldraff, A.; Schaber, K. A Gas Phase Method for the Generation of Aqueous Submicron Suspensions of Poorly Water Soluble Organic Substances. Chem. Eng. Res. Des. 2015, 102, 244–252. [Google Scholar] [CrossRef]
- Sjaastad, A.K.; Svendsen, K. Exposure to Mutagenic Aldehydes and Particulate Matter during Panfrying of Beefsteak with Margarine, Rapeseed Oil, Olive Oil or Soybean Oil. Ann. Occup. Hyg. 2008, 52, 739–745. [Google Scholar] [CrossRef]
- Buonanno, G.; Johnson, G.; Morawska, L.; Stabile, L. Volatility Characterization of Cooking-Generated Aerosol Particles. Aerosol. Sci. Technol. 2011, 45, 1069–1077. [Google Scholar] [CrossRef]
- Grange, S.K.; Fischer, A.; Zellweger, C.; Alastuey, A.; Querol, X.; Jaffrezo, J.-L.; Weber, S.; Uzu, G.; Hueglin, C. Switzerland’s PM10 and PM2.5 Environmental Increments Show the Importance of Non-Exhaust Emissions. Atmos. Environ. X 2021, 12, 100145. [Google Scholar] [CrossRef]
- Matthaios, V.N.; Lawrence, J.; Martins, M.A.G.; Ferguson, S.T.; Wolfson, J.M.; Harrison, R.M.; Koutrakis, P. Quantifying Factors Affecting Contributions of Roadway Exhaust and Non-Exhaust Emissions to Ambient PM10–2.5 and PM2.5–0.2 Particles. Sci. Total Environ. 2022, 835, 155368. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xiao, Y.; Liu, J.; Dai, X. Emission and Capture Characteristics of Chinese Cooking-Related Fine Particles. Environ. Sci. Pollut. Res. 2023, 30, 112988–113001. [Google Scholar] [CrossRef]
- Mostafa, M.Y.A.; Khalaf, H.N.B.; Zhukovsky, M.V. Dynamic of Particulate Matter for Quotidian Aerosol Sources in Indoor Air. Atmosphere 2021, 12, 1682. [Google Scholar] [CrossRef]
- Zenissa, R.; Syafei, A.D.; Surahman, U.; Sembiring, A.C.; Pradana, A.W.; Ciptaningayu, T.; Ahmad, I.S.; Assomadi, A.F.; Boedisantoso, R.; Hermana, J. The Effect of Ventilation and Cooking Activities Indoor Fine Particulates in Apartments Towards. Civ. Environ. Eng. 2020, 16, 238–248. [Google Scholar] [CrossRef]
- Hussein, T.; Hämeri, K.; Heikkinen, M.S.A.; Kulmala, M. Indoor and Outdoor Particle Size Characterization at a Family House in Espoo–Finland. Atmos. Environ. 2005, 39, 3697–3709. [Google Scholar] [CrossRef]
- Wang, Y.; Hopke, P.K.; Chalupa, D.C.; Utell, M.J. Long-Term Characterization of Indoor and Outdoor Ultrafine Particles at a Commercial Building. Environ. Sci. Technol. 2010, 44, 5775–5780. [Google Scholar] [CrossRef]
- Nazaroff, W.W. Ten Questions Concerning Indoor Ultrafine Particles. Build. Environ. 2023, 243, 110641. [Google Scholar] [CrossRef]
- Chelani, A.B.; Gajghate, D.G.; ChalapatiRao, C.V.; Devotta, S. Particle Size Distribution in Ambient Air of Delhi and Its Statistical Analysis. Bull. Environ. Contam. Toxicol. 2010, 85, 22–27. [Google Scholar] [CrossRef]
- Bihałowicz, J.S.; Rogula-Kozłowska, W.; Rogula-Kopiec, P.; Świsłowski, P.; Rajfur, M.; Olszowski, T. One-Year-Long, Comprehensive Analysis of pm Number and Mass Size Distributions in Warszawa (Poland). Ecol. Chem. Eng. S 2023, 30, 541–556. [Google Scholar] [CrossRef]
- Tsuda, A.; Henry, F.S. Chaotic Mixing and Its Role in Enhancing Particle Deposition in the Pulmonary Acinus: A Review. In Cardiovascular and Respiratory Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 169–185. ISBN 978-0-12-823956-8. [Google Scholar]
- Voliotis, A.; Samara, C. Submicron Particle Number Doses in the Human Respiratory Tract: Implications for Urban Traffic and Background Environments. Environ. Sci. Pollut. Res. 2018, 25, 33724–33735. [Google Scholar] [CrossRef] [PubMed]
- Lianou, M.; Chalbot, M.-C.; Kotronarou, A.; Kavouras, I.G.; Karakatsani, A.; Katsouyanni, K.; Puustinnen, A.; Hameri, K.; Vallius, M.; Pekkanen, J.; et al. Dependence of Home Outdoor Particulate Mass and Number Concentrations on Residential and Traffic Features in Urban Areas. J. Air Waste Manag. Assoc. 2007, 57, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Pei, G.; Freihaut, J.D.; Rim, D. Long-Term Application of Low-Cost Sensors for Monitoring Indoor Air Quality and Particle Dynamics in a Commercial Building. J. Build. Eng. 2023, 79, 107774. [Google Scholar] [CrossRef]
- Azimi, P.; Zhao, D.; Stephens, B. Modeling the Impact of Residential HVAC Filtration on Indoor Particles of Outdoor Origin (RP-1691). Sci. Technol. Built Environ. 2016, 22, 431–462. [Google Scholar] [CrossRef]
- Badyda, A.; Krawczyk, P.; Bihałowicz, J.S.; Bralewska, K.; Rogula-Kozłowska, W.; Majewski, G.; Oberbek, P.; Marciniak, A.; Rogulski, M. Are BBQs Significantly Polluting Air in Poland? A Simple Comparison of Barbecues vs. Domestic Stoves and Boilers Emissions. Energies 2020, 13, 6245. [Google Scholar] [CrossRef]
- Brunner, E.; Munzel, U. The Nonparametric Behrens-Fisher Problem: Asymptotic Theory and a Small-Sample Approximation. Biom. J. 2000, 42, 17–25. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, G.; Lang, J.; Wen, W.; Wang, X.; Yao, S. Characterization of Volatile Organic Compounds from Different Cooking Emissions. Atmos. Environ. 2016, 145, 299–307. [Google Scholar] [CrossRef]
- Yuan, M.-H.; Kang, S.; Cho, K.-S. A Review of Phyto- and Microbial-Remediation of Indoor Volatile Organic Compounds. Chemosphere 2024, 359, 142120. [Google Scholar] [CrossRef]
- Kotzias, D. Built Environment and Indoor Air Quality: The Case of Volatile Organic Compounds. AIMS Environ. Sci. 2021, 8, 135–147. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bihałowicz, J.S.; Badyda, A.; Rogula-Kozłowska, W.; Widziewicz-Rzońca, K.; Rogula-Kopiec, P.; Chyzhykov, D.; Majewski, G.; Pecio, M. Particulate Matter During Food Preparation on a Barbecue: A Case Study of an Electric Barbecue. Appl. Sci. 2025, 15, 498. https://doi.org/10.3390/app15020498
Bihałowicz JS, Badyda A, Rogula-Kozłowska W, Widziewicz-Rzońca K, Rogula-Kopiec P, Chyzhykov D, Majewski G, Pecio M. Particulate Matter During Food Preparation on a Barbecue: A Case Study of an Electric Barbecue. Applied Sciences. 2025; 15(2):498. https://doi.org/10.3390/app15020498
Chicago/Turabian StyleBihałowicz, Jan Stefan, Artur Badyda, Wioletta Rogula-Kozłowska, Kamila Widziewicz-Rzońca, Patrycja Rogula-Kopiec, Dmytro Chyzhykov, Grzegorz Majewski, and Mariusz Pecio. 2025. "Particulate Matter During Food Preparation on a Barbecue: A Case Study of an Electric Barbecue" Applied Sciences 15, no. 2: 498. https://doi.org/10.3390/app15020498
APA StyleBihałowicz, J. S., Badyda, A., Rogula-Kozłowska, W., Widziewicz-Rzońca, K., Rogula-Kopiec, P., Chyzhykov, D., Majewski, G., & Pecio, M. (2025). Particulate Matter During Food Preparation on a Barbecue: A Case Study of an Electric Barbecue. Applied Sciences, 15(2), 498. https://doi.org/10.3390/app15020498