Particulate Matter During Food Preparation on a Barbecue: A Case Study of an Electric Barbecue
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Reconsideration of the National Ambient Air Quality Standards for Particulate Matter; Office of the Federal Register: Washington, DC, USA, 2024. [Google Scholar]
- Lee, Y.-Y.; Park, H.; Seo, Y.; Yun, J.; Kwon, J.; Park, K.-W.; Han, S.-B.; Oh, K.C.; Jeon, J.-M.; Cho, K.-S. Emission Characteristics of Particulate Matter, Odors, and Volatile Organic Compounds from the Grilling of Pork. Environ. Res. 2020, 183, 109162. [Google Scholar] [CrossRef] [PubMed]
- Jelonek, Z.; Drobniak, A.; Mastalerz, M.; Jelonek, I. Emissions during Grilling with Wood Pellets and Chips. Atmos. Environ. X 2021, 12, 100140. [Google Scholar] [CrossRef]
- ElSharkawy, M.F.; Ibrahim, O.A. Impact of the Restaurant Chimney Emissions on the Outdoor Air Quality. Atmosphere 2022, 13, 261. [Google Scholar] [CrossRef]
- Alves, C.A.; Evtyugina, M.; Vicente, E.; Vicente, A.; Gonçalves, C.; Neto, A.I.; Nunes, T.; Kováts, N. Outdoor Charcoal Grilling: Particulate and Gas-Phase Emissions, Organic Speciation and Ecotoxicological Assessment. Atmos. Environ. 2022, 285, 119240. [Google Scholar] [CrossRef]
- Saito, E.; Tanaka, N.; Miyazaki, A.; Tsuzaki, M. Concentration and Particle Size Distribution of Polycyclic Aromatic Hydrocarbons Formed by Thermal Cooking. Food Chem. 2014, 153, 285–291. [Google Scholar] [CrossRef]
- Zhang, S.; Peng, S.-C.; Chen, T.-H.; Wang, J.-Z. Evaluation of Inhalation Exposure to Carcinogenic PM10-Bound PAHs of People at Night Markets of an Urban Area in a Metropolis in Eastern China. Aerosol. Air. Qual. Res. 2015, 15, 1944–1954. [Google Scholar] [CrossRef]
- Wu, C.C.; Bao, L.J.; Guo, Y.; Li, S.M.; Zeng, E.Y. Barbecue Fumes: An Overlooked Source of Health Hazards in Outdoor Settings? Environ. Sci. Technol. 2015, 49, 10607–10615. [Google Scholar] [CrossRef]
- Badyda, A.J.; Widziewicz, K.; Rogula-Kozłowska, W.; Majewski, G.; Jureczko, I. Inhalation Exposure to PM-Bound Polycyclic Aromatic Hydrocarbons Released from Barbecue Grills Powered by Gas, Lump Charcoal, and Charcoal Briquettes. In Pulmonary Disorders and Therapy; Pokorski, M., Ed.; Advances in Experimental Medicine and Biology; Springer LLC: New York, NY, USA, 2018; Volume 1023, pp. 11–27. ISBN 978-3-319-73702-7. [Google Scholar]
- Badyda, A.J.; Rogula-Kozłowska, W.; Majewski, G.; Bralewska, K.; Widziewicz-Rzońca, K.; Piekarska, B.; Rogulski, M.; Bihałowicz, J.S. Inhalation Risk to PAHs and BTEX during Barbecuing: The Role of Fuel/Food Type and Route of Exposure. J. Hazard. Mater. 2022, 440, 129635. [Google Scholar] [CrossRef]
- Lyu, J.; Shi, Y.; Chen, C.; Zhang, X.; Chu, W.; Lian, Z. Characteristics of PM2.5 Emissions from Six Types of Commercial Cooking in Chinese Cities and Their Health Effects. Environ. Pollut. 2022, 313, 120180. [Google Scholar] [CrossRef]
- Figueiredo, D.; Vicente, E.D.; Gonçalves, C.; Lopes, I.; Oliveira, H.; Alves, C.A. Outdoor Charcoal Combustion in Barbecue Grills: Potential Cytotoxic, Oxidative Stress and Mutagenic Effects. Atmos. Environ. 2024, 322, 120383. [Google Scholar] [CrossRef]
- Lenssen, E.S.; Pieters, R.H.H.; Nijmeijer, S.M.; Oldenwening, M.; Meliefste, K.; Hoek, G. Short-Term Associations between Barbecue Fumes and Respiratory Health in Young Adults. Environ. Res. 2022, 204, 111868. [Google Scholar] [CrossRef] [PubMed]
- Thangavel, P.; Park, D.; Lee, Y.-C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. IJERPH 2022, 19, 7511. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, Y.; Tang, X.; Zhu, J.; Zhu, T. Estimating Adult Mortality Attributable to PM2.5 Exposure in China with Assimilated PM2.5 Concentrations Based on a Ground Monitoring Network. Sci. Total Environ. 2016, 568, 1253–1262. [Google Scholar] [CrossRef]
- Wei, T.; Tang, M. Biological Effects of Airborne Fine Particulate Matter (PM2.5) Exposure on Pulmonary Immune System. Environ. Toxicol. Pharmacol. 2018, 60, 195–201. [Google Scholar] [CrossRef]
- European Environment Agency. European Union 8th Environment Action Programme: Monitoring Report on Progress Towards the 8th EAP Objectives, 2023rd ed.; European Environment Agency: Copenhagen, Denmark, 2023. [Google Scholar]
- Kim, H.; Lee, S.-b. Charcoal Grill Restaurants Deteriorate Outdoor Air Quality by Emitting Volatile Organic Compounds. Pol. J. Environ. Stud. 2012, 21, 1667–1673. [Google Scholar]
- Susaya, J.; Kim, K.-H.; Ahn, J.-W.; Jung, M.-C.; Kang, C.-H. BBQ Charcoal Combustion as an Important Source of Trace Metal Exposure to Humans. J. Hazard. Mater. 2010, 176, 932–937. [Google Scholar] [CrossRef]
- Torkmahalleh, M.A.; Gorjinezhad, S.; Keles, M.; Unluevcek, H.S.; Azgin, C.; Cihan, E.; Tanis, B.; Soy, N.; Ozaslan, N.; Ozturk, F.; et al. A Controlled Study for the Characterization of PM2.5 Emitted during Grilling Ground Beef Meat. J. Aerosol. Sci. 2017, 103, 132–140. [Google Scholar] [CrossRef]
- Farhadian, A.; Jinap, S.; Hanifah, H.N.; Zaidul, I.S. Effects of Meat Preheating and Wrapping on the Levels of Polycyclic Aromatic Hydrocarbons in Charcoal-Grilled Meat. Food Chem. 2011, 124, 141–146. [Google Scholar] [CrossRef]
- Kafouris, D.; Koukkidou, A.; Christou, E.; Hadjigeorgiou, M.; Yiannopoulos, S. Determination of Polycyclic Aromatic Hydrocarbons in Traditionally Smoked Meat Products and Charcoal Grilled Meat in Cyprus. Meat Sci. 2020, 164, 108088. [Google Scholar] [CrossRef]
- Onopiuk, A.; Kołodziejczak, K.; Szpicer, A.; Wojtasik-Kalinowska, I.; Wierzbicka, A.; Półtorak, A. Analysis of Factors That Influence the PAH Profile and Amount in Meat Products Subjected to Thermal Processing. Trends Food Sci. Technol. 2021, 115, 366–379. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, B.; Liu, C.; Lin, H.; Yang, X.; Zhang, Y. Indoor SVOC Pollution in China: A Review. Chin. Sci. Bull. 2010, 55, 1469–1478. [Google Scholar] [CrossRef]
- Ramesh, A.; Archibong, A.E. Reproductive Toxicity of Polycyclic Aromatic Hydrocarbons. In Reproductive and Developmental Toxicology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 577–591. ISBN 978-0-12-382032-7. [Google Scholar]
- Patra, S.; Madhuri, R.; Sharma, P.K. Role of Nanomaterials as an Emerging Trend Towards the Detection of Winged Contaminants. In Nanotechnology in Oil and Gas Industries; Saleh, T.A., Ed.; Topics in Mining, Metallurgy and Materials Engineering; Springer International Publishing: Cham, Switzerland, 2018; pp. 245–289. ISBN 978-3-319-60629-3. [Google Scholar]
- Sampaio, G.R.; Guizellini, G.M.; Da Silva, S.A.; De Almeida, A.P.; Pinaffi-Langley, A.C.C.; Rogero, M.M.; De Camargo, A.C.; Torres, E.A.F.S. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. Int. J. Mol. Sci. 2021, 22, 6010. [Google Scholar] [CrossRef] [PubMed]
- Jindal, S.; Chaudhary, Y.; Aggarwal, K.K. Toxicity of Polyaromatic Hydrocarbons and Their Biodegradation in the Environment. In Green Chemistry Approaches to Environmental Sustainability; Elsevier: Amsterdam, The Netherlands, 2024; pp. 43–66. ISBN 978-0-443-18959-3. [Google Scholar]
- Rouf, Z.; Dar, I.Y.; Javaid, M.; Dar, M.Y.; Jehangir, A. Volatile Organic Compounds Emission from Building Sector and Its Adverse Effects on Human Health. In Ecological and Health Effects of Building Materials; Malik, J.A., Marathe, S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 67–86. ISBN 978-3-030-76072-4. [Google Scholar]
- Leachi, H.F.L.; Marziale, M.H.P.; Martins, J.T.; Aroni, P.; Galdino, M.J.Q.; Ribeiro, R.P. Polycyclic Aromatic Hydrocarbons and Development of Respiratory and Cardiovascular Diseases in Workers. Rev. Bras. Enferm. 2020, 73, e20180965. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Kim, H.J.; Sohn, J.R.; Seo, J.H. Occupational Exposure to VOCs and Carbonyl Compounds in Beauty Salons and Health Risks Associated with It in South Korea. Ecotoxicol. Environ. Saf. 2023, 256, 114873. [Google Scholar] [CrossRef]
- Li, L.; Cheng, Y.; Dai, Q.; Liu, B.; Wu, J.; Bi, X.; Choe, T.-H.; Feng, Y. Chemical Characterization and Health Risk Assessment of VOCs and PM2.5-Bound PAHs Emitted from Typical Chinese Residential Cooking. Atmos. Environ. 2022, 291, 119392. [Google Scholar] [CrossRef]
- Over 60% Electric Grills Posed Safety Risks 1 with Potential Fire Hazard Beware of Health Impacts of Indoor Cooking Fumes. Available online: https://www.consumer.org.hk/tc/article/545-electric-bbq-grills/545-electric-bbq-grills-test-samples (accessed on 10 December 2024).
- Ding, C.; Ni, H.-G.; Zeng, H. Human Exposure to Parent and Halogenated Polycyclic Aromatic Hydrocarbons via Food Consumption in Shenzhen, China. Sci. Total Environ. 2013, 443, 857–863. [Google Scholar] [CrossRef]
- Sówka, I.; Chlebowska-Styś, A.; Pachurka, Ł.; Rogula-Kozłowska, W.; Mathews, B. Analysis of Particulate Matter Concentration Variability and Origin in Selected Urban Areas in Poland. Sustainability 2019, 11, 5735. [Google Scholar] [CrossRef]
- Querol, X. PM10 and PM2.5 Source Apportionment in the Barcelona Metropolitan Area, Catalonia, Spain. Atmos. Environ. 2001, 35, 6407–6419. [Google Scholar] [CrossRef]
- Mach, T.; Rogula-Kozłowska, W.; Bralewska, K.; Majewski, G.; Rogula-Kopiec, P.; Rybak, J. Impact of Municipal, Road Traffic, and Natural Sources on PM10: The Hourly Variability at a Rural Site in Poland. Energies 2021, 14, 2654. [Google Scholar] [CrossRef]
- Mach, T.; Bihałowicz, J.S.; Rybak, J.; Rogula-Kozłowska, W. Elemental Composition and Origin of PM10 in a Fire Station in Poland. Real-Time Results from the XRF Analysis. Environ. Prot. Eng. 2023, 49, 57–72. [Google Scholar] [CrossRef]
- Suleman, R.; Hui, T.; Wang, Z.; Alarcon-Rojo, A.D.; Liu, H.; Zhang, D. Semi-Quantitative and Qualitative Distinction of Aromatic and Flavour Compounds in Charcoal Grilled, Electric Barbecue Grilled, Infrared Grilled and Superheated-Steam Roasted Lamb Meat Patties Using GC/MC, E-Nose and E-Tongue. Separations 2022, 9, 71. [Google Scholar] [CrossRef]
- Geng, S.; Dorling, K.C.; Prenzel, T.M.; Albrecht, S. Grill and Chill: A Comprehensive Analysis of the Environmental Impacts of Private Household Barbecuing in Germany. Sustainability 2024, 16, 1041. [Google Scholar] [CrossRef]
- Polish Language: What’s Majówka in Poland? Available online: https://onlinepolishcourse.com/whats-majowka-in-poland/ (accessed on 26 September 2024).
- G. Ballester Valor OGIMET. Available online: https://www.ogimet.com/home.phtml.en (accessed on 3 November 2024).
- OpenStreetMap Contributors OpenStreetMap. Available online: https://openstreetmap.org/ (accessed on 25 October 2023).
- Palas GmbH AQ Guard. Available online: https://www.palas.de/en/product/aq-guard (accessed on 17 September 2024).
- Palas GmbH MonoDust 1500. Available online: https://www.palas.de/en/product/monodust1500 (accessed on 11 December 2024).
- Philips Buy the Philips Table Grill HD4419/20R1 Table Grill. Available online: https://www.philips.com/c-p/HD4419_20R1/table-grill (accessed on 3 November 2024).
- mlu-recordum Airpointer 4D—JCT NextGen AQMS. Available online: https://jct-aq.com/products/airpointer4d/ (accessed on 3 November 2024).
- PALAS GmbH Fidas® 200 EN 16450 Approved Fine Dust Measurement Device for Simultaneous Measurement of PM2.5 and PM10. Available online: https://www.palas.de/en/product/fidas200 (accessed on 15 September 2023).
- TÜV Rheinland Energy & Environment GmbH. CERTIFICATE of Product Conformity (QAL1). Available online: https://www.palas.de/file/Wn8698/application/octet-stream/Palas+T%C3%9CV+Certificate+Fidas+System (accessed on 11 December 2024).
- GUGiK Download Service (WCS). Available online: https://www.geoportal.gov.pl/en/services/download-service-wcs/ (accessed on 11 October 2022).
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009; ISBN 1-4414-1269-7. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Ikeda, Y. Zenodo. Yuzie007/Mpltern: 1.0.4. 2024. Available online: https://zenodo.org/records/11068993 (accessed on 11 December 2024).
- QGIS Development Team. QGIS Geographic Information System, Version 3.22. Open Source Geospatial Foundation Project. QGIS: Białowieża, Poland, 2021.
- Gysel, N.; Welch, W.A.; Chen, C.-L.; Dixit, P.; Cocker, D.R.; Karavalakis, G. Particulate Matter Emissions and Gaseous Air Toxic Pollutants from Commercial Meat Cooking Operations. J. Environ. Sci. 2018, 65, 162–170. [Google Scholar] [CrossRef]
- Xu, C.; Chen, J.; Zhang, X.; Cai, K.; Chen, C.; Xu, B. Emission Characteristics and Quantitative Assessment of the Health Risks of Cooking Fumes during Outdoor Barbecuing. Environ. Pollut. 2023, 323, 121319. [Google Scholar] [CrossRef]
- Waldraff, A.; Schaber, K. A Gas Phase Method for the Generation of Aqueous Submicron Suspensions of Poorly Water Soluble Organic Substances. Chem. Eng. Res. Des. 2015, 102, 244–252. [Google Scholar] [CrossRef]
- Sjaastad, A.K.; Svendsen, K. Exposure to Mutagenic Aldehydes and Particulate Matter during Panfrying of Beefsteak with Margarine, Rapeseed Oil, Olive Oil or Soybean Oil. Ann. Occup. Hyg. 2008, 52, 739–745. [Google Scholar] [CrossRef]
- Buonanno, G.; Johnson, G.; Morawska, L.; Stabile, L. Volatility Characterization of Cooking-Generated Aerosol Particles. Aerosol. Sci. Technol. 2011, 45, 1069–1077. [Google Scholar] [CrossRef]
- Grange, S.K.; Fischer, A.; Zellweger, C.; Alastuey, A.; Querol, X.; Jaffrezo, J.-L.; Weber, S.; Uzu, G.; Hueglin, C. Switzerland’s PM10 and PM2.5 Environmental Increments Show the Importance of Non-Exhaust Emissions. Atmos. Environ. X 2021, 12, 100145. [Google Scholar] [CrossRef]
- Matthaios, V.N.; Lawrence, J.; Martins, M.A.G.; Ferguson, S.T.; Wolfson, J.M.; Harrison, R.M.; Koutrakis, P. Quantifying Factors Affecting Contributions of Roadway Exhaust and Non-Exhaust Emissions to Ambient PM10–2.5 and PM2.5–0.2 Particles. Sci. Total Environ. 2022, 835, 155368. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xiao, Y.; Liu, J.; Dai, X. Emission and Capture Characteristics of Chinese Cooking-Related Fine Particles. Environ. Sci. Pollut. Res. 2023, 30, 112988–113001. [Google Scholar] [CrossRef]
- Mostafa, M.Y.A.; Khalaf, H.N.B.; Zhukovsky, M.V. Dynamic of Particulate Matter for Quotidian Aerosol Sources in Indoor Air. Atmosphere 2021, 12, 1682. [Google Scholar] [CrossRef]
- Zenissa, R.; Syafei, A.D.; Surahman, U.; Sembiring, A.C.; Pradana, A.W.; Ciptaningayu, T.; Ahmad, I.S.; Assomadi, A.F.; Boedisantoso, R.; Hermana, J. The Effect of Ventilation and Cooking Activities Indoor Fine Particulates in Apartments Towards. Civ. Environ. Eng. 2020, 16, 238–248. [Google Scholar] [CrossRef]
- Hussein, T.; Hämeri, K.; Heikkinen, M.S.A.; Kulmala, M. Indoor and Outdoor Particle Size Characterization at a Family House in Espoo–Finland. Atmos. Environ. 2005, 39, 3697–3709. [Google Scholar] [CrossRef]
- Wang, Y.; Hopke, P.K.; Chalupa, D.C.; Utell, M.J. Long-Term Characterization of Indoor and Outdoor Ultrafine Particles at a Commercial Building. Environ. Sci. Technol. 2010, 44, 5775–5780. [Google Scholar] [CrossRef]
- Nazaroff, W.W. Ten Questions Concerning Indoor Ultrafine Particles. Build. Environ. 2023, 243, 110641. [Google Scholar] [CrossRef]
- Chelani, A.B.; Gajghate, D.G.; ChalapatiRao, C.V.; Devotta, S. Particle Size Distribution in Ambient Air of Delhi and Its Statistical Analysis. Bull. Environ. Contam. Toxicol. 2010, 85, 22–27. [Google Scholar] [CrossRef]
- Bihałowicz, J.S.; Rogula-Kozłowska, W.; Rogula-Kopiec, P.; Świsłowski, P.; Rajfur, M.; Olszowski, T. One-Year-Long, Comprehensive Analysis of pm Number and Mass Size Distributions in Warszawa (Poland). Ecol. Chem. Eng. S 2023, 30, 541–556. [Google Scholar] [CrossRef]
- Tsuda, A.; Henry, F.S. Chaotic Mixing and Its Role in Enhancing Particle Deposition in the Pulmonary Acinus: A Review. In Cardiovascular and Respiratory Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 169–185. ISBN 978-0-12-823956-8. [Google Scholar]
- Voliotis, A.; Samara, C. Submicron Particle Number Doses in the Human Respiratory Tract: Implications for Urban Traffic and Background Environments. Environ. Sci. Pollut. Res. 2018, 25, 33724–33735. [Google Scholar] [CrossRef] [PubMed]
- Lianou, M.; Chalbot, M.-C.; Kotronarou, A.; Kavouras, I.G.; Karakatsani, A.; Katsouyanni, K.; Puustinnen, A.; Hameri, K.; Vallius, M.; Pekkanen, J.; et al. Dependence of Home Outdoor Particulate Mass and Number Concentrations on Residential and Traffic Features in Urban Areas. J. Air Waste Manag. Assoc. 2007, 57, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Pei, G.; Freihaut, J.D.; Rim, D. Long-Term Application of Low-Cost Sensors for Monitoring Indoor Air Quality and Particle Dynamics in a Commercial Building. J. Build. Eng. 2023, 79, 107774. [Google Scholar] [CrossRef]
- Azimi, P.; Zhao, D.; Stephens, B. Modeling the Impact of Residential HVAC Filtration on Indoor Particles of Outdoor Origin (RP-1691). Sci. Technol. Built Environ. 2016, 22, 431–462. [Google Scholar] [CrossRef]
- Badyda, A.; Krawczyk, P.; Bihałowicz, J.S.; Bralewska, K.; Rogula-Kozłowska, W.; Majewski, G.; Oberbek, P.; Marciniak, A.; Rogulski, M. Are BBQs Significantly Polluting Air in Poland? A Simple Comparison of Barbecues vs. Domestic Stoves and Boilers Emissions. Energies 2020, 13, 6245. [Google Scholar] [CrossRef]
- Brunner, E.; Munzel, U. The Nonparametric Behrens-Fisher Problem: Asymptotic Theory and a Small-Sample Approximation. Biom. J. 2000, 42, 17–25. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, G.; Lang, J.; Wen, W.; Wang, X.; Yao, S. Characterization of Volatile Organic Compounds from Different Cooking Emissions. Atmos. Environ. 2016, 145, 299–307. [Google Scholar] [CrossRef]
- Yuan, M.-H.; Kang, S.; Cho, K.-S. A Review of Phyto- and Microbial-Remediation of Indoor Volatile Organic Compounds. Chemosphere 2024, 359, 142120. [Google Scholar] [CrossRef]
- Kotzias, D. Built Environment and Indoor Air Quality: The Case of Volatile Organic Compounds. AIMS Environ. Sci. 2021, 8, 135–147. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bihałowicz, J.S.; Badyda, A.; Rogula-Kozłowska, W.; Widziewicz-Rzońca, K.; Rogula-Kopiec, P.; Chyzhykov, D.; Majewski, G.; Pecio, M. Particulate Matter During Food Preparation on a Barbecue: A Case Study of an Electric Barbecue. Appl. Sci. 2025, 15, 498. https://doi.org/10.3390/app15020498
Bihałowicz JS, Badyda A, Rogula-Kozłowska W, Widziewicz-Rzońca K, Rogula-Kopiec P, Chyzhykov D, Majewski G, Pecio M. Particulate Matter During Food Preparation on a Barbecue: A Case Study of an Electric Barbecue. Applied Sciences. 2025; 15(2):498. https://doi.org/10.3390/app15020498
Chicago/Turabian StyleBihałowicz, Jan Stefan, Artur Badyda, Wioletta Rogula-Kozłowska, Kamila Widziewicz-Rzońca, Patrycja Rogula-Kopiec, Dmytro Chyzhykov, Grzegorz Majewski, and Mariusz Pecio. 2025. "Particulate Matter During Food Preparation on a Barbecue: A Case Study of an Electric Barbecue" Applied Sciences 15, no. 2: 498. https://doi.org/10.3390/app15020498
APA StyleBihałowicz, J. S., Badyda, A., Rogula-Kozłowska, W., Widziewicz-Rzońca, K., Rogula-Kopiec, P., Chyzhykov, D., Majewski, G., & Pecio, M. (2025). Particulate Matter During Food Preparation on a Barbecue: A Case Study of an Electric Barbecue. Applied Sciences, 15(2), 498. https://doi.org/10.3390/app15020498