Designing the Next Generation: A Physical Chemistry Approach to Surface Coating Materials
Abstract
1. Introduction
2. Physicochemical Insights
3. Categories of Coating Materials and Methodologies
3.1. Polymer Coatings
3.2. Inorganic Coatings
3.3. Composite and Hybrid Coatings
3.4. Methodologies in Coating Materials
4. New Generation of Surface Coating Materials
4.1. Self-Healing Coatings
4.2. Thermal Insulating Coatings
4.3. Antimicrobial Coatings
4.4. Hydrophobic Coatings
4.5. Conductive Coatings
5. Comparison of the Surface Coating Materials
5.1. Coating Comparison
5.2. Conventional and Smart Coatings
6. Technical Specifications
7. Challenges to Be Faced
7.1. Durability and Wear Resistance Issues
7.2. Environmental and Health Hazards
7.3. Cost and Scalability Constraints
7.4. Adhesion and Compatibility Challenges
7.5. Esthetic Longevity
8. Future Potential
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
ACP | Amorphous calcium phosphate |
AFM | Atomic force microscopy |
AlPO4 | Aluminum phosphate |
ATO | Antimony-doped tin oxide |
BC | Bondcoat |
BPPM | Boron nitride materials modified with phytic acid and melamine |
CBxPA | Ceramic coating with chemically bonded phosphate |
CVD | Chemical vapor deposition |
DCO | Dehydrated castor oil |
DETA | Diethylenetriamine |
EP | Waterborne epoxy |
FAS-Al2O3 | Phosphate ceramic coatings with alumina nanoparticles |
FCBPC | Phosphate ceramic coatings |
HA | Hyaluronic acid |
ICS-Ag | Biofunctionalized nanosilver |
ICSNG | Itaconyl-chondroitin sulfate nanogel |
LM | Liquid metal |
MPC | Magnesium phosphate cement |
PA | Phytic acid |
PANI | Polyaniline |
PDA | Polydopamine |
PDMA | Polydimethylsiloxane |
PDMS | Polydimethylsiloxane |
PMMA | Poly(methyl methacrylate) |
PU | Polyurethane |
PVD | Physical vapor deposition |
SAMs | Self-assembled monolayers |
SEM | Scanning electron microscopy |
SiO2 aerogel | Silica aerogel |
SMPs | Shape memory polymers |
TC | Topcoat |
UV | Ultraviolet |
VOCs | Volatile organic compounds |
WPU-SS | Waterborne polyurethane |
XRD | X-ray diffraction |
References
- Fotovvati, B.; Namdari, N.; Dehghanghadikolaei, A. On Coating Techniques for Surface Protection: A Review. J. Manuf. Mater. Process. 2019, 3, 28. [Google Scholar] [CrossRef]
- Saleh, B.; Fathi, R.; Shi, H.; Wei, H. Advanced Corrosion Protection through Coatings and Surface Rebuilding. Coatings 2023, 13, 180. [Google Scholar] [CrossRef]
- Jose, S.A.; Lapierre, Z.; Williams, T.; Hope, C.; Jardin, T.; Rodriguez, R.; Menezes, P.L. Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives. Coatings 2025, 15, 878. [Google Scholar] [CrossRef]
- Ramezani, M.; Mohd Ripin, Z.; Pasang, T.; Jiang, C.-P. Surface Engineering of Metals: Techniques, Characterizations and Applications. Metals 2023, 13, 1299. [Google Scholar] [CrossRef]
- Meng, X.; Xie, W.; Yang, Q.; Cao, Y.; Ren, J.; Almalki, A.S.A.; Xu, Y.; Cao, T.; Ibrahim, M.M.; Guo, Z. Self-Healing Anti-Corrosive Coating Using Graphene/Organic Cross-Linked Shell Isophorone Diisocyanate Microcapsules. React. Funct. Polym. 2024, 202, 106000. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, H.; Zhou, H.; Graham, M.; Smith, J.; Sheng, X.; Chen, Y.; Zhang, L.; Zhang, X.; Shchukina, E.; et al. Superior Anti-Corrosion and Self-Healing Bi-Functional Polymer Composite Coatings with Polydopamine Modified Mesoporous Silica/Graphene Oxide. J. Mater. Sci. Technol. 2021, 95, 95–104. [Google Scholar] [CrossRef]
- Rahman, T.; Suhendri; Tajudin, A.N.; Suwarto, F.; Sudigdo, P.; Thom, N. Durability Evaluation of Heat-Reflective Coatings for Road Surfaces: A Systematic Review. Sustain. Cities Soc. 2024, 112, 105625. [Google Scholar] [CrossRef]
- Caramitu, A.R.; Ciobanu, R.C.; Lungu, M.V.; Lungulescu, E.-M.; Scheiner, C.M.; Aradoaei, M.; Bors, A.M.; Rus, T. Polymeric Protective Films as Anticorrosive Coatings—Environmental Evaluation. Polymers 2024, 16, 2192. [Google Scholar] [CrossRef]
- Thakur, A.; Zarrouk, A.; Selvaraj, M.; Assiri, M.A.; Khanna, V.; Kumar, A.; Berdimurodov, E.; Eliboev, I. Nanomaterial-Based Smart Coatings for Sustainable Corrosion Protection in Harsh Marine Environments: Advances in Environmental Management and Durability. Inorg. Chem. Commun. 2025, 176, 114280. [Google Scholar] [CrossRef]
- Bruni, M.; Figueiredo, J.; Perina, F.C.; Abessa, D.M.S.; Martins, R. Environmental Behavior of Novel “Smart” Anti-Corrosion Nanomaterials in a Global Change Scenario. Environments 2025, 12, 264. [Google Scholar] [CrossRef]
- Podsiadły, R.; Podemska, K.; Szymczak, A.M. Novel Visible Photoinitiators Systems for Free-Radical/Cationic Hybrid Photopolymerization. Dye. Pigment. 2011, 91, 422–426. [Google Scholar] [CrossRef]
- Rusly, S.N.A.; Jamal, S.H.; Samsuri, A.; Mohd Noor, S.A.; Abdul Rahim, K.S. Stabilizer Selection and Formulation Strategies for Enhanced Stability of Single Base Nitrocellulose Propellants: A Review. Energetic Mater. Front. 2024, 5, 52–69. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Rangappa, S.M.; Siengchin, S. Advanced Characterization Techniques for Nanostructured Materials in Biomedical Applications. Adv. Ind. Eng. Polym. Res. 2024, 7, 122–143. [Google Scholar] [CrossRef]
- Ju, K.; Zhang, C.; Deng, Y.; Wang, S.; Zhang, X.; Fang, D.; Ye, Z.; Wu, J. Tailoring an Epoxy-Polyurethane Self-Healing Coating for Anticorrosion Performance. Prog. Org. Coat. 2025, 208, 109489. [Google Scholar] [CrossRef]
- Zhang, H.; Li, M.; He, S.; Zhou, Y.; Yang, Z.; Yu, J.; Zhang, X.; Ren, Z. In-Situ Formation of SiC Nanowires for Self-Healing Ceramic Composites Using Liquid Silicone Resin. Compos. Commun. 2025, 56, 102336. [Google Scholar] [CrossRef]
- Wang, J.; Wu, M.; Miao, X.; Bian, D.; Wang, Y.; Zhao, Y. Chemically Bonded Phosphate Ceramic Coatings with Self-Healing Capability for Corrosion Resistance. Surf. Coat. Technol. 2023, 473, 129987. [Google Scholar] [CrossRef]
- Jin, S.; Jeon, H.; Kim, S.-M.; Lee, M.; Park, C.; Joo, Y.; Seo, J.; Oh, D.X.; Park, J. Self-Healable Spray Paint Coatings Based on Polyurethanes with Thermal Stability: Effects of Disulfides and Diisocyanates. Prog. Org. Coat. 2025, 198, 108931. [Google Scholar] [CrossRef]
- Boumezgane, O.; Suriano, R.; Fedel, M.; Tonelli, C.; Deflorian, F.; Turri, S. Self-Healing Epoxy Coatings with Microencapsulated Ionic PDMS Oligomers for Corrosion Protection Based on Supramolecular Acid-Base Interactions. Prog. Org. Coat. 2022, 162, 106558. [Google Scholar] [CrossRef]
- Chang, Y.; Wu, Z.; Liu, E. Fabrication of Chitosan-Encapsulated Microcapsules Containing Wood Wax Oil for Antibacterial Self-Healing Wood Coatings. Ind. Crops Prod. 2024, 222, 119438. [Google Scholar] [CrossRef]
- Liu, J.; Lin, W.; Liu, R.; Luo, J. Photothermal Self-Healing and Anti-Corrosion Water-Borne Coatings Based on Phytic Acid-Doped Polyaniline. Prog. Org. Coat. 2025, 204, 109267. [Google Scholar] [CrossRef]
- Ying, Y.; Li, N.; Liu, Z.; Zuo, Y.; Li, Z.; Qian, S.; Zhang, C.; Yu, J. Bulk Self-Healing Behaviour Based on Water-Excited Chemically Bonded Phosphate Ceramic Coating and Its Anti-Corrosion Resistance. Appl. Surf. Sci. 2025, 681, 161575. [Google Scholar] [CrossRef]
- Beiro, M.; Collazo, A.; Izquierdo, M.; Nóvoa, X.R.; Pérez, C. Characterisation of Barrier Properties of Organic Paints: The Zinc Phosphate Effectiveness. Prog. Org. Coat. 2003, 46, 97–106. [Google Scholar] [CrossRef]
- Blustein, G.; Deyá, M.C.; Romagnoli, R.; Amo, B. del Three Generations of Inorganic Phosphates in Solvent and Water-Borne Paints: A Synergism Case. Appl. Surf. Sci. 2005, 252, 1386–1397. [Google Scholar] [CrossRef]
- Shao, Y.; Jia, C.; Meng, G.; Zhang, T.; Wang, F. The Role of a Zinc Phosphate Pigment in the Corrosion of Scratched Epoxy-Coated Steel. Corros. Sci. 2009, 51, 371–379. [Google Scholar] [CrossRef]
- Wang, X.; Khaskhoussi, A.; Hu, X.; Yang, J.; Shi, C. Surface Energy and Microstructural Analyses of Novel Highly Hydrophobic Magnesium Phosphate Cement Coatings. Cem. Concr. Compos. 2025, 163, 106168. [Google Scholar] [CrossRef]
- Blanco, I. Synthesis, Characterization and Application of Hybrid Composites. Appl. Sci. 2020, 10, 5456. [Google Scholar] [CrossRef]
- Butt, M.A. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, X.; Guo, K.; Wang, M.; Wang, X.; Zhu, G. Biomimetic Mineralization in Double-Walled Microcapsules Making for Self-Healing Anticorrosive Coatings. Colloids Surf. A Physicochem. Eng. Asp. 2025, 709, 136046. [Google Scholar] [CrossRef]
- Nunes, F.G.; Bendinelli, E.V.; Aoki, I.V. Microcapsules Containing Dehydrated Castor Oil as Self-Healing Agent for Smart Anticorrosive Coatings. Prog. Org. Coat. 2024, 197, 108863. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, G.; Wang, F.; Ma, X.; Liu, S.; Yan, H.; Gou, J.; Cao, J.; Wang, Y. Catalytic Crosslinking of Epoxy Coatings via BN-Based Hybrid Materials for Enhanced Corrosion Resistance, Self-Healing Capabilities and Mechanical Properties. Chem. Eng. J. 2025, 515, 163653. [Google Scholar] [CrossRef]
- Ma, C.; Wang, X.; Zou, F.; Zhong, Y.; Guo, G. Preparation of TiO2 Hybrid SiO2 Wall Environment-Friendly Microcapsules Based on Interfacial Polycondensation: Realize the Integration of Self-Cleaning and Self-Healing Functions. Mater. Today Commun. 2024, 41, 111034. [Google Scholar] [CrossRef]
- Pang, X.; Zhou, F.; Li, B.; Jiang, J.; Zhou, J. Optical Thermostability and Weatherability of TiN/TiC-Ni/Mo Cermet-Based Spectral Selective Absorbing Coating by Laser Cladding. Opt. Mater. 2021, 117, 111195. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, D.; Zhang, X.; Liu, Y.; Li, M.; Wu, J.; Yang, Z. TiAlTaSiN/TiAlTaSi Multilayer Coatings for Enhancing Hot Salt Corrosion Fatigue Resistance of TC11 Alloy. Corros. Sci. 2025, 257, 113272. [Google Scholar] [CrossRef]
- Abegunde, O.O.; Lahouij, M.; Jaghar, N.; Larhlimi, H.; Makha, M.; Alami, J. Synergistic Effect of Deposition Temperature and Substrate Bias on Structural, Mechanical, Stability and Adhesion of TiN Thin Film Prepared by Reactive HiPIMS. Ceram. Int. 2024, 50, 10593–10601. [Google Scholar] [CrossRef]
- Wang, Q.; Kainuma, S.; Yang, H.; Kim, A.; Nishitani, T. Deterioration Mechanism of Overlaid Heavy-Duty Paint and Thermal Spray Coatings on Carbon Steel Plates in Marine Atmospheric Environments. Prog. Org. Coat. 2025, 200, 109057. [Google Scholar] [CrossRef]
- Svehla, M.; Morberg, P.; Bruce, W.; Zicat, B.; Walsh, W.R. The Effect of Substrate Roughness and Hydroxyapatite Coating Thickness on Implant Shear Strength. J. Arthroplast. 2002, 17, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Masamoto, K.; Fujibayashi, S.; Yabutsuka, T.; Hiruta, T.; Otsuki, B.; Okuzu, Y.; Goto, K.; Shimizu, T.; Shimizu, Y.; Ishizaki, C.; et al. In Vivo and in Vitro Bioactivity of a “Precursor of Apatite” Treatment on Polyetheretherketone. Acta Biomater. 2019, 91, 48–59. [Google Scholar] [CrossRef]
- Takaoka, Y.; Fujibayashi, S.; Yabutsuka, T.; Yamane, Y.; Ishizaki, C.; Goto, K.; Otsuki, B.; Kawai, T.; Shimizu, T.; Okuzu, Y.; et al. Synergistic Effect of Sulfonation Followed by Precipitation of Amorphous Calcium Phosphate on the Bone-Bonding Strength of Carbon Fiber Reinforced Polyetheretherketone. Sci. Rep. 2023, 13, 1443. [Google Scholar] [CrossRef]
- Huang, J.; Yang, M.; Zhu, W.; Tang, K.; Chen, J.; Joseph Noël, J.; Zhang, H.; Wang, L.; Zhang, H.; Zhu, J. Zinc-Rich Polyester Powder Coatings with Iron Phosphide: Lower Zinc Content and Higher Corrosion Resistance. J. Ind. Eng. Chem. 2024, 133, 577–587. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Duan, Y.; Chen, J.; Yao, S.; Peng, L.; Chen, W.; Menshutina, N.; Liu, M. A Review of Silica Aerogel Based Thermal Insulation Coatings: Preparation, Properties and Applications. Prog. Org. Coat. 2025, 208, 109449. [Google Scholar] [CrossRef]
- An, W.; Sun, J.; Liew, K.M.; Zhu, G. Flammability and Safety Design of Thermal Insulation Materials Comprising PS Foams and Fire Barrier Materials. Mater. Des. 2016, 99, 500–508. [Google Scholar] [CrossRef]
- Jia, H.; Liu, C.; Yang, J.; Guo, J.; Huang, Q. A Review of Metal Hydride Coating Technology: Applications and Challenges in Energy Storage and Catalysis. Int. J. Hydrogen Energy 2025, 149, 150080. [Google Scholar] [CrossRef]
- Iñiguez-Moreno, M.; Ragazzo-Sánchez, J.A.; Barros-Castillo, J.C.; Sandoval-Contreras, T.; Calderón-Santoyo, M. Sodium Alginate Coatings Added with Meyerozyma caribbica: Postharvest Biocontrol of Colletotrichum gloeosporioides in Avocado (Persea americana Mill. cv. Hass). Postharvest Biol. Technol. 2020, 163, 111123. [Google Scholar] [CrossRef]
- Salama, H.E.; Abdel Aziz, M.S.; Alsehli, M. Carboxymethyl Cellulose/Sodium Alginate/Chitosan Biguanidine Hydrochloride Ternary System for Edible Coatings. Int. J. Biol. Macromol. 2019, 139, 614–620. [Google Scholar] [CrossRef]
- Fan, Y.; Ren, J.; Xiao, X.; Cao, Y.; Zou, Y.; Qi, B.; Luo, X.; Liu, F. Recent Advances in Polysaccharide-Based Edible Films/Coatings for Food Preservation: Fabrication, Characterization, and Applications in Packaging. Carbohydr. Polym. 2025, 364, 123779. [Google Scholar] [CrossRef]
- Auepattana-Aumrung, K.; Crespy, D. Self-Healing and Anticorrosion Coatings Based on Responsive Polymers with Metal Coordination Bonds. Chem. Eng. J. 2023, 452, 139055. [Google Scholar] [CrossRef]
- Di, Z.; Ma, S.; Wang, H.; Guan, Z.; Lian, B.; Qiu, Y.; Jiang, Y. Modulation of Thermal Insulation and Mechanical Property of Silica Aerogel Thermal Insulation Coatings. Coatings 2022, 12, 1421. [Google Scholar] [CrossRef]
- Cai, G.; Liu, A.; He, Y.; Hu, Z.; Bian, J.; Zhang, Y.; Zhang, H.; Wang, M. Preparation and Performance Analysis of a Novel Zirconium-Doped Silicone Resin Modified Epoxy Resin-Based Intumescent Flame-Retardant and Thermal-Insulating Coating. Chem. Eng. J. 2025, 520, 165996. [Google Scholar] [CrossRef]
- Sethurajaperumal, A.; Manohar, A.; Banerjee, A.; Varrla, E.; Wang, H.; Ostrikov, K.K. A Thermally Insulating Vermiculite Nanosheet–Epoxy Nanocomposite Paint as a Fire-Resistant Wood Coating. Nanoscale Adv. 2021, 3, 4235–4243. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, L.; Xu, X. Thermal and Daylighting Performance of Glass Window Using a Newly Developed Transparent Heat Insulated Coating. Energy Procedia 2019, 158, 1080–1085. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Kang, Y.; Xiao, H.-M.; Mei, S.-G.; Zhang, G.-L.; Fu, S.-Y. Preparation and Characterization of Transparent Al Doped ZnO/Epoxy Composite as Thermal-Insulating Coating. Compos. B Eng. 2011, 42, 2176–2180. [Google Scholar] [CrossRef]
- Pereira-Silva, P.; Borges, J.; Sampaio, P. Recent Advances in Metal-Based Antimicrobial Coatings. Adv. Colloid Interface Sci. 2025, 344, 103590. [Google Scholar] [CrossRef]
- Martorana, A.; Pitarresi, G.; Palumbo, F.S.; Catania, V.; Schillaci, D.; Mauro, N.; Fiorica, C.; Giammona, G. Fabrication of Silver Nanoparticles by a Diethylene Triamine-Hyaluronic Acid Derivative and Use as Antibacterial Coating. Carbohydr. Polym. 2022, 295, 119861. [Google Scholar] [CrossRef]
- Yahya, R.; Alharbi, N.M. Biosynthesized Silver Nanoparticles-Capped Chondroitin Sulfate Nanogel Targeting Microbial Infections and Biofilms for Biomedical Applications. Int. J. Biol. Macromol. 2023, 253, 127080. [Google Scholar] [CrossRef]
- Behzadinasab, S.; Williams, M.D.; Falkinham, J.O.; Ducker, W.A. Facile Implementation of Antimicrobial Coatings through Adhesive Films (Wraps) Demonstrated with Cuprous Oxide Coatings. Antibiotics 2023, 12, 920. [Google Scholar] [CrossRef]
- Nikolov, A.; Dobreva, L.; Danova, S.; Miteva-Staleva, J.; Krumova, E.; Rashev, V.; Vilhelmova-Ilieva, N.; Tsvetanova, L.; Barbov, B. Antimicrobial Geopolymer Paints Based on Modified Natural Zeolite. Case Stud. Constr. Mater. 2023, 19, e02642. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, H.; Ji, S.; Li, S.; Zhang, L.; Wen, S.; Liu, J. High-Strength, Self-Healing Waterborne Polyurethane Elastomers with Enhanced Mechanical, Thermal, and Electrical Properties. Compos. Commun. 2024, 51, 102100. [Google Scholar] [CrossRef]
- Kontiza, A.; Kartsonakis, I.A. Smart Composite Materials with Self-Healing Properties: A Review on Design and Applications. Polymers 2024, 16, 2115. [Google Scholar] [CrossRef]
- Kartsonakis, I.A.; Kontiza, A.; Kanellopoulou, I.A. Advanced Micro/Nanocapsules for Self-Healing Coatings. Appl. Sci. 2024, 14, 8396. [Google Scholar] [CrossRef]
- Yimyai, T.; Crespy, D.; Rohwerder, M. Corrosion-Responsive Self-Healing Coatings. Adv. Mater. 2023, 35, e2300101. [Google Scholar] [CrossRef]
- Saji, V.S. Smart Self-Healing and Self-Reporting Coatings—An Overview. Prog. Org. Coat. 2025, 205, 109318. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, Y.; Gu, L.; Feng, Z.; Lei, B.; Zhu, L.; Guo, H.; Meng, G. Smart Sensing Coatings for Early Warning of Degradations: A Review. Prog. Org. Coat. 2023, 177, 107418. [Google Scholar] [CrossRef]
- Iqbal, A.; Moskal, G.; Cavaleiro, A.; Amjad, A.; Khan, M.J. The Current Advancement of Zirconate Based Dual Phase System in Thermal Barrier Coatings (TBCs): New Modes of the Failures: Understanding and Investigations. Alex. Eng. J. 2024, 91, 161–196. [Google Scholar] [CrossRef]
- Alanazi, N.M.; Leyland, A.; Yerokhin, A.L.; Matthews, A. Substitution of Hexavalent Chromate Conversion Treatment with a Plasma Electrolytic Oxidation Process to Improve the Corrosion Properties of Ion Vapour Deposited AlMg Coatings. Surf. Coat. Technol. 2010, 205, 1750–1756. [Google Scholar] [CrossRef]
- Gonçalves, B.C.; de Oliveira, L.; Barp, G.; Honório, J.F.; Slusarski-Santana, V.; Módenes, A.N.; Paschoal, S.M.; Fiorentin-Ferrari, L.D. Technologies for the Recovery of Nickel and Copper from Electroplating Industrial Effluent. In Metal Value Recovery from Industrial Waste Using Advanced Physicochemical Treatment Technologies; Elsevier: Amsterdam, The Netherlands, 2025; pp. 167–195. [Google Scholar]
- Bai, G.; Zhu, Y.; Cao, H.; Zhuo, R.; Li, Y.; Wang, C.; Hu, Y.; Sun, Y.; Li, X. Fabrication of Photocurable Zwitterionic Polymer Coatings with Enhanced Antifouling and Lubrication Properties for Urinary Catheter Applications. Prog. Org. Coat. 2024, 197, 108748. [Google Scholar] [CrossRef]
- Birkett, M.; Zia, A.W.; Devarajan, D.K.; Soni; Panayiotidis, M.I.; Joyce, T.J.; Tambuwala, M.M.; Serrano-Aroca, A. Multi-Functional Bioactive Silver- and Copper-Doped Diamond-like Carbon Coatings for Medical Implants. Acta Biomater. 2023, 167, 54–68. [Google Scholar] [CrossRef]
- Adsetts, J.R.; Ebrahimi, N.; Zhang, J.; Jalaei, F.; Noël, J.J. Steel Bridge-Coating Systems and Their Environmental Impacts: Current Practices and Future Trends. Coatings 2023, 13, 850. [Google Scholar] [CrossRef]
- Van Linden, S.; Van Den Bossche, N. Review of Rainwater Infiltration Rates in Wall Assemblies. Build. Environ. 2022, 219, 109213. [Google Scholar] [CrossRef]
- Qiao, Y.P.; Chen, S.J.; Wang, C.M.; Zhuge, Y.; Ma, J. New Classification, Historical Developments, Technology Readiness Level and Application Conditions of Self-Healing Concrete Technologies. J. Build. Eng. 2025, 108, 112869. [Google Scholar] [CrossRef]
- Häßler, D.; Hothan, S. Performance of Intumescent Fire Protection Coatings Applied to Structural Steel Tension Members with Circular Solid and Hollow Sections. Fire Saf. J. 2022, 131, 103605. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.; Zhang, Y.; Zhang, X.; Ding, Y.; Zhang, W.; Rao, J.; Zhang, Y. Progress in the Preparation and Applications of Microcapsules for Protective Coatings Against Corrosion. Int. J. Mol. Sci. 2025, 26, 1473. [Google Scholar] [CrossRef]
- Simescu, F.; Idrissi, H. Effect of Zinc Phosphate Chemical Conversion Coating on Corrosion Behaviour of Mild Steel in Alkaline Medium: Protection of Rebars in Reinforced Concrete. Sci. Technol. Adv. Mater. 2008, 9, 045009. [Google Scholar] [CrossRef]
- Liu, X.; Wan, Y.; Zhang, X. Preparation and Corrosion Properties of TiO2-SiO2-Al2O3 Composite Coating on Q235 Carbon Steel. Coatings 2023, 13, 1994. [Google Scholar] [CrossRef]
- Binder, L.; de Sousa Santos, F.; da Conceição, T.F. Sustainable Smart Coating of Chitosan, Halloysite Nanotubes and Phenolic Acids for Corrosion Protection of Al Alloy. Mater. Chem. Phys. 2025, 345, 131240. [Google Scholar] [CrossRef]
- Aguilar-Ruiz, A.; Dévora-Isiordia, G.; Sánchez-Duarte, R.; Villegas-Peralta, Y.; Orozco-Carmona, V.; Álvarez-Sánchez, J. Chitosan-Based Sustainable Coatings for Corrosion Inhibition of Aluminum in Seawater. Coatings 2023, 13, 1615. [Google Scholar] [CrossRef]
- Umoren, S.A.; AlAhmary, A.A.; Gasem, Z.M.; Solomon, M.M. Evaluation of Chitosan and Carboxymethyl Cellulose as Ecofriendly Corrosion Inhibitors for Steel. Int. J. Biol. Macromol. 2018, 117, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Ruiz, A.A.; Sánchez-Duarte, R.G.; Orozco-Carmona, V.M.; Devora-Isiordia, G.E.; Villegas-Peralta, Y.; Álvarez-Sánchez, J. Chitosan and Its Derivatives as a Barrier Anti-Corrosive Coating of 304 Stainless Steel against Corrosion in 3.5% Sodium Chloride Solution. Coatings 2024, 14, 1244. [Google Scholar] [CrossRef]
- Paolini, N.A.; Cordeiro Neto, A.G.; Pellanda, A.C.; de Carvalho Jorge, A.R.; de Barros Soares, B.; Floriano, J.B.; Berton, M.A.C.; Vijayan, P.P.; Thomas, S. Evaluation of Corrosion Protection of Self-Healing Coatings Containing Tung and Copaiba Oil Microcapsules. Int. J. Polym. Sci. 2021, 2021, 6650499. [Google Scholar] [CrossRef]
- Uko, L.; Elkady, M. Biohybrid Microcapsules Based on Electrosprayed CS-Immobilized NanoZrV for Self-Healing Epoxy Coating Development. RSC Adv. 2024, 14, 18467–18477. [Google Scholar] [CrossRef]
- Neon Gan, S.; Shahabudin, N. Applications of Microcapsules in Self-Healing Polymeric Materials. In Microencapsulation—Processes, Technologies and Industrial Applications; IntechOpen: London, UK, 2019. [Google Scholar]
- Dai, X.; Qian, J.; Qin, J.; Yue, Y.; Zhao, Y.; Jia, X. Preparation and Properties of Magnesium Phosphate Cement-Based Fire Retardant Coating for Steel. Materials 2022, 15, 4134. [Google Scholar] [CrossRef]
- Krishna, V.; Padmapreetha, R.; Chandrasekhar, S.B.; Murugan, K.; Johnson, R. Oxidation Resistant TiO2–SiO2 Coatings on Mild Steel by Sol–Gel. Surf. Coat. Technol. 2019, 378, 125041. [Google Scholar] [CrossRef]
- Ghazali, N.; Basirun, W.J.; Mohammed Nor, A.; Johan, M.R. Super-Amphiphobic Coating System Incorporating Functionalized Nano-Al2O3 in Polyvinylidene Fluoride (PVDF) with Enhanced Corrosion Resistance. Coatings 2020, 10, 387. [Google Scholar] [CrossRef]
- Vignesh, M.; Anbuchezhiyan, G.; Mamidi, V.K.; Vivek Anand, A. Enriching Mechanical, Wear, and Corrosion Behaviour of SiO2/TiO2 Reinforced Al 5754 Alloy Hybrid Composites. Mater Lett. 2024, 361, 136106. [Google Scholar] [CrossRef]
- Jiang, W.; Shen, X.; Wang, Z.; Liu, Y.; Zhang, X.; Wang, E.; Zhang, J. Effect of Al2O3 on Microstructure and Corrosion Characteristics of Al/Al2O3 Composite Coatings Prepared by Cold Spraying. Metals 2024, 14, 179. [Google Scholar] [CrossRef]
- Weng, Q.; Huang, X.; Chen, Y.; Zhang, L.; Xie, D.; Sheng, X. Black Phosphorus Nanosheets for Advanced Polymer Coatings and Films: Preparation, Stability and Applications. J. Mater. Sci. Technol. 2025, 216, 192–208. [Google Scholar] [CrossRef]
- Song, D.; Wan, H.; Tu, X.; Li, W. A Better Understanding of Failure Process of Waterborne Coating/Metal Interface Evaluated by Electrochemical Impedance Spectroscopy. Prog. Org. Coat. 2020, 142, 105558. [Google Scholar] [CrossRef]
- Wan, H.; Song, D.; Li, X.; Zhang, D.; Gao, J.; Du, C. Failure Mechanisms of the Coating/Metal Interface in Waterborne Coatings: The Effect of Bonding. Materials 2017, 10, 397. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhong, X.; Li, L.; Hu, J.; Peng, Z. Unmasking the Delamination Mechanisms of a Defective Coating under the Co-Existence of Alternating Stress and Corrosion. Prog. Org. Coat. 2023, 180, 107560. [Google Scholar] [CrossRef]
- Funke, W. Blistering of Paint Films and Filiform Corrosion. Prog. Org. Coat. 1981, 9, 29–46. [Google Scholar] [CrossRef]
- Conde, J.J.; Ferreira-Aparicio, P.; Chaparro, A.M. Anti-Corrosion Coating for Metal Surfaces Based on Superhydrophobic Electrosprayed Carbon Layers. Appl. Mater. Today 2018, 13, 100–106. [Google Scholar] [CrossRef]
- Liu, C.; Li, J.; Jin, Z.; Hou, P.; Zhao, H.; Wang, L. Synthesis of Graphene-Epoxy Nanocomposites with the Capability to Self-Heal Underwater for Materials Protection. Compos. Commun. 2019, 15, 155–161. [Google Scholar] [CrossRef]
- Cui, M.; Wang, P.-Y.; Wang, Z.; Wang, B. Mangrove Inspired Anti-Corrosion Coatings. Coatings 2019, 9, 725. [Google Scholar] [CrossRef]
- Dhoke, S.K.; Khanna, A.S. Electrochemical Impedance Spectroscopy (EIS) Study of Nano-Alumina Modified Alkyd Based Waterborne Coatings. Prog. Org. Coat. 2012, 74, 92–99. [Google Scholar] [CrossRef]
- Zhang, J.; Frankel, G.S. Corrosion-Sensing Behavior of an Acrylic-Based Coating System. Corrosion 1999, 55, 957–967. [Google Scholar] [CrossRef]
- Shkirskiy, V.; Keil, P.; Hintze-Bruening, H.; Leroux, F.; Vialat, P.; Lefèvre, G.; Ogle, K.; Volovitch, P. Factors Affecting MoO42– Inhibitor Release from Zn2 Al Based Layered Double Hydroxide and Their Implication in Protecting Hot Dip Galvanized Steel by Means of Organic Coatings. ACS Appl. Mater. Interfaces 2015, 7, 25180–25192. [Google Scholar] [CrossRef]
- Zhao, Y.; Fickert, J.; Landfester, K.; Crespy, D. Encapsulation of Self-Healing Agents in Polymer Nanocapsules. Small 2012, 8, 2954–2958. [Google Scholar] [CrossRef]
- He, D.; Han, H.; Yi, M.; Xu, Z.; Hui, H.; Wang, R.; Zhou, M. Overview of Smart Anti-Corrosion Coatings and Their Micro/Nanocontainer Gatekeepers. Mater. Today Commun. 2025, 42, 111316. [Google Scholar] [CrossRef]
- Zhang, D.; Peng, F.; Liu, X. Protection of Magnesium Alloys: From Physical Barrier Coating to Smart Self-Healing Coating. J. Alloys Compd. 2021, 853, 157010. [Google Scholar] [CrossRef]
- Zehra, S.; Mobin, M.; Aslam, R.; Parveen, M.; Aslam, A. Nanocontainer-Loaded Smart Functional Anticorrosion Coatings. In Smart Anticorrosive Materials; Elsevier: Amsterdam, The Netherlands, 2023; pp. 481–497. [Google Scholar]
- Taheri, N.; Sarabi, A.A.; Roshan, S. Investigation of Intelligent Protection and Corrosion Detection of Epoxy-Coated St-12 by Redox-Responsive Microcapsules Containing Dual-Functional 8-Hydroxyquinoline. Prog. Org. Coat. 2022, 172, 107073. [Google Scholar] [CrossRef]
- Siva, T.; Kandhasamy, K.; Vaduganathan, K.; Sathiyanarayanan, S.; Ramadoss, A. Electrosynthesis of Silica Reservoir Incorporated Dual Stimuli Responsive Conducting Polymer-Based Self-Healing Coatings. Ind. Eng. Chem. Res. 2023, 62, 3942–3951. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, T.; Ma, L.; Wang, J.; Zhang, D.; Li, X. Saline-Responsive Triple-Action Self-Healing Coating for Intelligent Corrosion Control. Mater. Des. 2022, 214, 110381. [Google Scholar] [CrossRef]
- Haddadi, S.A.; Ahmad Ramazani, S.A.; Mahdavian, M.; Taheri, P.; Mol, J.M.C.; Gonzalez-Garcia, Y. Self-Healing Epoxy Nanocomposite Coatings Based on Dual-Encapsulation of Nano-Carbon Hollow Spheres with Film-Forming Resin and Curing Agent. Compos. B Eng. 2019, 175, 107087. [Google Scholar] [CrossRef]
- Yang, S.; Hui, J.; Xue, T.; Wang, C.; Yin, Y. Fabrication of Photochromic Spiropyran-Based Coatings for Smart Color-Tunable Textiles. J. Photochem. Photobiol. A Chem. 2025, 469, 116583. [Google Scholar] [CrossRef]
- Das, P.; Charlton, L.; Semiao, A.J.C. Sunlight-Driven Azobenzene-Based Thin Films for Smart Coating Applications. Appl. Mater. Today 2025, 45, 102852. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Yao, W.; Wu, J.; Serdechnova, M.; Blawert, C.; Zheludkevich, M.L.; Yuan, Y.; Xie, Z.; Pan, F. “Smart” Micro/Nano Container-Based Self-Healing Coatings on Magnesium Alloys: A Review. J. Magnes. Alloys 2023, 11, 2230–2259. [Google Scholar] [CrossRef]
- Wei, H.; Wang, Y.; Guo, J.; Shen, N.Z.; Jiang, D.; Zhang, X.; Yan, X.; Zhu, J.; Wang, Q.; Shao, L.; et al. Advanced Micro/Nanocapsules for Self-Healing Smart Anticorrosion Coatings. J. Mater. Chem. A 2015, 3, 469–480. [Google Scholar] [CrossRef]
- Zhang, Y.; Sailer, I.; Lawn, B.R. Fatigue of Dental Ceramics. J. Dent. 2013, 41, 1135–1147. [Google Scholar] [CrossRef]
- Zhang, L.; Dou, R.; Liu, N.; Sun, J.; Liu, X.; Wen, Z. Coupled Thermo-Mechanical Modeling of Crack-Induced Stress Fields in Thermal Barrier Coatings with Varying Crack Geometries. Coatings 2025, 15, 785. [Google Scholar] [CrossRef]
- Tao, Q.; Wang, Y.; Zheng, Y. Fatigue Behaviour and Life Prediction of YSZ Thermal Barrier Coatings at Elevated Temperature under Cyclic Loads. Coatings 2024, 14, 960. [Google Scholar] [CrossRef]
- Hailan, S.M.; Ponnamma, D.; Krupa, I. The Separation of Oil/Water Mixtures by Modified Melamine and Polyurethane Foams: A Review. Polymers 2021, 13, 4142. [Google Scholar] [CrossRef]
- Li, L.; Qiao, L.; Fan, J.; Zhang, Y. Mechanical Behavior of Polyethylene Pipes under Strike-Slip Fault Movements. Polymers 2022, 14, 987. [Google Scholar] [CrossRef]
- Adamopoulos, F.G.; Vouvoudi, E.C.; Pavlidou, E.; Achilias, D.S.; Karapanagiotis, I. TEOS-Based Superhydrophobic Coating for the Protection of Stone-Built Cultural Heritage. Coatings 2021, 11, 135. [Google Scholar] [CrossRef]
- Oprea, M.; Voicu, S.I. Cellulose Composites with Graphene for Tissue Engineering Applications. Materials 2020, 13, 5347. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, Y.; Xiao, G.; Chen, C.; Lu, Y. Influence of Surface Post-Processing on Crystal Refinement and Characteristics of Hopeite Coating by Phosphating. Coatings 2021, 11, 541. [Google Scholar] [CrossRef]
- Kojima, T.; Washio, T.; Hara, S.; Koishi, M.; Amino, N. Analysis on Microstructure–Property Linkages of Filled Rubber Using Machine Learning and Molecular Dynamics Simulations. Polymers 2021, 13, 2683. [Google Scholar] [CrossRef]
- Suslik, L.; Skriniarova, J.; Kovac, J.; Pudis, D.; Kuzma, A.; Kovac, J. Complex Analysis of Emission Properties of LEDs with 1D and 2D PhC Patterned by EBL. Coatings 2020, 10, 748. [Google Scholar] [CrossRef]
- Palola, S.; Vuorinen, J.; Noordermeer, J.W.M.; Sarlin, E. Development in Additive Methods in Aramid Fiber Surface Modification to Increase Fiber-Matrix Adhesion: A Review. Coatings 2020, 10, 556. [Google Scholar] [CrossRef]
- Oriňaková, R.; Gorejová, R.; Orságová Králová, Z.; Oriňak, A. Surface Modifications of Biodegradable Metallic Foams for Medical Applications. Coatings 2020, 10, 819. [Google Scholar] [CrossRef]
- Akram, S.; Aly, E.H.; Afzal, F.; Nadeem, S. Effect of the Variable Viscosity on the Peristaltic Flow of Newtonian Fluid Coated with Magnetic Field: Application of Adomian Decomposition Method for Endoscope. Coatings 2019, 9, 524. [Google Scholar] [CrossRef]
- Ma, G.; He, P.; Chen, S.; Kang, J.; Wang, H.; Liu, M.; Zhao, Q.; Li, G. Physicochemical Properties of Yttria-Stabilized-Zirconia In-Flight Particles during Supersonic Atmospheric Plasma Spray. Coatings 2019, 9, 431. [Google Scholar] [CrossRef]
- Perez-Rizquez, C.; Lopez-Tejedor, D.; Plaza-Vinuesa, L.; de las Rivas, B.; Muñoz, R.; Cumella, J.; Palomo, J.M. Chemical Modification of Novel Glycosidases from Lactobacillus plantarum Using Hyaluronic Acid: Effects on High Specificity against 6-Phosphate Glucopyranoside. Coatings 2019, 9, 311. [Google Scholar] [CrossRef]
- Tiwari, A.; Seman, S.; Singh, G.; Jayaganthan, R. Nanocrystalline Cermet Coatings for Erosion–Corrosion Protection. Coatings 2019, 9, 400. [Google Scholar] [CrossRef]
- Nejad, M.; Dadbin, M.; Cooper, P. Coating Performance on Exterior Oil-Heat Treated Wood. Coatings 2019, 9, 225. [Google Scholar] [CrossRef]
- Lettieri, M.; Masieri, M.; Pipoli, M.; Morelli, A.; Frigione, M. Anti-Graffiti Behavior of Oleo/Hydrophobic Nano-Filled Coatings Applied on Natural Stone Materials. Coatings 2019, 9, 740. [Google Scholar] [CrossRef]
- Lu, X.; Wang, S.; Xiong, T.; Wen, D.; Wang, G.; Du, H. Anticorrosion Properties of Zn–Al Composite Coating Prepared by Cold Spraying. Coatings 2019, 9, 210. [Google Scholar] [CrossRef]
- Przybyszewski, B.; Boczkowska, A.; Kozera, R.; Mora, J.; Garcia, P.; Aguero, A.; Borras, A. Hydrophobic and Icephobic Behaviour of Polyurethane-Based Nanocomposite Coatings. Coatings 2019, 9, 811. [Google Scholar] [CrossRef]
- Llorente-García, B.E.; Hernández-López, J.M.; Zaldívar-Cadena, A.A.; Siligardi, C.; Cedillo-González, E.I. First Insights into Photocatalytic Degradation of HDPE and LDPE Microplastics by a Mesoporous N–TiO2 Coating: Effect of Size and Shape of Microplastics. Coatings 2020, 10, 658. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Jovičević-Klug, M.; Tóth, L. Mechanical, Corrosive, and Tribological Degradation of Metal Coatings and Modified Metallic Surfaces. Coatings 2022, 12, 886. [Google Scholar] [CrossRef]
- Guerguer, M.; Naamane, S.; Edfouf, Z.; Raccurt, O.; Bouaouine, H. Chemical Degradation and Color Changes of Paint Protective Coatings Used in Solar Glass Mirrors. Coatings 2021, 11, 476. [Google Scholar] [CrossRef]
- Hot, J.; Fériot, C.; Lenard, E.; Ringot, E. NOx Abatement by a TiO2-Based Coating under Real-Life Conditions and Laboratory-Scale Durability Assessment. Environments 2024, 11, 166. [Google Scholar] [CrossRef]
- Pagnin, L.; Goidanich, S.; Guarnieri, N.; Izzo, F.C.; Henriquez, J.J.H.; Toniolo, L. Street Art in the Rain: Evaluating the Durability of Protective Coatings for Contemporary Muralism Through Accelerated Rain Ageing. Coatings 2025, 15, 924. [Google Scholar] [CrossRef]
- Schmid, M.J. Correlation Between the Anticorrosive Performance of Protective Coatings Under Neutral Salt Spray Testing and Outdoor Atmospheric and Immersion Exposure. Corros. Mater. Degrad. 2024, 5, 490–512. [Google Scholar] [CrossRef]
- Song, G.-L.; Feng, Z. Modification, Degradation and Evaluation of a Few Organic Coatings for Some Marine Applications. Corros. Mater. Degrad. 2020, 1, 408–442. [Google Scholar] [CrossRef]
- Perrin, F.X.; Merlatti, C.; Aragon, E.; Margaillan, A. Degradation Study of Polymer Coating: Improvement in Coating Weatherability Testing and Coating Failure Prediction. Prog. Org. Coat. 2009, 64, 466–473. [Google Scholar] [CrossRef]
- Piccinino, D.; Capecchi, E.; Tomaino, E.; Gabellone, S.; Gigli, V.; Avitabile, D.; Saladino, R. Nano-Structured Lignin as Green Antioxidant and UV Shielding Ingredient for Sunscreen Applications. Antioxidants 2021, 10, 274. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lin, M.-H.; Chung, Y.-K.; Alalaiwe, A.; Hung, C.-F.; Fang, J.-Y. Exploring the Potential of the Nano-Based Sunscreens and Antioxidants for Preventing and Treating Skin Photoaging. Chemosphere 2024, 347, 140702. [Google Scholar] [CrossRef]
- Ahmad, S.; Habib, S.; Nawaz, M.; Shakoor, R.A.; Kahraman, R.; Mohammed Al Tahtamouni, T. The Role of Polymeric Matrices on the Performance of Smart Self-Healing Coatings: A Review. J. Ind. Eng. Chem. 2023, 124, 40–67. [Google Scholar] [CrossRef]
- Cheng, Y.; Xiao, X.; Pan, K.; Pang, H. Development and Application of Self-Healing Materials in Smart Batteries and Supercapacitors. Chem. Eng. J. 2020, 380, 122565. [Google Scholar] [CrossRef]
- Grigoriev, D.; Shchukina, E.; Shchukin, D.G. Nanocontainers for Self-Healing Coatings. Adv. Mater. Interfaces 2017, 4, 1600318. [Google Scholar] [CrossRef]
- Sanyal, S.; Park, S.; Chelliah, R.; Yeon, S.-J.; Barathikannan, K.; Vijayalakshmi, S.; Jeong, Y.-J.; Rubab, M.; Oh, D.H. Emerging Trends in Smart Self-Healing Coatings: A Focus on Micro/Nanocontainer Technologies for Enhanced Corrosion Protection. Coatings 2024, 14, 324. [Google Scholar] [CrossRef]
- Li, C.; Zhao, X.; Meng, C.; Zhang, T.; Sun, S.; Hu, S. Application of Hollow Mesoporous Organosilica Nanoparticles as PH and Redox Double Stimuli-Responsive Nanocontainer in the Controlled Release of Corrosion Inhibitor Molecules. Prog. Org. Coat. 2021, 159, 106437. [Google Scholar] [CrossRef]
- Ponnusami, S.A.; Krishnasamy, J.; Turteltaub, S.; van der Zwaag, S. A Cohesive-Zone Crack Healing Model for Self-Healing Materials. Int. J. Solids Struct. 2018, 134, 249–263. [Google Scholar] [CrossRef]
- Ma, L.; Ren, C.; Wang, J.; Liu, T.; Yang, H.; Wang, Y.; Huang, Y.; Zhang, D. Self-Reporting Coatings for Autonomous Detection of Coating Damage and Metal Corrosion: A Review. Chem. Eng. J. 2021, 421, 127854. [Google Scholar] [CrossRef]
- Calle, L.; Hintze, P.; Li, W.; Buhrow, J. Smart Coatings for Autonomous Corrosion Detection and Control. In Proceedings of the AIAA SPACE 2010 Conference & Exposition, Anaheim, CA, USA, 10 August–2 September 2010; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2010. [Google Scholar]
- Chen, X.; Zheng, B.; Zhou, S.; Shi, C.; Liang, Y.; Hu, L. Development and Application of Intelligent Coating Technology: A Review. Coatings 2024, 14, 597. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, A.; Cao, L.; Deng, K.; Hou, P.; Liu, C. Robust Damage-Sensing and Corrosion-Warning Polymeric Coatings: A New Approach to Visually Monitor the Degradation Dynamics of Coated Mg-Alloys. Small 2025, 21, e2404038. [Google Scholar] [CrossRef] [PubMed]
- Bakopoulou, A.; Papadopoulos, T.; Garefis, P. Molecular Toxicology of Substances Released from Resin–Based Dental Restorative Materials. Int. J. Mol. Sci. 2009, 10, 3861–3899. [Google Scholar] [CrossRef]
- Borgaonkar, A.; McNamara, G. Environmental Impact and Life Cycle Cost Analysis of Superhydrophobic Coatings for Anti-Icing Applications. Coatings 2024, 14, 1305. [Google Scholar] [CrossRef]
- Borgaonkar, A.; McNamara, G. Environmental Impact Assessment of Anti-Corrosion Coating Life Cycle Processes for Marine Applications. Sustainability 2024, 16, 5627. [Google Scholar] [CrossRef]
- Popa, I.; Petcu, C.; Mureșanu, A. Durability of Multifunctional Coatings Made with Additions of Animal Waste and Agro-Industrial By-Products. Chem. Proc. 2023, 13, 22. [Google Scholar] [CrossRef]
- Ghaderi, M.; Bi, H.; Dam-Johansen, K. Advanced Materials for Smart Protective Coatings: Unleashing the Potential of Metal/Covalent Organic Frameworks, 2D Nanomaterials and Carbonaceous Structures. Adv. Colloid Interface Sci. 2024, 323, 103055. [Google Scholar] [CrossRef] [PubMed]
- Versteg, A.; Beraldo, C.H.M.; Spinelli, A.; da Conceição, T.F. Improving the Barrier Properties of Chitosan Coatings through Schiff Base Formation and Halloysite Incorporation for Corrosion Protection of Commercially Pure Aluminum (Cp-Al). Mater. Today Commun. 2024, 38, 108046. [Google Scholar] [CrossRef]
- Gouda, M.; Abd El-Lateef, H.M.; Alzuobi, A.A.; Mohamed, I.M.A. Synthesis and Characterization of Polyaniline Modified Chitosan Containing Fe Nanoparticles for Corrosion Protection Applications. Inorg. Chem. Commun. 2025, 174, 114066. [Google Scholar] [CrossRef]
- Ahmadi Seyedkhani, S.; Dehnavi, S.M.; Barjasteh, M. A Comprehensive Study on a Novel Chitosan/Ag-MOFs Nanocomposite Coatings for Bone Implants: Physico-Chemical, Biological and Electrochemical Properties. Mater. Chem. Phys. 2023, 308, 128268. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Z.; Chu, G.; Li, Z.; Zhang, H.; Song, L.; Wang, Y.; Sun, L.; Cao, Z.; Ma, F. PH-Responsive Corrosion Protection Coating with Chitosan Encapsulated Halloysite Nanotubes for Active Protection of Copper. Mater. Chem. Phys. 2025, 331, 130182. [Google Scholar] [CrossRef]
- de Sousa Santos, F.; Binder, L.; Scharnagl, N.; da Conceição, T.F. Sustainable Smart Coatings of Chitosan and LDH Loaded with Natural Inhibitors for Corrosion Protection of Mg AZ31 Alloy. Colloids Surf. A Physicochem. Eng. Asp. 2024, 688, 133639. [Google Scholar] [CrossRef]
- Du, J.; Wang, H.; Wang, Z.; Li, X.; Song, H. A Smart Self-Healing Coating Utilizing PH-Responsive Dual Nanocontainers for Corrosion Protection of Aluminum Alloy. Surf. Coat. Technol. 2024, 494, 131305. [Google Scholar] [CrossRef]
- Cui, Y.; Zhao, X.; Jin, Z.; Ji, X.; Duan, J.; Hou, B. Construction of Smart Coatings Containing Core-Shell Nanofibers with Self-Healing and Self-Reporting Properties. Prog. Org. Coat. 2025, 204, 109240. [Google Scholar] [CrossRef]
- Bisht, N.; Vishwakarma, J.; Jaiswal, S.; Shivani; Patel, K.K.; Mishra, A.; Srivastava, A.K.; Dhand, C.; Dwivedi, N. Shape Memory Polymer Coatings for Smart and Sustainable Systems. Mater. Today Chem. 2025, 45, 102607. [Google Scholar] [CrossRef]
Self-Healing Coatings | ||||
---|---|---|---|---|
Type of Material | Properties | Applications | Examples | Ref. |
Polymers, composites, and smart materials | Repair cracks or damage without external intervention, activated by heat, light, or chemical reaction | Paints, protective coatings, transportation, electronics, and aerospace | Epoxy resins with microcapsules | [14,18,30,46,58,59,60,61] |
Thermal Insulation Coatings | ||||
Type of Material | Properties | Applications | Examples | |
Nanostructured (aerogels), ceramics, and composites | Low thermal conductivity and high infra-red/UV reflectivity | Construction, aerospace, and energy-efficient buildings | Silica aerogels, ceramic microspheres, and TiO2 nanoparticles | [15,40,47] |
Antimicrobial Coatings | ||||
Type of Material | Properties | Applications | Examples | |
Nanomaterials (Ag, Cu, and ZnO) and polymers with cations | Inhibit or destroy microorganisms through contact or ion release | Hospitals, public spaces, packaging, and medical devices | Silver or copper nanoparticles, ZnO, and cationic polymers | [19,52] |
Hydrophobic Coatings | ||||
Type of Material | Properties | Applications | Examples | |
Nanostructured polymers | Repel water and reduce wetness and resistance to ice and dirt | Self-cleaning surfaces, photovoltaics, and fabrics | Fluoropolymers and silicone nanoparticles | [21,30,31] |
Conductive Coatings | ||||
Type of Material | Properties | Applications | Examples | |
Graphene, CNTs, and conductive polymers | Dispersion or removal of static charges and electrical conductivity | Electronics, clean rooms and screens | PEDOT:PSS and CNT-based films | [20,57,62] |
Application | Coating Material/Type | Function/Benefit | Ref. |
---|---|---|---|
Engine Components (e.g., turbine blades, vanes) | Thermal barrier coatings, such as zirconia-based ceramics | Insulate metal parts from extreme heat (over 1000 °C), allowing the engine to run hotter and operate with greater efficiency. | [63] |
Airframes and Landing Gear | Anodizing (e.g., chromic, sulfuric) and chromate conversion coatings | Provide excellent corrosion resistance, electrical insulation, and a protective barrier on aluminum alloys. | [64] |
Moving Parts (e.g., bearings, actuators) | Wear-resistant coatings like diamond-like carbon or tungsten carbide | Reduce friction (lubricity) and wear, extending the service life of critical mechanical components. | [3] |
Fasteners and Structural Parts | Cadmium or zinc–nickel electroplating alternatives (due to environmental regulations) | Offer superior corrosion protection and prevent phenomena like galling and fretting wear. | [65] |
Exterior Surfaces | Polyurethane topcoats over epoxy primers | Provide UV resistance, durability, esthetic finish, and protection against environmental damage and erosion. |
Application | Coating Material/Type | Function/Benefit | Ref. |
---|---|---|---|
Implants (e.g., stents, orthopedic devices) | Drug-eluting coatings (containing antiplatelet or anti-restenosis drugs) | Provide localized drug delivery to prevent complications like thrombosis (blood clots) or tissue overgrowth. | [63] |
Orthopedic Implants (e.g., hip/knee replacements) | Calcium phosphates (like hydroxyapatite) and titanium oxides | Enhance biocompatibility and osseointegration (the direct bonding of the implant to the bone). | [64] |
Medical Devices and Instruments | Antimicrobial coatings (e.g., containing silver or copper) | Prevent the adhesion and growth of bacteria and the formation of biofilms, reducing the risk of hospital-acquired infections. | [65] |
Catheters and Guide Wires | Hydrophilic coatings | Become slippery when wet, providing lubricity to ease insertion and minimize trauma to body tissues. | [66] |
Surgical Tools | Ceramic nitrides (e.g., TiN, TiAlN) and diamond-like carbon | Increase surface hardness, wear resistance, and corrosion resistance against sterilization chemicals. | [67] |
Application | Coating Material/Type | Function/Benefit | Ref. |
---|---|---|---|
Structural Steel (e.g., bridges, building frames) | Zinc-rich primers (e.g., inorganic zinc silicates) and epoxy/polyurethane systems | Offer superior, long-term corrosion protection through galvanic action and a robust barrier, often applied in multi-coat systems. | [68] |
Concrete Floors (e.g., parking garages, industrial sites) | Epoxy coatings and polyurethane coatings | Provide a durable, chemical-resistant, and abrasion-resistant surface, making floors easy to clean and protecting the underlying concrete. | [69] |
Facades and Exterior Walls | Elastomeric coatings and acrylic coatings | Offer flexibility and waterproofing to protect building surfaces from moisture intrusion and cracking due to thermal expansion and contraction. | [70] |
Structural Steel Fire Protection | Intumescent coatings | Act as passive fire protection; they swell up when exposed to high heat, creating a thick, non-combustible foam layer that insulates the steel and delays structural failure. | [71] |
Material | Cost | Performance | Application Method | Environmental Impact |
---|---|---|---|---|
Polyurethane | Medium | Excellent performance | Spraying | - |
PMMA and PDMS capsules | High | Good performance | Evaporation of solvent after emulsification | - |
Polyurethane-acrylic | Medium | Good | Spraying/coating | Moderate to low |
Epoxy coatings | High | Very good | Spraying/spreading | Potentially harmful due to solvents |
Chitosan | Low | Average | Dip or dip | Environmentally friendly |
Polyaniline (PANI) with phytic acid | Medium | Good | Solvent coating or spray | Green option |
CBxPA ceramic coating | Medium | Very good | Dip/spraying | Low |
Liquid silicone resin | High | Good | Coating/spreading | Durable—moderate environmental impact |
Zinc phosphate | Low | Good | Addition as additive/paint | Moderate |
Magnesium phosphate cement (MPC) | Low | Average | Use as mortar/coating | Green additive |
FCBPC with FAS-Al2O3 | High | Very good | Spraying/coating | Sustainable—depends on nanoparticles |
Biomimetic microcapsules (benzotriazole, linseed oil) | High | Excellent | Encapsulation in coating | Green technology |
Poly(urea–formaldehyde–melamine) microcapsules with DCO | Medium | Very good | Addition in polymer matrix | Moderate |
BPPM nanosheets | High | Excellent | Coating | Not yet fully evaluated |
TiO2/SiO2 hybrid microcapsules | High | Very good | Encapsulation in coating/paint | Moderate—depends on nanoparticle concentrations |
Criterion | Conventional Materials | New (Smart) Materials |
---|---|---|
Cost | Low: economical choice for mass use | High: increased due to specialized compounds, e.g., fluorescent |
Lifespan | Limited: susceptible to wear, especially in harsh environments | High: can detect early corrosion and self-repair |
Environmental Impact | High: need frequent replacements and produce waste | More sustainable in the long term: fewer replacements, but sometimes complex compounds are used |
Energy Efficiency | No active management: passive protection | Dynamic behavior: active response to stimuli and environmental changes |
Ease of Application | Very easy: widespread coating techniques | More complex: requires special technology and application conditions |
Performance | Good initially but decreases over time or with damage | Very high: intelligent detection and self-healing of micro-cracks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastrafidou, M.; Binas, V.; Kartsonakis, I.A. Designing the Next Generation: A Physical Chemistry Approach to Surface Coating Materials. Appl. Sci. 2025, 15, 10817. https://doi.org/10.3390/app151910817
Pastrafidou M, Binas V, Kartsonakis IA. Designing the Next Generation: A Physical Chemistry Approach to Surface Coating Materials. Applied Sciences. 2025; 15(19):10817. https://doi.org/10.3390/app151910817
Chicago/Turabian StylePastrafidou, Maria, Vassilios Binas, and Ioannis A. Kartsonakis. 2025. "Designing the Next Generation: A Physical Chemistry Approach to Surface Coating Materials" Applied Sciences 15, no. 19: 10817. https://doi.org/10.3390/app151910817
APA StylePastrafidou, M., Binas, V., & Kartsonakis, I. A. (2025). Designing the Next Generation: A Physical Chemistry Approach to Surface Coating Materials. Applied Sciences, 15(19), 10817. https://doi.org/10.3390/app151910817