Data Sources for Traffic Analysis in Urban Canyons—The Comprehensive Literature Review
Abstract
1. Introduction
2. The Review Methodology and Structure
2.1. Meaning of Nomenclature in the Review
2.2. Selection Procedure and Classification of Articles
- v2x Bluetooth
- v2i Bluetooth
- v2x ZigBee
- v2x urban canyon
- Wi-fi urban canyon v2x
- LoRa urban canyon v2x
- DSRC v2x
- IEEE 802.11p urban canyon v2x
- Cellular v2x
- LoRa v2x
- Cellular data record big data transportation
- Cellular data record OD matrix
- Bluetooth big data transportation
- Bluetooth OD matrix
- Wi-Fi big data transportation
- Wi-Fi OD matrix
- Wi-Fi big data transportation
- Wi-Fi OD matrix
- GPS big data transportation
- GPS OD matrix
- Taxi big data transportation
- Taxi OD matrix
- E-scooter big data transportation
- E-scooter OD matrix
- Bike big data transportation
- Bike OD matrix
2.3. Publication by Year
2.4. Paper Classification by Research Method
2.5. The Review Methodology
2.6. Structure of the Paper
3. Recently Used IoT Technologies Capable of V2X Systems in Urban Canyons
4. Traffic Modeling—How V2X Technologies Provide Data in Urban Canyons, Based on Actual Big Data Research
5. Traffic Modeling—A Hypothesis Based on the Review of Traffic Research in the Age of Connected Environment in Urban Canyons
5.1. RSU-Based Big Data Traffic Modeling
5.2. 2.4 GHz Technologies Scanner-Based Big Data Traffic Modeling
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
V2X | Vehicle-to-Everything |
V2I | Vehicle-to-Infrastructure |
V2V | Vehicle-to-Vehicle |
V2P | Vehicle-to-Pedestrian |
V2H | Vehicle-to-Home |
V2B | Vehicle-to-Building |
V2L | Vehicle-to-Load |
V2G | Vehicle-to-Grid |
GNSS | Global Navigation Satellite System |
GPS | Global Positioning System |
IoT | Internet of Things |
SAE | Society of Automotive Engineers |
DSRC | Dedicated Short-Range Communications |
BT | Bluetooth |
NHTSA | National Highway Traffic Safety Administration |
BASt | Bundesanstalt für Straßenwesen—Federal Road Office |
OD | Origin–Destination |
RTK | Real-Time Kinematic |
3DMA | 3D Map Aided |
NLOS | Non-Line-of-Sight |
LOS | Line-of-Sight |
RF | Radio Frequency |
AFH | Adaptive Frequency Hopping |
OBU | On-Board Unit |
RSU | Road-Side Unit |
NR-V2X | New Radio Vehicle-to-Everything |
INS | Internal Navigation System |
NB-IoT | Narrowband Internet of Things |
ADAS | Advanced Driver Assistance Systems |
IMU | Inertial Measurement Unit |
RSSI | Received Signal Strength Indication |
BSM | Basic Safety Message |
UAV | Unmanned Aerial System |
BTS | Base Transceiver Station |
AVL | Automatic Vehicle Location |
TAZ | Transport Analysis Zone |
PT | Personal Transporter |
MILP | Mixed-Integer Linear Programming |
API | Application Programming Interface |
ANPR | Automatic Number Plate Recognition |
References
- Kumar, G.; Mikkili, S. Critical Review of Vehicle-to-Everything (V2X) Topologies: Communication, Power Flow Characteristics, Challenges, and Opportunities. CPSS Trans. Power Electron. Appl. 2024, 9, 10–26. [Google Scholar] [CrossRef]
- J3016_202104: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles—SAE International. Available online: https://www.sae.org/standards/content/j3016_202104/ (accessed on 14 July 2025).
- Gasser, T.M.; Westhoff, D. BASt-Study: Definitions of Automation and Legal Issues in Germany. In Proceedings of the Road Vehicle Automation Workshop, Irvine, CA, USA, 25 July 2012. [Google Scholar]
- Levels of Automation. National Highway Traffic Safety Administration 2022. Available online: https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-05/Level-of-Automation-052522-tag.pdf (accessed on 2 October 2025).
- Litman, T. Autonomous Vehicle Implementation Predictions: Implications for Transport Planning; Victoria Transport Policy Institute: Victoria, BC, Canada, 2019. [Google Scholar]
- Ramesh, R.; Prasanna Kumar, B.Y.N.; Manjanagowda, A.; Kumar, S.; Jain, R. Impact of GNSS Accuracy on V2X Applications. In Proceedings of the 2024 International Conference on Vehicular Technology and Transportation Systems (ICVTTS), Bangalore, India, 27–28 September 2024; Volume 1, pp. 1–6. [Google Scholar]
- Liao, Z.; Yu, B.; Kang, C.; Ge, Y.; Gong, Z. Research on GNSS and RTK Performance for V2X Application Scenarios. In Proceedings of the 2022 IEEE 8th International Conference on Computer and Communications (ICCC), Chengdu, China, 9–12 December 2022; pp. 499–504. [Google Scholar]
- Zhang, G.; Ng, H.-F.; Wen, W.; Hsu, L.-T. 3D Mapping Database Aided GNSS Based Collaborative Positioning Using Factor Graph Optimization. IEEE Trans. Intell. Transp. Syst. 2021, 22, 6175–6187. [Google Scholar] [CrossRef]
- Wang, D. Cooperative V2X Relative Navigation Using Tight-Integration of DGPS and V2X UWB Range and Simulated Bearing. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2015. [Google Scholar]
- Ko, S.-W.; Chae, H.; Han, K.; Lee, S.; Seo, D.-W.; Huang, K. V2X-Based Vehicular Positioning: Opportunities, Challenges, and Future Directions. IEEE Wirel. Commun. 2021, 28, 144–151. [Google Scholar] [CrossRef]
- Gáspár, P.; Szalay, Z.; Aradi, S. Highly Automated Vehicle Systems; BME MOGI: Budapest, Hungary, 2014. [Google Scholar]
- Nguyen, P.N.; Tran Truong, T.P.; Nguyen, T.T.L.; Ha, S.; Khanh, V.H.; Nguyen, T.A.; Le, K.B.; Nguyen, M.T. Acb: Authority Control Bluetooth Devices in Smarthome Environment System 2024. Available online: http://dx.doi.org/10.2139/ssrn.5064588 (accessed on 2 October 2025).
- Yang, G.; Shin, H.; Kim, H. Frequency Hopping as Diffusion: A New Perspective on Mitigating Bluetooth Packet Collisions in Dense Deployments. In Proceedings of the 2024 IEEE 21st International Conference on Mobile Ad-Hoc and Smart Systems (MASS), Seoul, Republic of Korea, 23–25 September 2024; pp. 19–28. [Google Scholar]
- Dittmer, C. Bluetooth Use Cases for V2X Automotive ApplicationsV2X. 2024. Available online: https://www.bluetooth.com/blog/bluetooth-use-cases-for-v2x-automotive-applications/ (accessed on 2 October 2025).
- Aza, A.; Melendi, D.; García, R.; Pañeda, X.G.; Pozueco, L.; Corcoba, V. Bluetooth 5 Performance Analysis for Inter-Vehicular Communications. Wirel. Netw. 2022, 28, 137–159. [Google Scholar] [CrossRef]
- Iordache, V.; Minea, M.; Gheorghiu, R.A.; Cormos, A.C.; Badau, F. Testing Bluetooth Low Energy v5 Capabilities for Connected Vehicles Applications. In Proceedings of the 2024 47th International Conference on Telecommunications and Signal Processing (TSP), Online, 1–12 July 2024; pp. 130–134. [Google Scholar]
- Perez-Yuste, A.; Pitarch-Blasco, J.; Falcon-Darias, F.A.; Nuñez, N. Design of New BLE GAP Roles for Vehicular Communications. Sensors 2024, 24, 4835. [Google Scholar] [CrossRef]
- Kumar, N.; Shukla, H.; Rajalakhsmi, P. V2X Enabled Emergency Vehicle Alert System. arXiv 2024, arXiv:2403.19402. [Google Scholar] [CrossRef]
- Vladyko, A.; Plotnikov, P.; Tambovtsev, G. Simulation-Based Evaluation of V2X System with Variable Computational Infrastructure. Network 2025, 5, 4. [Google Scholar] [CrossRef]
- Rabieh, K.; Samir, R.; Azer, M.A. Empowering Pedestrian Safety: Unveiling a Lightweight Scheme for Improved Vehicle-Pedestrian Safety. Information 2024, 15, 160. [Google Scholar] [CrossRef]
- Petrov, T.; Pocta, P.; Kovacikova, T. Benchmarking 4G and 5G-Based Cellular-V2X for Vehicle-to-Infrastructure Communication and Urban Scenarios in Cooperative Intelligent Transportation Systems. Appl. Sci. 2022, 12, 9677. [Google Scholar] [CrossRef]
- Shin, C.; Farag, E.; Ryu, H.; Zhou, M.; Kim, Y. Vehicle-to-Everything (V2X) Evolution From 4G to 5G in 3GPP: Focusing on Resource Allocation Aspects. IEEE Access 2023, 11, 18689–18703. [Google Scholar] [CrossRef]
- Raeisi Ziarani, M. Resource Allocation in V2I Link Between Connected Autonomous Vehicles and 5G Mm-Wave Band Small-Cells Using Machine Learning. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2024. [Google Scholar]
- Bansal, A.; Formosa, N. Navigating the Road to Connectivity: Use Cases and Design Considerations for V2X Networks Using Millimeter-Wave 5G Beam-Steering Antennas. In Proceedings of the 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Ahmedabad, India, 10–14 December 2023; pp. 1–6. [Google Scholar]
- Campolo, C.; Molinaro, A.; Iera, A.; Fontes, R.R.; Rothenberg, C.E. Towards 5G Network Slicing for the V2X Ecosystem. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), Montreal, QC, Canada, 25–29 June 2018; pp. 400–405. [Google Scholar]
- Chatzoulis, D.; Chaikalis, C.; Xenakis, A.; Kosmanos, D.; Anagnostou, K.E. Channel Coding QoS Analysis in 5G V2X Dynamic Propagation Models. IEEE Access 2025, 13, 80149–80173. [Google Scholar] [CrossRef]
- Solomitckii, D.; Semkin, V.; Karttunen, A.; Petrov, V.; Nguyen, S.L.H.; Nikopour, H.; Haneda, K.; Andreev, S.; Talwar, S.; Koucheryavy, Y. Characterizing Radio Wave Propagation in Urban Street Canyon with Vehicular Blockage at 28 GHz. IEEE Trans. Veh. Technol. 2020, 69, 1227–1236. [Google Scholar] [CrossRef]
- Ma, Z.; Deng, Z.; Tian, Z.; Zhang, Y.; Wang, J.; Guo, J. A Line of Sight/Non-Line of Sight Recognition Method Based on the Dynamic Multi-Level Optimization of Comprehensive Features. Sensors 2025, 25, 304. [Google Scholar] [CrossRef]
- Mendes, B.; Araújo, M.; Goes, A.; Corujo, D.; Oliveira, A.S.R. Exploring V2X in 5G Networks: A Comprehensive Survey of Location-Based Services in Hybrid Scenarios. Veh. Commun. 2025, 52, 100878. [Google Scholar] [CrossRef]
- Kleinow, T.; Lakshmanan, S.; Richardson, P.; Elangovan, V.; Schmidt, S.; Locke, J.; Crowder, M. A Validated Model for Non-Line-of-Sight V2X Communications. In Proceedings of the 2020 Antenna Measurement Techniques Association Symposium (AMTA), Newport, RI, USA, 2–5 November 2020; pp. 1–6. [Google Scholar]
- Ye, L.; Li, J.; Zeng, L.; Han, Q.; Liu, E. 3D Channel Model Parameters Optimizing for C-V2X Communication Scenarios with K-Means++ and Genetic Algorithm. In Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), Bilbao, Spain, 24–28 September 2023; pp. 42–47. [Google Scholar]
- Lei, J.; Chen, S.; Zeng, L.; Liu, F.; Zhu, K.; Liu, J. In-Chamber V2X Oriented Test Scheme for Connected Vehicles. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1–6. [Google Scholar]
- Ye, L.; Liu, E.; Han, Q.; Sun, Q.; Zeng, L.; Liu, F. Scenarios Oriented V2V 3D Channel Model Optimization. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN USA, 19–22 September 2021; pp. 3204–3209. [Google Scholar]
- Huang, Z.; Chen, S.; Pian, Y.; Sheng, Z.; Ahn, S.; Noyce, D.A. Toward C-V2X Enabled Connected Transportation System: RSU-Based Cooperative Localization Framework for Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2024, 25, 13417–13431. [Google Scholar] [CrossRef]
- Giuliano, R.; Vegni, A.M.; Loscrí, V.; Innocenti, E.; Vizzarri, A.; Mazzenga, F. MuSLi: A Multi Sensor LiDAR Detection for C-V2X Networks. Comput. Netw. 2023, 221, 109514. [Google Scholar] [CrossRef]
- Kiela, K.; Barzdenas, V.; Jurgo, M.; Macaitis, V.; Rafanavicius, J.; Vasjanov, A.; Kladovscikov, L.; Navickas, R. Review of V2X–IoT Standards and Frameworks for ITS Applications. Appl. Sci. 2020, 10, 4314. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, R.; Wang, Z.; Han, L.; Thompson, J.S. A V2X-Integrated Positioning Methodology in Ultradense Networks. IEEE Internet Things J. 2021, 8, 17014–17028. [Google Scholar] [CrossRef]
- Ivan, I.; Besnier, P.; Bunlon, X.; Le Danvic, L.; Crussière, M.; Drissi, M. Influence of Propagation Channel Modeling on V2X Physical Layer Performance. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010; pp. 1–5. [Google Scholar]
- Möller, A.; Kürner, T. LTE Link Level Performance Evaluation Using Stochastic Channel Models for V2X Communication. In Proceedings of the 2015 IEEE Vehicular Networking Conference (VNC), Kyoto, Japan, 16–18 December 2015; pp. 25–31. [Google Scholar]
- Han, Q.; Yuan, X.; Zeng, L.; Zu, H.; Ye, L.; Lin, L. Scenario Oriented V2V Field Test Scheme with Dense Node Array. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Online, 20–23 September 2020; pp. 1–6. [Google Scholar]
- Seo, J.; Park, K.; Jeon, W.; Kwak, J.; Kim, D.K. Performance Evaluation of V2X Communications in Practical Small-Scale Fading Models. In Proceedings of the 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 13–16 September 2009; pp. 2434–2438. [Google Scholar]
- Molisch, A.F.; Mecklenbräuker, C.F.; Zemen, T.; Prokes, A.; Hofer, M.; Pasic, F.; Hammoud, H. Millimeter-Wave V2X Channel Measurements in Urban Environments. IEEE Open J. Veh. Technol. 2025, 6, 520–541. [Google Scholar] [CrossRef]
- Ding, C.; Ho, I.W.-H. Digital-Twin-Enabled City-Model-Aware Deep Learning for Dynamic Channel Estimation in Urban Vehicular Environments. IEEE Trans. Green Commun. Netw. 2022, 6, 1604–1612. [Google Scholar] [CrossRef]
- Wang, S.; Huang, J.; Zhang, X. Demystifying Millimeter-Wave V2X: Towards Robust and Efficient Directional Connectivity under High Mobility. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking ACM, London, UK, 21–25 September 2020; pp. 1–14. [Google Scholar]
- Wang, Y.; Narasimha, M.; Heath, R.W. Towards Robustness: Machine Learning for MmWave V2X with Situational Awareness. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 1577–1581. [Google Scholar]
- Zhang, D. Distributed Cache Enabled V2X Networks: Proposals, Research Trends and Challenging Issues. arXiv 2018, arXiv:1803.06059. [Google Scholar] [CrossRef]
- Hejazi, H.; Wippelhauser, A.; Bokor, L. Extending Artery/OMNeT++ for Evaluating V2X Sensor Fusion Algorithms with Infrastructure Support in Cooperative Advanced Driver Assistance Systems. IEEE Access 2025, 13, 128492–128517. [Google Scholar] [CrossRef]
- Hughes, E.; El-Tawab, S. Software Defined V2X Mesh Networking for Autonomous Vehicles in a Controlled Environment. In Proceedings of the 2023 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT), Dubai, United Arab Emirates, 10–11 December 2023; pp. 204–210. [Google Scholar]
- Abidi, B.; Moreno, F.M.; Haziti, M.E.; Hussein, A.; Kaff, A.A.; Gomez, D.M. Hybrid V2X Communication Approach Using WiFi and 4G Connections. In Proceedings of the 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Madrid, Spain, 12–14 September 2018; pp. 1–5. [Google Scholar]
- Adegoke, E.I.; Zidane, J.; Kampert, E.; Ford, C.R.; Birrell, S.A.; Higgins, M.D. Infrastructure Wi-Fi for Connected Autonomous Vehicle Positioning: A Review of the State-of-the-Art. Veh. Commun. 2019, 20, 100185. [Google Scholar] [CrossRef]
- Ward, J.; Tracz, T. P3Mobility Leading in Economically Sustainable Safety with V2X Technology in Oakland County Michigan; Road Commission for Oakland County, P3Mobilit: Toronto, ON, Canada, 2025. [Google Scholar]
- de Almeida, T.T.; Ribeiro Júnior, J.G.; Campista, M.E.M.; Costa, L.H.M.K. Wi-Fi Direct Performance Evaluation for V2P Communications. J. Sens. Actuator Netw. 2020, 9, 28. [Google Scholar] [CrossRef]
- Naik, G.; Jerry Park, J.-M. Impact of Wi-Fi Transmissions on C-V2X Performance. In Proceedings of the 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Newark, NJ, USA, 11 November 2019; pp. 1–10. [Google Scholar]
- Ivanov, V.; Grigoriev, V.; Mekhrafzuni, A. Wi-Fi 5.8 GHz Interference Density Impact on Intelligent Transportation System Link. In Proceedings of the 2020 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russia, 15–16 October 2020; pp. 18–21. [Google Scholar]
- Haque, K.F.; Abdelgawad, A.; Yelamarthi, K. Comprehensive Performance Analysis of Zigbee Communication: An Experimental Approach with XBee S2C Module. Sensors 2022, 22, 3245. [Google Scholar] [CrossRef] [PubMed]
- Iordache, V.; Minea, M.; Gheorghiu, R.A.; Badau, F.; Stoica, V.; Stan, V.A. Assessing Performance of Long-Range ZigBee for Road Infrastructure Communications. In Proceedings of the 2024 16th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Iasi, Romania, 27 June 2024; pp. 1–5. [Google Scholar]
- Sarango, A.; Vásquez, G.; Torres, R. A Vehicle-to-Vehicle Communication System Using ZigBee. IOP Conf. Ser. Earth Environ. Sci. 2024, 1370, 012008. [Google Scholar] [CrossRef]
- Li, Z.; Yu, S. Design and Research of a Vehicle Approaching Reminder Device Based on ZigBee Wireless Sensor Network. Sci. Program. 2022, 2022, 8797953. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, T.; Wu, J. Vehicles Relative Positioning Based on ZigBee and GPS Technology. In Proceedings of the 2016 6th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 17–19 June 2016; pp. 59–62. [Google Scholar]
- Dong, C.; Chen, X.; Dong, H.; Yang, K.; Guo, J.; Bai, Y. Research on Intelligent Vehicle Infrastructure Cooperative System Based on Zigbee. In Proceedings of the 2019 IEEE 5th International Conference on Transportation Information and Safety (ICTIS), Liverpool, UK, 14–17 July 2019; pp. 1337–1343. [Google Scholar]
- Gu, Y.; Hsu, L.-T.; Kamijo, S. GNSS/Onboard Inertial Sensor Integration with the Aid of 3-D Building Map for Lane-Level Vehicle Self-Localization in Urban Canyon. IEEE Trans. Veh. Technol. 2016, 65, 4274–4287. [Google Scholar] [CrossRef]
- Bansal, M.; Shrivastava, P.; Harshan, J. A Prototype on the Feasibility of Learning Spatial Provenance in XBee and LoRa Networks. In Proceedings of the 2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India, 3–7 January 2024; pp. 264–266. [Google Scholar]
- Javed, I.; Tang, X.; Saleem, M.A.; Javed, A.; Zia, M.A.; Shoukat, I.A. Localization for V2X Communication with Noisy Distance Measurement. Int. J. Intell. Netw. 2023, 4, 355–360. [Google Scholar] [CrossRef]
- Dudhe, R.; Matias, N.; Jowkar, A.M.; Dsouza, A.A. An Affordable Solution to V2V Communication Using XBee. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 3931–3935. [Google Scholar] [CrossRef]
- Haque, K.F.; Abdelgawad, A.; Yanambaka, V.P.; Yelamarthi, K. A LoRa Based Reliable and Low Power Vehicle to Everything (V2X) Communication Architecture. In Proceedings of the 2020 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Chennai, India, 14–16 December 2020; pp. 177–182. [Google Scholar]
- Zadobrischi, E.; Havriliuc, Ș. Enhancing Scalability of C-V2X and DSRC Vehicular Communication Protocols with LoRa 2.4 GHz in the Scenario of Urban Traffic Systems. Electronics 2024, 13, 2845. [Google Scholar] [CrossRef]
- Haque, K.F.; Abdelgawad, A.; Yanambaka, V.P.; Yelamarthi, K. LoRa Architecture for V2X Communication: An Experimental Evaluation with Vehicles on the Move. Sensors 2020, 20, 6876. [Google Scholar] [CrossRef]
- Li, Y.; Han, S.; Yang, L.; Wang, F.-Y.; Zhang, H. LoRa on the Move: Performance Evaluation of LoRa in V2X Communications. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1107–1111. [Google Scholar]
- Turan, B.; Narmanlioglu, O.; Koc, O.N.; Kar, E.; Coleri, S.; Uysal, M. Measurement Based Non-Line-of-Sight Vehicular Visible Light Communication Channel Characterization. IEEE Trans. Veh. Technol. 2022, 71, 10110–10114. [Google Scholar] [CrossRef]
- Godoy, J.A.; Cabrera, F.; Araña, V.; Sánchez, D.; Alonso, I.; Molina, N. A New Approach of V2X Communications for Long Range Applications in UAVs. In Proceedings of the 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC), Gran Canaria, Spain, 28 May–1 June 2018; pp. 1–4. [Google Scholar]
- Karne, R.K.; Sreeja, T.K. Review on Vanet Architecture and Applications. Turk. J. Comp. Math. Educ. 2021, 12, 1745–1749. [Google Scholar]
- Zhou, R. VANET Architecture Analysis and Protocols. Int. J. Comput. Appl. 2022, 184, 44–54. [Google Scholar] [CrossRef]
- Ibrar, M.; Adbeb, T.; Di, W. Software-Defined Networking (SDN) Based VANET Architecture: Mitigation of Traffic Congestion. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 706–714. [Google Scholar] [CrossRef]
- Secinti, G.; Canberk, B.; Duong, T.Q.; Shu, L. Software Defined Architecture for VANET: A Testbed Implementation with Wireless Access Management. IEEE Commun. Mag. 2017, 55, 135–141. [Google Scholar] [CrossRef]
- Balta, M.; Özçeli̇k, İ. A 3-Stage Fuzzy-Decision Tree Model for Traffic Signal Optimization in Urban City via a SDN Based VANET Architecture. Future Gener. Comput. Syst. 2020, 104, 142–158. [Google Scholar] [CrossRef]
- Ghosh, J.; Kumar, N.; Al-Utaibi, K.A.; Sait, S.M.; Vo, V.N.; So-In, C. Reliable Data Transmission for a VANET-IoIT Architecture: A DNN Approach. Internet Things 2024, 25, 101129. [Google Scholar] [CrossRef]
- Luber, A.; Bauer, S.; Junghans, M.; Schulz, J. On Measuring Traffic with Wi-Fi and Bluetooth; Institute of Transportation Systems German Aerospace Center: Berlin, Germany, 2011. [Google Scholar]
- Abbott-Jard, M.; Shah, H.; Bhaskar, A. Empirical Evaluation of Bluetooth and Wifi Scanning for Road Transport. In Proceedings of the Australasian Transport Research Forum 2013, Brisbane, QLD, Australia, 2–4 October 2013. [Google Scholar]
- Chiva, I.-C.; Minea, M.; Minea, V.-L.; Semenescu, A. Anonymous Detection of Traveler Flows Employing Bluetooth Technologies. Proceedings 2020, 63, 61. [Google Scholar] [CrossRef]
- Gheorghiu, R.A.; Iordache, V.; Cormoș, A.C. Analysis of the Possibility to Detect Road Vehicles via Bluetooth Technology. Sensors 2021, 21, 7281. [Google Scholar] [CrossRef]
- Crawford, F.; Watling, D.P.; Connors, R.D. Identifying Road User Classes Based on Repeated Trip Behaviour Using Bluetooth Data. Transp. Res. Part A Policy Pract. 2018, 113, 55–74. [Google Scholar] [CrossRef]
- Abedi, N.; Bhaskar, A.; Chung, E. Bluetooth and Wi-Fi MAC Address Based Crowd Data Collection and Monitoring: Benefits, Challenges and Enhancement. In Proceedings of the Australasian Transport Research Forum 2013, Brisbane, QLD, Australia, 2–4 October 2013. [Google Scholar]
- Tsubota, T.; Yoshii, T. An Analysis of the Detection Probability of MAC Address from a Moving Bluetooth Device. Transp. Res. Procedia 2017, 21, 251–256. [Google Scholar] [CrossRef]
- Bjerre-Nielsen, A.; Minor, K.; Sapieżyński, P.; Lehmann, S.; Lassen, D.D. Inferring Transportation Mode from Smartphone Sensors: Evaluating the Potential of Wi-Fi and Bluetooth. PLoS ONE 2020, 15, e0234003. [Google Scholar] [CrossRef] [PubMed]
- Hainen, A.M.; Wasson, J.S.; Hubbard, S.M.L.; Remias, S.M.; Farnsworth, G.D.; Bullock, D.M. Estimating Route Choice and Travel Time Reliability with Field Observations of Bluetooth Probe Vehicles. Transp. Res. Rec. J. Transp. Res. Board 2011, 2256, 43–50. [Google Scholar] [CrossRef]
- Gudishala, R.; Wilmot, C.; Mokkapatti, A. Travel Time Estimation Using Bluetooth; Department of Civil and Environmental Engineering Louisiana State University: Baton Rouge, LA, USA, 2016. [Google Scholar]
- Bouaru, R.; Peculea, A.; Iancu, B.; Buzura, S.; Cebuc, E.; Dadarlat, V. Analysis of a Bluetooth Traffic Dataset Obtained during University Examination Sessions. Data 2024, 9, 49. [Google Scholar] [CrossRef]
- Bhaskar, A.; Chung, E. Fundamental Understanding on the Use of Bluetooth Scanner as a Complementary Transport Data. Transp. Res. Part C Emerg. Technol. 2013, 37, 42–72. [Google Scholar] [CrossRef]
- Hussain, E.; Behara, K.N.S.; Bhaskar, A.; Chung, E. A Framework to Quantify the Differences between Multi-Modal Travel Demand: A Case Study on Brisbane Network Using Bluetooth and Smartcard Data. IEEE Trans. Intell. Transp. Syst. 2019, 23, 8126–8135. [Google Scholar] [CrossRef]
- Bhaskar, A.; Kieu, L.M.; Qu, M.; Nantes, A.; Chung, E. On the Use of Bluetooth MAC Scanners for Live Reporting of the Transport Network. In Proceedings of the Eastern Asia Society for Transportation Studies, Taipei, Taiwan, 9–11 September 2013; Volume 9. [Google Scholar]
- Gunda, P.K. Network-Wide Traffic Congestion Visual Analytics: A Case Study for Brisbane Bluetooth MAC Scanner Data. Master’s Thesis, Queensland University of Technology, Brisbane, QLD, Australia, 2021. [Google Scholar]
- Michau, G.; Nantes, A.; Chung, E.; Abry, P.; Borgnat, P. Retrieving Trip Information from a Discrete Detectors Network: The Case of Brisbane Bluetooth Detectors. In Proceedings of the 32nd Conference of Australian Institutes of Transport Research, Sydney, NSW, Australia, 17–18 February 2014. [Google Scholar]
- Malinovskiy, Y.; Saunier, N.; Wang, Y. Analysis of Pedestrian Travel with Static Bluetooth Sensors. Transp. Res. Rec. J. Transp. Res. Board 2012, 2299, 137–149. [Google Scholar] [CrossRef]
- Araghi, B.N.; Hammershøj Olesen, J.; Krishnan, R.; Tørholm Christensen, L.; Lahrmann, H. Reliability of Bluetooth Technology for Travel Time Estimation. J. Intell. Transp. Syst. 2015, 19, 240–255. [Google Scholar] [CrossRef]
- Cebecauer, M.; Gundlegård, D.; Jenelius, E.; Burghout, W. Spatio-Temporal Public Transport Mode Share Estimation and Analysis Using Mobile Network and Smart Card Data. In Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), Bilbao, Spain, 24–28 September 2023; pp. 2543–2548. [Google Scholar]
- Kompleksowe Badania Ruchu We Wrocławiu i Otoczeniu—KBR 2018—Kompleksowe Badania Ruchu—Biuletyn Informacji Publicznej Urzędu Miejskiego Wrocławia. Available online: https://bip.um.wroc.pl/artykul/565/37499/kompleksowe-badania-ruchu-we-wroclawiu-i-otoczeniu-kbr-2018 (accessed on 14 August 2025).
- Kruszyna, M. Investment Challenges Pertaining to the Achievement of the Goals of the Mobility Policy Based on the Analysis of the Results of Traffic Surveys in Wroclaw. Arch. Civ. Eng. 2021, 67, 505–523. [Google Scholar]
- Dong, H.; Wu, M.; Ding, X.; Chu, L.; Jia, L.; Qin, Y.; Zhou, X. Traffic Zone Division Based on Big Data from Mobile Phone Base Stations. Transp. Res. Part C Emerg. Technol. 2015, 58, 278–291. [Google Scholar] [CrossRef]
- Alexander, L.; Jiang, S.; Murga, M.; González, M.C. Origin–Destination Trips by Purpose and Time of Day Inferred from Mobile Phone Data. Transp. Res. Part C Emerg. Technol. 2015, 58, 240–250. [Google Scholar] [CrossRef]
- Toole, J.L.; Colak, S.; Sturt, B.; Alexander, L.P.; Evsukoff, A.; González, M.C. The Path Most Traveled: Travel Demand Estimation Using Big Data Resources. Transp. Res. Part C Emerg. Technol. 2015, 58, 162–177. [Google Scholar] [CrossRef]
- Bonnel, P.; Hombourger, E.; Olteanu-Raimond, A.-M.; Smoreda, Z. Passive Mobile Phone Dataset to Construct Origin-Destination Matrix: Potentials and Limitations. Transp. Res. Procedia 2015, 11, 381–398. [Google Scholar] [CrossRef]
- Larijani, A.N.; Olteanu-Raimond, A.-M.; Perret, J.; Brédif, M.; Ziemlicki, C. Investigating the Mobile Phone Data to Estimate the Origin Destination Flow and Analysis; Case Study: Paris Region. Transp. Res. Procedia 2015, 6, 64–78. [Google Scholar] [CrossRef]
- Okmi, M.; Por, L.Y.; Ang, T.F.; Ku, C.S. Mobile Phone Data: A Survey of Techniques, Features, and Applications. Sensors 2023, 23, 908. [Google Scholar] [CrossRef]
- Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation) (Text with EEA Relevance). Off. J. Eur. Union 2016, 119, L 119/1.
- Smartphone Ownership in the US by Age 2023. Available online: https://www.statista.com/statistics/489255/percentage-of-us-smartphone-owners-by-age-group/ (accessed on 14 August 2025).
- Carrel, A.; Lau, P.S.C.; Mishalani, R.G.; Sengupta, R.; Walker, J.L. Quantifying Transit Travel Experiences from the Users’ Perspective with High-Resolution Smartphone and Vehicle Location Data: Methodologies, Validation, and Example Analyses. Transp. Res. Part C Emerg. Technol. 2015, 58, 224–239. [Google Scholar] [CrossRef]
- Sinclair, M.; Maadi, S.; Zhao, Q.; Hong, J.; Ghermandi, A.; Bailey, N. Assessing the Socio-Demographic Representativeness of Mobile Phone Application Data. Appl. Geogr. 2023, 158, 102997. [Google Scholar] [CrossRef]
- Leurent, F.; Sun, D.; Xie, X. On Heterogenous Sampling Rates in Origin–Destination Matrix Estimation Based on Trajectory Data and Link Counts. Transp. Res. Rec. 2023, 2677, 1169–1180. [Google Scholar] [CrossRef]
- Patire, A.D.; Wright, M.; Prodhomme, B.; Bayen, A.M. How Much GPS Data Do We Need? Transp. Res. Part C Emerg. Technol. 2015, 58, 325–342. [Google Scholar] [CrossRef]
- Yu, J.; Stettler, M.E.J.; Angeloudis, P.; Hu, S.; Chen, X. (Michael) Urban Network-Wide Traffic Speed Estimation with Massive Ride-Sourcing GPS Traces. Transp. Res. Part C Emerg. Technol. 2020, 112, 136–152. [Google Scholar] [CrossRef]
- Wang, X.; Khattak, A.J.; Liu, J.; Masghati-Amoli, G.; Son, S. What Is the Level of Volatility in Instantaneous Driving Decisions? Transp. Res. Part C Emerg. Technol. 2015, 58, 413–427. [Google Scholar] [CrossRef]
- Forghani, M.; Karimipour, F.; Claramunt, C. From Cellular Positioning Data to Trajectories: Steps towards a More Accurate Mobility Exploration. Transp. Res. Part C Emerg. Technol. 2020, 117, 102666. [Google Scholar] [CrossRef]
- Li, C.; Zheng, L.; Jia, N. Network-Wide Ride-Sourcing Passenger Demand Origin-Destination Matrix Prediction with a Generative Adversarial Network. Transp. A Transp. Sci. 2024, 20, 2109774. [Google Scholar] [CrossRef]
- Putatunda, S.; Laha, A.K. Travel Time Prediction in Real Time for GPS Taxi Data Streams and Its Applications to Travel Safety. Hum.-Centric Intell. Syst. 2023, 3, 381–401. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Jia, B.; Gao, Z. Comparative Analysis of Usage Patterns and Underlying Determinants for Ride-Hailing and Traditional Taxi Services: A Chicago Case Study. Transp. Res. Part A Policy Pract. 2024, 179, 103912. [Google Scholar] [CrossRef]
- Wang, F.; Ross, C.L. New Potential for Multimodal Connection: Exploring the Relationship between Taxi and Transit in New York City (NYC). Transportation 2019, 46, 1051–1072. [Google Scholar] [CrossRef]
- Riascos, A.P.; Mateos, J.L. Networks and Long-Range Mobility in Cities: A Study of More than One Billion Taxi Trips in New York City. Sci. Rep. 2020, 10, 4022. [Google Scholar] [CrossRef]
- Rahmani, M.; Jenelius, E.; Koutsopoulos, H.N. Non-Parametric Estimation of Route Travel Time Distributions from Low-Frequency Floating Car Data. Transp. Res. Part C Emerg. Technol. 2015, 58, 343–362. [Google Scholar] [CrossRef]
- Griffin, G.P.; Mulhall, M.; Simek, C.; Riggs, W.W. Mitigating Bias in Big Data for Transportation. J. Big Data Anal. Transp. 2020, 2, 49–59. [Google Scholar] [CrossRef]
- Oliveira, J.; Farias, C.M.; Pacitti, E.; Fortino, G. (Eds.) Big Social Data and Urban Computing: First Workshop, BiDU 2018, Rio de Janeiro, Brazil, 31 August, 2018, Revised Selected Papers, Proceedings of the BiDU 2018, Rio de Janeiro, Brazil, 31 August 2018; Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 926, ISBN 978-3-030-11237-0. [Google Scholar]
- Sun, W.; Vij, A.; Kaliszewski, N. A Flexible and Scalable Single-Level Framework for OD Matrix Inference Using IoT Data. Transp. Res. Part A Policy Pract. 2023, 175, 103775. [Google Scholar] [CrossRef]
- Zawodny, M.; Kruszyna, M. Proposals for Using the Advanced Tools of Communication between Autonomous Vehicles and Infrastructure in Selected Cases. Energies 2022, 15, 6579. [Google Scholar] [CrossRef]
- Huo, J.; Yang, H.; Li, C.; Zheng, R.; Yang, L.; Wen, Y. Influence of the Built Environment on E-Scooter Sharing Ridership: A Tale of Five Cities. J. Transp. Geogr. 2021, 93, 103084. [Google Scholar] [CrossRef]
- Younes, H.; Zou, Z.; Wu, J.; Baiocchi, G. Comparing the Temporal Determinants of Dockless Scooter-Share and Station-Based Bike-Share in Washington, D.C. Transp. Res. Part A Policy Pract. 2020, 134, 308–320. [Google Scholar] [CrossRef]
- Ma, X.; Yuan, Y.; Van Oort, N.; Hoogendoorn, S. Bike-Sharing Systems’ Impact on Modal Shift: A Case Study in Delft, the Netherlands. J. Clean. Prod. 2020, 259, 120846. [Google Scholar] [CrossRef]
- Loaiza-Monsalve, D.; Riascos, A.P. Human Mobility in Bike-Sharing Systems: Structure of Local and Non-Local Dynamics. PLoS ONE 2019, 14, e0213106. [Google Scholar] [CrossRef]
- Aliari, S.; Nasri, A.; Motalleb Nejad, M.; Haghani, A. Toward Sustainable Travel: An Analysis of Campus Bikeshare Use. Transp. Res. Interdiscip. Perspect. 2020, 6, 100162. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Zuo, Y. Optimizing the Location of Virtual Stations in Free-Floating Bike-Sharing Systems with the User Demand during Morning and Evening Rush Hours. J. Adv. Transp. 2019, 2019, 4308509. [Google Scholar] [CrossRef]
- Mayne, K.; Fried, L.; Ducellier, C.; Shared Ambition: The Potential for Bike Sharing in Europe: Benchmarking 148 Cities. Cycling Industries Europe. 2024. Available online: https://cyclingindustries.com/fileadmin/CIE_Bike_Sharing_2024_Report.pdf (accessed on 2 October 2025).
- Radzimski, A.; Dzięcielski, M. Exploring the Relationship between Bike-Sharing and Public Transport in Poznań, Poland. Transp. Res. Part A Policy Pract. 2021, 145, 189–202. [Google Scholar] [CrossRef]
- OpenStreetMap. Available online: https://www.openstreetmap.org/ (accessed on 19 August 2025).
Technology | Strengths | Weaknesses | Range | Data Rate | Latency | Cost | Scalability | Urban Canyon Suitability | Maturity | Research Trends/Gaps |
---|---|---|---|---|---|---|---|---|---|---|
Bluetooth | Low energy, adaptive frequency hopping, good short-range performance | Limited range, low throughput at distance | ~300 m static, ~1 km dynamic | Up to ~992 kbps | ~100 ms | Low | Medium | Moderate—short range avoids interference | Mature | Integration with smartphones, hybrid V2X systems |
Wi-Fi | High bandwidth, widely available | Poor NLOS performance, interference in urban areas | ~40–100 m in NLOS | High | Variable, often >100 ms | Medium | Medium | Limited—signal attenuation, interference | Mature | Beacon stuffing, GNSS support, hybrid systems |
ZigBee | Low power, multi-hop support, good short-range accuracy | Low bandwidth, interference on 2.4 GHz | ~300–600 m | Low | Moderate | Low | Medium | Moderate—suitable for short-range V2X | Mature | Hybrid with LoRa, GNSS-free localization |
LoRa | Long range, low power, good NLOS performance | Low data rate, speed limitations | ~160–500 m (urban), >10 km (UAV) | Very low | High | Very Low | High | Good—especially for non-safety apps | Emerging | SF tuning for urban NLOS, UAV applications |
LTE (4G) | Reliable, widely deployed | Performance drops in dense urban canyons | ~800 m+ | Medium | ~10–50 ms | Medium | High | Moderate—LOS helps, but reflections degrade | Mature | Fusion with INS, V2I/V2V hybrid systems |
5G/NR-V2X | High speed, low latency, AI optimization, mmWave support | Needs dense infrastructure, blockage sensitivity | ~200 m (mmWave), varies | Up to 25 Mbps uplink | ~5–10 ms | High | High | Good—with extra power and beamforming | Emerging | Deep learning for NLOS detection, private 5G for SAE L3+ |
C-V2X | High reliability, GNSS-independent localization, LiDAR fusion | Signal loss in deep urban canyons | ~150 m (RSU-based) | High | <10 ms | High | High | Strong—RSU-based systems perform well | Emerging | RSU density optimization, hybrid with DSRC |
DSRC/IEEE 802.11p | Low latency, proven V2V/V2I use | Blockage and reflection issues in urban canyons | ~300 m | Medium | <100 ms | Medium | Medium | Moderate—needs RSU density increase | Mature | mmWave integration, beam-forming, digital twin modeling |
Technology/Data Source | What It Measures | Spatial Resolution | Temporal Resolution | Advantages | Disadvantages | Typical Applications |
---|---|---|---|---|---|---|
Bluetooth/Wi-Fi Scanners | MAC addresses, travel paths, speed, transport mode | Medium (scanner coverage area) | High (real-time or near real-time) | Low-cost, passive data collection, useful in urban canyons | Lower detection rate (~62%), privacy concerns, device visibility required | OD matrix estimation, transport mode detection, congestion analysis |
Mobile Phone Data (Billing and Signal DBs) | Location changes, trip purpose (home/work/other) | Low to Medium (depends on BTS density) | Low to Medium (3–6 h) | Wide coverage, passive data | Biased by age and phone usage, ping-pong effect, privacy regulations | OD matrix, urban planning, transport mode detection |
GPS Data (From Phones, Taxis, AVs) | Precise location, speed, trip paths | High (point-level) | High (real-time) | High accuracy, suitable for micro-level modeling | Signal loss in urban canyons, privacy, cost | Speed estimation, driving behavior, OD matrix, AV modeling |
Smartcards (Public Transport) | Boarding/alighting data, trip frequency | High (station-level) | ~High (per transaction, check-in, check-out) | Accurate for PT users, integrates with other data | Limited to PT users, no full trip path | Public transport planning, multimodal analysis |
ANPR (Automatic Number Plate Recognition) | Vehicle counts, travel times, license plates | High (camera coverage) | High (real-time) | Accurate vehicle tracking, useful for bias correction | Infrastructure cost, privacy concerns | Traffic flow analysis, bias reduction |
AVL (Automatic Vehicle Location) | Vehicle GPS location | High (vehicle-level) | High (real-time) | Accurate fleet tracking | Limited to equipped vehicles | Fleet management, public transport monitoring |
Loop Detectors | Vehicle counts, speed | Point-based (road section) | High (real-time) | Proven technology, reliable | Fixed location, no OD info | Traffic volume, speed monitoring |
Micromobility Data (E-scooters, Bikes) | Trip paths, usage patterns | High (GPS-level) | High (real-time) | Supports modal shift analysis, urban canyon-friendly | Vendor-dependent, data access issues | First/last-mile analysis, urban mobility planning |
Census and Survey Data | Trip purpose, socio-demographics | Low (zone-level) | Very Low (annual or less) | Rich contextual data | Outdated quickly, expensive | Model calibration, bias correction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawodny, M.; Kruszyna, M. Data Sources for Traffic Analysis in Urban Canyons—The Comprehensive Literature Review. Appl. Sci. 2025, 15, 10686. https://doi.org/10.3390/app151910686
Zawodny M, Kruszyna M. Data Sources for Traffic Analysis in Urban Canyons—The Comprehensive Literature Review. Applied Sciences. 2025; 15(19):10686. https://doi.org/10.3390/app151910686
Chicago/Turabian StyleZawodny, Michał, and Maciej Kruszyna. 2025. "Data Sources for Traffic Analysis in Urban Canyons—The Comprehensive Literature Review" Applied Sciences 15, no. 19: 10686. https://doi.org/10.3390/app151910686
APA StyleZawodny, M., & Kruszyna, M. (2025). Data Sources for Traffic Analysis in Urban Canyons—The Comprehensive Literature Review. Applied Sciences, 15(19), 10686. https://doi.org/10.3390/app151910686