Application of Salicornia perennans Powder in Sausage Production: Effects on Fatty Acid Profile, Oxidative Stability, Color, and Antioxidant Properties and Sensory Profile
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sensory Profile
2.3. Lipid Analysis
2.3.1. Determination of Fatty Acid Composition
2.3.2. Peroxide Value (PV)
2.3.3. Thiobarbituric Acid-Reactive Substances (TBARSs)
2.3.4. Acid Value (AV)
2.4. Protein Oxidation (Carbonyl Compounds)
2.5. Determination of Color Characteristics
2.6. Determination of Antioxidant Capacity (FRAP and DPPH)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Fatty Acid Composition
3.2. Lipid and Protein Oxidation in Sausages During Storage
3.3. Analysis of Color Characteristic
3.4. Antioxidant Activity (FRAP and DPPH Assays)
3.5. Sensory Evaluation Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Amaral, A.B.; da Silva, M.V.; da Silva Lannes, S.C. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Technol. 2018, 38 (Suppl. S1), 1–15. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.N.S.; Nam, K.; Ahn, D.U. Analytical Methods for Lipid Oxidation and Antioxidant Capacity in Food Systems. Antioxidants 2021, 10, 1587. [Google Scholar] [CrossRef] [PubMed]
- Manessis, G.; Kalogianni, A.I.; Lazou, T.; Moschovas, M.; Bossis, I.; Gelasakis, A.I. Plant-Derived Natural Antioxidants in Meat and Meat Products. Antioxidants 2020, 9, 1215. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Santos, M.J.M.C.; Silva, L.K.R.; Pereira, L.C.L.; Santos, I.A.; da Silva Lannes, S.C.; da Silva, M.V. Natural antioxidants used in meat products: A brief review. Meat Sci. 2019, 148, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Wu, J.; Zhang, M.; Ke, W.; Shan, K.; Zhao, D.; Li, C. Effect of natural plant extracts on the quality of meat products: A meta-analysis. Food Mater. Res. 2023, 3, 15. [Google Scholar] [CrossRef]
- Orădan, A.C.; Tocai, A.C.; Rosan, C.A.; Vicas, S.I. Fruit Extracts Incorporated into Meat Products as Natural Antioxidants, Preservatives, and Colorants. Processes 2024, 12, 2756. [Google Scholar] [CrossRef]
- Kim, H.-W.; Hwang, K.-E.; Song, D.-H.; Kim, Y.-J.; Ham, Y.-K.; Yeo, I.-J.; Jeong, T.-J.; Choi, Y.-S.; Kim, C.-J. Effects of Red and Green Glassworts (Salicornia herbacea L.) on Physicochemical and Textural Properties of Reduced-salt Cooked Sausages. Korean J. Food Sci. Anim. Resour. 2014, 34, 378–386. [Google Scholar] [CrossRef]
- Patel, S. Salicornia perennans: Evaluating the halophytic extremophile as a food and a pharmaceutical candidate. 3 Biotech 2016, 6, 104. [Google Scholar] [CrossRef]
- Lopes, M.; Silva, A.S.; Séndon, R.; Barbosa-Pereira, L.; Cavaleiro, C.; Ramos, F. Towards the Sustainable Exploitation of Salt-Tolerant Plants: Nutritional Characterisation, Phenolics Composition, and Potential Contaminants Analysis of Salicornia perennans ramosissima and Sarcocornia perennis alpini. Molecules 2023, 28, 2726. [Google Scholar] [CrossRef]
- Magni, N.N.; Veríssimo, A.C.S.; Silva, H.; Pinto, D.C.G.A. Metabolomic Profile of Salicornia perennis Plant’s Organs under Diverse In Situ Stress: The Ria de Aveiro Salt Marshes Case. Metabolites 2023, 13, 280. [Google Scholar] [CrossRef]
- Alfheeaid, H.A.; Raheem, D.; Ahmed, F.; Alhodieb, F.S.; Alsharari, Z.D.; Alhaji, J.H.; BinMowyna, M.N.; Saraiva, A.; Raposo, A. Salicornia bigelovii, S. brachiata and S. herbacea: Their Nutritional Characteristics and an Evaluation of Their Potential as Salt Substitutes. Foods 2022, 11, 3402. [Google Scholar] [CrossRef]
- Sanmartin, C.; Taglieri, I.; Bianchi, A.; Parichanon, P.; Puccinelli, M.; Pardossi, A.; Venturi, F. Effects of Temperature and Packaging Atmosphere on Shelf Life, Biochemical, and Sensory Attributes of Glasswort (Salicornia europaea L.) Grown Hydroponically at Different Salinity Levels. Foods 2024, 13, 3260. [Google Scholar] [CrossRef]
- Navarro-Torre, S.; Garcia-Caparrós, P.; Nogales, A.; Abreu, M.M.; Santos, E.; Cortinhas, A.L.; Caperta, A.D. Sustainable agricultural management of saline soils in arid and semi-arid Mediterranean regions through halophytes, microbial and soil-based technologies. Environ. Exp. Bot. 2023, 212, 105397. [Google Scholar] [CrossRef]
- Bazihizina, N.; Papenbrock, J.; Aronsson, H.; Ben Hamed, K.; Elmaz, Ö.; Dafku, Z.; Custódio, L.; Rodrigues, M.J.; Atzori, G.; Negacz, K. The Sustainable Use of Halophytes in Salt-Affected Land: State-of-the-Art and Next Steps in a Saltier World. Plants 2024, 13, 2322. [Google Scholar] [CrossRef]
- Fitzner, M.; Schreiner, M.; Baldermann, S. Comprehensive characterization of selected phytochemicals and minerals of selected edible halophytes grown in saline indoor farming for future food production. J. Food Compos. Anal. 2023, 122, 105435. [Google Scholar] [CrossRef]
- Pinto, D.; Reis, J.; Silva, A.M.; Salazar, M.; Dall’Acqua, S.; Delerue-Matos, C.; Rodrigues, F. Valorisation of Salicornia ramosissima biowaste by a green approach—An optimizing study using response surface methodology. Sustain. Chem. Pharm. 2021, 24, 100548. [Google Scholar] [CrossRef]
- Turcios, A.E.; Braem, L.; Jonard, C.; Lemans, T.; Cybulska, I.; Papenbrock, J. Compositional Changes in Hydroponically Cultivated Salicornia europaea at Different Growth Stages. Plants 2023, 12, 2472. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- American Meat Science Association. AMSA Meat Color Measurement Guidelines. 2012. Available online: https://meatscience.org/docs/default-source/publications-resources/hot-topics/2012_12_meat_clr_guide.pdf?utm_source=chatgpt.com (accessed on 30 August 2025).
- Hernández, B.; Sáenz, C.; Alberdi, C.; Diñeiro, J.M. CIELAB color coordinates versus relative proportions of myoglobin redox forms in the description of fresh meat appearance. J. Food Sci. Technol. 2016, 53, 4159–4167. [Google Scholar] [CrossRef]
- Ruedt, C.; Gibis, M.; Weiss, J. Meat color and iridescence: Origin, analysis, and approaches to modulation. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3366–3394. [Google Scholar] [CrossRef] [PubMed]
- Robbins, K.; King, A. Impact of Chlorophyll a on the Color of Pre-Rigor Ground Pork Stored in Simulated Retail Display. Meat Muscle Biol. 2019, 43–44. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Afraz, M.T.; Yılmaz, B.B.; Adil, M.; Arshad, N.; Goksen, G.; Ali, M.; Zeng, X.-A. Recent progress in natural seaweed pigments: Green extraction, health-promoting activities, techno-functional properties and role in intelligent food packaging. J. Agric. Food Res. 2024, 15, 100991. [Google Scholar] [CrossRef]
- Silva, M.M.; Reboredo, F.H.; Lidon, F.C. Food Colour Additives: A Synoptical Overview on Their Chemical Properties, Applications in Food Products, and Health Side Effects. Foods 2022, 11, 379. [Google Scholar] [CrossRef]
- Wu, H.; Sakai, K.; Zhang, J.; McClements, D.J. Correction: Plant-based meat analogs: Color challenges and coloring agents. Food Nutr. Health 2025, 2, 26. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Menotti, A.; Puddu, P.E.; Geleijnse, J.M.; Kafatos, A.; Tolonen, H. Dietary atherogenicity and thrombogenicity indexes predicting cardiovascular mortality: 50-year follow-up of the Seven Countries Study. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 2107–2114. [Google Scholar] [CrossRef]
- ISO 13299:2016; Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 5508:1990; Animal and Vegetable Fats and Oils—Analysis by Gas Chromatography of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 1990.
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.; Gago, C.; Guerreiro, A.; Sousa, A.; Julião, M.; Miguel, M.; Faleiro, M.; Panagopoulos, T. Nutritional Characterization and Storage Ability of Salicornia ramosissima and Sarcocornia perennis for Fresh Vegetable Salads. Horticulturae 2021, 7, 6. [Google Scholar] [CrossRef]
- Simopoulos, A. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Calder, P.C. Nutrition, immunity and COVID-19. BMJ Nutr. Prev. Health 2020, 3, 74–92. [Google Scholar] [CrossRef]
- Abedi, E.; Sahari, M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef]
- Kouba, M.; Mourot, J. A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochimie 2011, 93, 13–17. [Google Scholar] [CrossRef]
- Pereira, P.M.d.C.C.; Vicente, A.F.d.R.B. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef]
- Hasnain, M.; Abideen, Z.; Ali, F.; Hasanuzzaman, M.; El-Keblawy, A. Potential of Halophytes as Sustainable Fodder Production by Using Saline Resources: A Review of Current Knowledge and Future Directions. Plants 2023, 12, 2150. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef] [PubMed]
- Souid, A.; Giambastiani, L.; Castagna, A.; Santin, M.; Vivarelli, F.; Canistro, D.; Morosini, C.; Paolini, M.; Franchi, P.; Lucarini, M.; et al. Assessment of the Antioxidant and Hypolipidemic Properties of Salicornia europaea for the Prevention of TAFLD in Rats. Antioxidants 2024, 13, 596. [Google Scholar] [CrossRef]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2010, 55, 83–95. [Google Scholar] [CrossRef]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant Polyphenols as Antioxidant and Antibacterial Agents for Shelf-Life Extension of Meat and Meat Products: Classification, Structures, Sources, and Action Mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268. [Google Scholar] [CrossRef]
- Singh, P.K.; Singh, N.; Chopra, R.; Garg, M.; Chand, M.; Dhiman, A.; Homroy, S.; Talwar, B. Rosemary bioactives as antioxidant agent: A bidirectional approach to improving human health and vegetable oil stability. Food Chem. Adv. 2025, 7, 100952. [Google Scholar] [CrossRef]
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef]
- Bolat, E.; Sarıtaş, S.; Duman, H.; Eker, F.; Akdaşçi, E.; Karav, S.; Witkowska, A.M. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024, 16, 2550. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, D.Y.; Kim, O.Y.; Kang, H.J.; Kim, H.S.; Hur, S.J. Overview of Studies on the Use of Natural Antioxidative Materials in Meat Products. Food Sci. Anim. Resour. 2020, 40, 863–880. [Google Scholar] [CrossRef] [PubMed]
- Karre, L.; Lopez, K.; Getty, K.J.K. Natural antioxidants in meat and poultry products. Meat Sci. 2013, 94, 220–227. [Google Scholar] [CrossRef]
- Castagna, A.; Mariottini, G.; Gabriele, M.; Longo, V.; Souid, A.; Dauvergne, X.; Magné, C.; Foggi, G.; Conte, G.; Santin, M.; et al. Nutritional Composition and Bioactivity of Salicornia europaea L. Plants Grown in Monoculture or Intercropped with Tomato Plants in Salt-Affected Soils. Horticulturae 2022, 8, 828. [Google Scholar] [CrossRef]
- Faustman, C.; Cassens, R.G. The Biochemical Basis for Discoloration in Fresh Meat: A Review. J. Muscle Foods 1990, 1, 217–243. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef] [PubMed]
- Ravani, A.; Sharma, H.P. Meat Based Functional Foods. In Functional Foods; Wiley: Hoboken, NJ, USA, 2022; pp. 235–287. [Google Scholar] [CrossRef]
- Decker, E.A.; Park, Y. Healthier meat products as functional foods. Meat Sci. 2010, 86, 49–55. [Google Scholar] [CrossRef]
- CIE 015:2018 Colorimetry, 4th ed.; International Commission on Illumination (CIE): Vienna, Austria, 2018. [CrossRef]
- Zhang, W.; Xiao, S.; Ahn, D.U. Protein Oxidation: Basic Principles and Implications for Meat Quality. Crit. Rev. Food Sci. Nutr. 2013, 53, 1191–1201. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sineiro, J.; Amado, I.R.; Franco, D. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Sci. 2014, 96, 526–534. [Google Scholar] [CrossRef]
- Ksouri, R.; Ksouri, W.M.; Jallali, I.; Debez, A.; Magné, C.; Hiroko, I.; Abdelly, C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 2011, 32, 289–326. [Google Scholar] [CrossRef]
- Kim, S.; Lee, E.-Y.; Hillman, P.F.; Ko, J.; Yang, I.; Nam, S.-J. Chemical Structure and Biological Activities of Secondary Metabolites from Salicornia europaea L. Molecules 2021, 26, 2252. [Google Scholar] [CrossRef]
- Harboub, N.; Mighri, H.; Bennour, N.; Dbara, M.; Pereira, C.; Chouikhi, N.; Custódio, L.; Abdellaoui, R.; Akrout, A. Nutritional profile, chemical composition and health promoting properties of Salicornia emerici Duval-Jouve and Sarcocornia alpini (Lag.) Rivas Mart. from southern Tunisia. Biocatal. Agric. Biotechnol. 2025, 64, 103502. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Ventura, Y.; Sagi, M. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environ. Exp. Bot. 2013, 92, 144–153. [Google Scholar] [CrossRef]
- Shon, M.Y.; Kim, T.H.; Sung, N.J. Antioxidants and Free Radical Scavenging Activity of Phellinus baumii (Phellinus of Hymenochaetaceae) Extracts. Food Chem. 2003, 82, 593–597. [Google Scholar] [CrossRef]
- Ferreira, I.J.; Duarte, A.R.C.; Diniz, M.; Salgado, R. Unveiling the Antioxidant Potential of Halophyte Plants and Seaweeds for Health Applications. Oxygen 2024, 4, 163–180. [Google Scholar] [CrossRef]
- Estévez, M.; Cava, R. Effectiveness of rosemary essential oil as an inhibitor of lipid and protein oxidation: Contradictory effects in different types of frankfurters. Meat Sci. 2006, 72, 348–355. [Google Scholar] [CrossRef]
Fatty Acid | Fatty Acid Composition (% of Total FAMEs) | ||
---|---|---|---|
Control Sausages | Sausages with Salicornia perennans | p-Value | |
Trace fatty acids * | <0.1 | <0.1 | – |
Palmitic C16:0 | 19.7 ± 2.1 | 18.5 ± 2.0 | 0.042 |
Margaric C17:0 | 0.4 ± 0.4 | 0.3 ± 0.4 | 0.611 |
Stearic C18:0 | 7.6 ± 2.1 | 8.8 ± 2.1 | 0.038 |
Behenic C22:0 | 0.6 ± 0.4 | 0.5 ± 0.4 | 0.553 |
Tricosanoic C23:0 | 0.3 ± 0.4 | <0.1 | 0.307 |
Palmitoleic C16:1 | 2.8 ± 0.4 | 2.6 ± 0.4 | 0.144 |
Heptadecenoic C17:1 | 0.5 ± 0.4 | 0.5 ± 0.4 | 0.937 |
Oleic C18:1 | 33.9 ± 2.1 | 32.5 ± 2.0 | 0.049 |
Gondoic C20:1 | 0.5 ± 0.4 | 1.2 ± 0.4 | 0.021 |
Erucic C22:1 | 0.3 ± 0.4 | 0.2 ± 0.4 | 0.287 |
Nervonic C24:1 | 0.3 ± 0.4 | 0.4 ± 0.4 | 0.411 |
α-Linolenic C18:3 ω3 | 1.4 ± 0.4 | 2.1 ± 0.4 | 0.008 |
Timnodonic acid C20:5 ω3 | <0.1 | 0.2 ± 0.1 | 0.030 |
Docosahexaenoic C22:6 ω3 | <0.1 | 0.1 ± 0.1 | 0.085 |
Linoleic C18:2 ω6 | 29.7 ± 2.1 | 30.5 ± 2.1 | 0.062 |
Dihomo-γ-linolenic acid C20:3 ω6 | 0.3 ± 0.4 | 0.2 ± 0.4 | 0.275 |
Arachidonic acid C20:4 ω6 | 0.9 ± 0.4 | 1.1 ± 0.4 | 0.201 |
Eicosadienoic acid C20:2 ω6 | 0.6 ± 0.4 | 0.9 ± 0.4 | 0.048 |
Indicators | Control Sausages | Sausages with Salicornia perennans | p-Value |
---|---|---|---|
ΣSFA | 28.60 ± 0.45 | 28.10 ± 0.38 | 0.218 |
ΣMUFA | 38.30 ± 0.52 | 37.40 ± 0.41 | 0.094 |
ΣPUFA (ω-6) | 31.50 ± 0.36 | 32.70 ± 0.40 | 0.027 |
ΣPUFA (ω-3) | 1.40 ± 0.08 | 2.40 ± 0.11 | 0.003 |
PUFA/SFA | 1.150 ± 0.020 | 1.249 ± 0.018 | 0.011 |
ω-6/ω-3 | 22.50 ± 1.20 | 13.63 ± 0.85 | 0.001 |
AI (Atherogenic Index) | 0.277 ± 0.012 | 0.256 ± 0.010 | 0.039 |
TI (Thrombogenic Index) | 0.698 ± 0.021 | 0.645 ± 0.018 | 0.022 |
Indicator | Concentration | p-Value, Treatment Within Storage Time | ||
---|---|---|---|---|
Storage Time, Days | Control Sausages | Sausages with Salicornia perennans | ||
Peroxide number, meq/kg | 0 | 3.1 ± 0.3 | 3.2 ± 0.3 | 0.981 |
2 | 4.4 ± 0.4 | 4.2 ± 0.4 | 0.762 | |
4 | 5.4 ± 0.5 | 4.9 ± 0.5 | 0.183 | |
6 | 7.2 ± 0.4 | 6.3 ± 0.3 | 0.041 | |
8 | 9.6 ± 0.5 | 8.1 ± 0.4 | 0.004 | |
10 | 12.8 ± 0.6 | 10.6 ± 0.5 | 0.001 | |
Carbonyl compounds, nmol/mg of protein | 0 | 72.5 ± 3.6 | 70.1 ± 3.2 | 0.462 |
2 | 81.4 ± 3.9 | 77.6 ± 3.5 | 0.218 | |
4 | 89.8 ± 4.2 | 84.2 ± 3.8 | 0.097 | |
6 | 97.6 ± 4.1 | 90.5 ± 3.9 | 0.048 | |
8 | 106.2 ± 4.5 | 96.8 ± 4.0 | 0.015 | |
10 | 112.3 ± 4.7 | 101.9 ± 4.1 | 0.012 |
Thiobarbituric Number, Storage Time, Days | Concentration, mgMA/kg | p-Value, Treatment Within Storage Time | |
---|---|---|---|
Control Sausages | Sausages with Salicornia perennans | ||
0 | Below 0.039 | Below 0.039 | |
2 | 0.050 ± 0.005 | 0.043 ± 0.004 | 0.182 |
4 | 0.105 ± 0.010 | 0.087 ± 0.009 | 0.031 |
6 | 0.122 ± 0.012 | 0.101 ± 0.010 | 0.010 |
8 | 0.160 ± 0.014 | 0.122 ± 0.012 | 0.002 |
10 | 0.210 ± 0.019 | 0.158 ± 0.015 | <0.001 |
AV, Storage Time, Days | Concentration, mg KOH/g | p-Value, Treatment Within Storage Time | |
---|---|---|---|
Control Sausages | Sausages with Salicornia perennans | ||
0 | 2.1 ± 0.2 | 2.2 ± 0.2 | 0.610 |
2 | 2.8 ± 0.2 | 2.9 ± 0.2 | 0.570 |
4 | 3.3 ± 0.2 | 3.3 ± 0.2 | 0.920 |
6 | 3.9 ± 0.2 | 3.6 ± 0.2 | 0.028 |
8 | 4.7 ± 0.3 | 4.1 ± 0.3 | 0.003 |
10 | 5.5 ± 0.3 | 4.6 ± 0.3 | <0.001 |
Day | L* | a* | b* | Color Stability, % | ΔE* vs. Day 0 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Salicornia perennans | p-Value | Control | Salicornia perennans | p-Value | Control | Salicornia perennans | p-Value | Control | Salicornia perennans | Control | Salicornia perennans | |
0 | 59.8 ± 1.1 | 57.9 ± 1.0 | 0.071 | 14.6 ± 0.4 | 10.3 ± 0.3 | 0.001 | 16.2 ± 0.9 | 20.3 ± 0.8 | 0.004 | 100.0 | 100.0 | 0.00 | 0.00 |
2 | 59.2 ± 1.0 | 57.6 ± 0.9 | 0.080 | 14.1 ± 0.4 | 10.1 ± 0.3 | 0.001 | 16.7 ± 0.9 | 20.6 ± 0.8 | 0.003 | 96.6 | 98.1 | 0.93 | 0.47 |
4 | 58.4 ± 1.0 | 57.3 ± 0.9 | 0.091 | 13.6 ± 0.4 | 9.9 ± 0.3 | 0.001 | 17.3 ± 0.9 | 20.9 ± 0.8 | 0.002 | 93.2 | 96.1 | 2.04 | 0.94 |
6 | 57.6 ± 0.9 | 56.9 ± 0.9 | 0.102 | 13.0 ± 0.4 | 9.7 ± 0.3 | 0.001 | 17.9 ± 0.8 | 21.1 ± 0.8 | 0.002 | 89.0 | 94.2 | 3.21 | 1.41 |
8 | 57.1 ± 0.9 | 56.7 ± 0.9 | 0.135 | 12.5 ± 0.4 | 9.6 ± 0.3 | 0.001 | 18.3 ± 0.8 | 21.3 ± 0.8 | 0.002 | 85.6 | 93.2 | 4.01 | 1.71 |
10 | 56.8 ± 0.9 | 56.5 ± 0.9 | 0.152 | 12.0 ± 0.4 | 9.8 ± 0.3 | 0.001 | 18.5 ± 0.8 | 21.4 ± 0.8 | 0.001 | 82.2 | 95.1 | 4.59 | 1.85 |
Indicator | Results | p-Value | |
---|---|---|---|
Control Sausages | Sausages with Salicornia perennans | ||
Ferric-reducing antioxidant power (FRAP), mg GAE/g | Not detected | 14.5 ± 0.05 | <0.0001 |
DPPH radical-scavenging activity, % | 12.46 ± 0.01 | 22.60 ± 0.02 | <0.0001 |
IC50 of DPPH radical-scavenging activity, µg/mL | 116.6 ± 10.00 | 73.2 ± 5.0 | 0.002 |
Domain | Descriptor (Anchor) | Control (Mean ± SD) | 3% Salicornia (Mean ± SD) | p-Value |
---|---|---|---|---|
Appearance | Redness (a* perception) | 7.2 ± 0.6 | 5.1 ± 0.5 | <0.001 |
Appearance | Color uniformity | 7.8 ± 0.7 | 7.6 ± 0.6 | 0.38 |
Odor | Typical meat aroma | 7.0 ± 0.6 | 6.8 ± 0.6 | 0.29 |
Odor | Herbaceous/sea-vegetable note | 2.1 ± 0.7 | 4.3 ± 0.8 | <0.001 |
Odor | Rancid/warmed-over | 2.8 ± 0.6 | 2.0 ± 0.5 | 0.002 |
Flavor | Saltiness | 6.1 ± 0.5 | 5.7 ± 0.5 | 0.015 |
Flavor | Umami/savory | 6.8 ± 0.6 | 6.9 ± 0.6 | 0.62 |
Flavor | Bitterness | 2.4 ± 0.5 | 2.6 ± 0.5 | 0.21 |
Flavor | Off flavor | 2.3 ± 0.5 | 2.0 ± 0.4 | 0.047 |
Texture | Juiciness | 6.5 ± 0.7 | 6.8 ± 0.6 | 0.041 |
Texture | Firmness | 5.9 ± 0.6 | 5.8 ± 0.6 | 0.55 |
Aftertaste | Herbaceous persistence | 2.0 ± 0.6 | 4.0 ± 0.8 | <0.001 |
(Optional) | Overall acceptability (9-point) | 7.0 ± 0.6 | 7.2 ± 0.6 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokysheva, G.; Konysbayeva, D.; Myrzabayeva, M.; Ospankulova, G.; Dairova, K.; Battalova, N.; Makangali, K. Application of Salicornia perennans Powder in Sausage Production: Effects on Fatty Acid Profile, Oxidative Stability, Color, and Antioxidant Properties and Sensory Profile. Appl. Sci. 2025, 15, 10556. https://doi.org/10.3390/app151910556
Tokysheva G, Konysbayeva D, Myrzabayeva M, Ospankulova G, Dairova K, Battalova N, Makangali K. Application of Salicornia perennans Powder in Sausage Production: Effects on Fatty Acid Profile, Oxidative Stability, Color, and Antioxidant Properties and Sensory Profile. Applied Sciences. 2025; 15(19):10556. https://doi.org/10.3390/app151910556
Chicago/Turabian StyleTokysheva, Gulzhan, Damilya Konysbayeva, Malika Myrzabayeva, Gulnazym Ospankulova, Kalamkas Dairova, Nuray Battalova, and Kadyrzhan Makangali. 2025. "Application of Salicornia perennans Powder in Sausage Production: Effects on Fatty Acid Profile, Oxidative Stability, Color, and Antioxidant Properties and Sensory Profile" Applied Sciences 15, no. 19: 10556. https://doi.org/10.3390/app151910556
APA StyleTokysheva, G., Konysbayeva, D., Myrzabayeva, M., Ospankulova, G., Dairova, K., Battalova, N., & Makangali, K. (2025). Application of Salicornia perennans Powder in Sausage Production: Effects on Fatty Acid Profile, Oxidative Stability, Color, and Antioxidant Properties and Sensory Profile. Applied Sciences, 15(19), 10556. https://doi.org/10.3390/app151910556