Synergistic Role of Low-Strength Ultrasound and Co-Digestion in Anaerobic Digestion of Swine Wastewater
Abstract
1. Introduction
2. Materials and Methods
2.1. Reactor Setup and Operation Conditions
2.2. Analytical Methods
2.3. Microbial and Genetic Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Anaerobic Digestion Performance
3.2. Microbial Community Dynamics
3.3. Antibiotic Resistance Genes (ARGs) and mcrA Gene
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARGs | Antibiotic resistance genes |
C/N ratio | Carbon to nitrogen ratio |
COD | Chemical oxygen demand |
EGSB | Expanded granular sludge blanket |
FWL | Food waste leachate |
GC | Gas chromatography |
HGT | Horizontal gene transfer |
HPLC | High performance liquid chromatography |
HRT | Hydraulic retention time |
OLR | Organic loading rate |
C | Control reactor |
U | Ultrasound-only reactor |
Co-C | Co-digestion control reactor |
Co-U | Co-digestion with ultrasound reactor |
OTU | Operational taxonomic unit |
PCR | Polymerase chain reaction |
PW | Piggery wastewater |
qPCR | Quantitative polymerase chain reaction |
STP | Standard temperature and pressure |
TS | Total solids |
UASB | Upflow anaerobic sludge blanket |
VFAs | Volatile fatty acids |
VS | Volatile solids |
VSS | Volatile suspended solids |
References
- van der Laan, S.; Breeman, G.; Scherer, L. Animal Lives Affected by Meat Consumption Trends in the G20 Countries. Animals 2024, 14, 1662. [Google Scholar] [CrossRef]
- Ahn, Y.; Lee, W.; Kang, S.; Kim, S.-H. Enhancement of Sewage Sludge Digestion by Co-Digestion with Food Waste and Swine Waste. Waste Biomass Valorization 2020, 11, 2421–2430. [Google Scholar] [CrossRef]
- Kim, C.-J.; Chung, C.S.; Shin, K.-H.; Choi, K.-Y. The Republic of Korea’s Experience with an Ocean Dumping Management System to Enhance Compliance with the London Protocol: Highlights of Major Institutional History over 40 Years. Front. Mar. Sci. 2023, 10, 1282490. [Google Scholar] [CrossRef]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on Research Achievements of Biogas from Anaerobic Digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Yeop, J.S.; Choi, J.; Kim, S.; Chang, S.W.; Jeon, B.-H.; Guo, W.; Ngo, H.H. A New Approach for Concurrently Improving Performance of South Korean Food Waste Valorization and Renewable Energy Recovery via Dry Anaerobic Digestion under Mesophilic and Thermophilic Conditions. Waste Manag. 2017, 66, 161–168. [Google Scholar] [CrossRef]
- Rekleitis, G.; Haralambous, K.-J.; Loizidou, M.; Aravossis, K. Utilization of Agricultural and Livestock Waste in Anaerobic Digestion (AD): Applying the Biorefinery Concept in a Circular Economy. Energies 2020, 13, 4428. [Google Scholar] [CrossRef]
- Wang, X.; Yang, G.; Feng, Y.; Ren, G.; Han, X. Optimizing Feeding Composition and Carbon–Nitrogen Ratios for Improved Methane Yield during Anaerobic Co-Digestion of Dairy, Chicken Manure and Wheat Straw. Bioresour. Technol. 2012, 120, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, R.; Massé, D.I.; Singh, G. A Critical Review on Inhibition of Anaerobic Digestion Process by Excess Ammonia. Bioresour. Technol. 2013, 143, 632–641. [Google Scholar] [CrossRef]
- Zhang, C.; Xiao, G.; Peng, L.; Su, H.; Tan, T. The Anaerobic Co-Digestion of Food Waste and Cattle Manure. Bioresour. Technol. 2013, 129, 170–176. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, S.; Shen, J. Anaerobic Co-Digestion of Poultry Litter and Wheat Straw Affected by Solids Composition, Free Ammonia and Carbon/Nitrogen Ratio. J. Environ. Sci. Health Part A 2019, 54, 231–237. [Google Scholar] [CrossRef]
- Kato, M.T.; Field, J.A.; Lettinga, G. The Anaerobic Treatment of Low Strength Wastewaters in UASB and EGSB Reactors. Water Sci. Technol. 1997, 36, 375–382. [Google Scholar] [CrossRef]
- Anijiofor Sandra, C.; Jamil, N.A.M.; Jabbar, S.; Sakyat, S.; Gomes, C. Aerobic and Anaerobic Sewage Biodegradable Processes: The Gap Analysis. Int. J. Res. Environ. Sci. 2017, 3, 9–19. [Google Scholar] [CrossRef]
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P.J. Antibiotic Resistance Genes from Livestock Waste: Occurrence, Dissemination, and Treatment. NPJ Clean. Water 2020, 3, 4. [Google Scholar] [CrossRef]
- Gaskins, H.; Collier, C.; Anderson, D. Antibiotics as Growth Promotants: Mode of Action. Anim. Biotechnol. 2002, 13, 29–42. [Google Scholar] [CrossRef]
- Brown, K.; Uwiera, R.R.; Kalmokoff, M.L.; Brooks, S.P.; Inglis, G.D. Antimicrobial Growth Promoter Use in Livestock: A Requirement to Understand Their Modes of Action to Develop Effective Alternatives. Int. J. Antimicrob. Agents 2017, 49, 12–24. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Wang, J.; Zhu, L.; Yang, L.; Yang, R. Distribution Characteristics of Antibiotic Resistant Bacteria and Genes in Fresh and Composted Manures of Livestock Farms. Sci. Total Environ. 2019, 695, 133781. [Google Scholar] [CrossRef] [PubMed]
- Algammal, A.; Hetta, H.F.; Mabrok, M.; Behzadi, P. Emerging Multidrug-Resistant Bacterial Pathogens “Superbugs”: A Rising Public Health Threat. Front. Microbiol. 2023, 14, 1135614. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.H.; Novak, J.T.; Knocke, W.R.; Pruden, A. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters. Front. Microbiol. 2016, 7, 263. [Google Scholar] [CrossRef]
- Van Epps, A.; Blaney, L. Antibiotic Residues in Animal Waste: Occurrence and Degradation in Conventional Agricultural Waste Management Practices. Curr. Pollut. Rep. 2016, 2, 135–155. [Google Scholar] [CrossRef]
- Korzeniewska, E.; Harnisz, M. Relationship between Modification of Activated Sludge Wastewater Treatment and Changes in Antibiotic Resistance of Bacteria. Sci. Total Environ. 2018, 639, 304–315. [Google Scholar] [CrossRef]
- Sui, Q.; Zhang, J.; Chen, M.; Tong, J.; Wang, R.; Wei, Y. Distribution of Antibiotic Resistance Genes (ARGs) in Anaerobic Digestion and Land Application of Swine Wastewater. Environ. Pollut. 2016, 213, 751–759. [Google Scholar] [CrossRef]
- Cho, S.-K.; Yun, Y.-M.; Shin, S.G. Low-Strength Ultrasonication Positively Affects Methanogenic Granules toward Higher AD Performance: Hydrolytic Enzyme Excretions. Ultrason. Sonochem. 2017, 36, 168–172. [Google Scholar] [CrossRef]
- Cho, S.-K.; Kim, D.-H.; Quince, C.; Im, W.-T.; Oh, S.-E.; Shin, S.G. Low-Strength Ultrasonication Positively Affects Methanogenic Granules toward Higher AD Performance: Implications from Microbial Community Shift. Ultrason. Sonochem. 2016, 32, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Nahum, Y.; Gross, N.; Cerrone, A.; Matouš, K.; Nerenberg, R. Effect of Biofilm Physical Characteristics on Their Susceptibility to Antibiotics: Impacts of Low-Frequency Ultrasound. npj Biofilms Microbiomes 2024, 10, 70. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Lewis, G.D.; Ashokkumar, M.; Hemar, Y. Inactivation of Microorganisms by Low-Frequency High-Power Ultrasound: 1. Effect of Growth Phase and Capsule Properties of the Bacteria. Ultrason. Sonochem. 2014, 21, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Grönroos, A.; Kyllönen, H.; Korpijärvi, K.; Pirkonen, P.; Paavola, T.; Jokela, J.; Rintala, J. Ultrasound Assisted Method to Increase Soluble Chemical Oxygen Demand (SCOD) of Sewage Sludge for Digestion. Ultrason. Sonochem. 2005, 12, 115–120. [Google Scholar] [CrossRef]
- Xie, B.; Liu, H.; Yan, Y. Improvement of the Activity of Anaerobic Sludge by Low-Intensity Ultrasound. J. Environ. Manag. 2009, 90, 260–264. [Google Scholar] [CrossRef]
- Cho, S.-K.; Kim, D.-H.; Kim, M.-H.; Shin, H.-S.; Oh, S.-E. Enhanced Activity of Methanogenic Granules by Low-Strength Ultrasonication. Bioresour. Technol. 2012, 120, 84–88. [Google Scholar] [CrossRef]
- Kim, H.-W.; Shin, H.-S.; Han, S.-K.; Oh, S.-E. Response Surface Optimization of Substrates for Thermophilic Anaerobic Codigestion of Sewage Sludge and Food Waste. J. Air Waste Manag. Assoc. 2007, 57, 309–318. [Google Scholar] [CrossRef]
- Chen, J.; Yu, Z.; Michel Jr, F.C.; Wittum, T.; Morrison, M. Development and Application of Real-Time PCR Assays for Quantification of Erm Genes Conferring Resistance to Macrolides-Lincosamides-Streptogramin B in Livestock Manure and Manure Management Systems. Appl. Environ. Microbiol. 2007, 73, 4407–4416. [Google Scholar] [CrossRef]
- Pei, R.; Kim, S.-C.; Carlson, K.H.; Pruden, A. Effect of River Landscape on the Sediment Concentrations of Antibiotics and Corresponding Antibiotic Resistance Genes (ARG). Water Res. 2006, 40, 2427–2435. [Google Scholar] [CrossRef]
- Apley, M.D.; Bush, E.J.; Morrison, R.B.; Singer, R.S.; Snelson, H. Use Estimates of In-Feed Antimicrobials in Swine Production in the United States. Foodborne Pathog. Dis. 2012, 9, 272–279. [Google Scholar] [CrossRef]
- Stokes, H.; Nesbø, C.L.; Holley, M.; Bahl, M.I.; Gillings, M.R.; Boucher, Y. Class 1 Integrons Potentially Predating the Association with Tn 402-like Transposition Genes Are Present in a Sediment Microbial Community. J. Bacteriol. 2006, 188, 5722–5730. [Google Scholar] [CrossRef]
- Li, X.; Zeng, C.; Lu, Y.; Liu, G.; Luo, H.; Zhang, R. Development of Methanogens within Cathodic Biofilm in the Single-Chamber Microbial Electrolysis Cell. Bioresour. Technol. 2019, 274, 403–409. [Google Scholar] [CrossRef]
- Suzuki, M.T.; Taylor, L.T.; DeLong, E.F. Quantitative Analysis of Small-Subunit rRNA Genes in Mixed Microbial Populations via 5′-Nuclease Assays. Appl. Environ. Microbiol. 2000, 66, 4605–4614. [Google Scholar] [CrossRef]
- Zubair, M.; Li, Z.; Zhu, R.; Wang, J.; Liu, X.; Liu, X. The Antibiotics Degradation and Its Mechanisms during the Livestock Manure Anaerobic Digestion. Molecules 2023, 28, 4090. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2− ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Zhang, K.; Liu, P.; Khan, A.; Xiong, J.; Tian, F.; Li, X. A Critical Review on the Interaction of Substrate Nutrient Balance and Microbial Community Structure and Function in Anaerobic Co-Digestion. Bioresour. Technol. 2018, 247, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Kong, T.; Xing, W.; Li, R.; Yang, T.; Yao, N.; Lv, D. Links between Carbon/Nitrogen Ratio, Synergy and Microbial Characteristics of Long-Term Semi-Continuous Anaerobic Co-Digestion of Food Waste, Cattle Manure and Corn Straw. Bioresour. Technol. 2022, 343, 126094. [Google Scholar] [CrossRef]
- Neves, L.; Ferreira, V.; Oliveira, R. Co-Composting Cow Manure with Food Waste: The Influence of Lipids Content. World Acad. Sci. Eng. Technol. 2009, 58, 986–991. [Google Scholar]
- Jiménez, J.; Guardia-Puebla, Y.; Cisneros-Ortiz, M.E.; Morgan-Sagastume, J.M.; Guerra, G.; Noyola, A. Optimization of the Specific Methanogenic Activity during the Anaerobic Co-Digestion of Pig Manure and Rice Straw, Using Industrial Clay Residues as Inorganic Additive. Chem. Eng. J. 2015, 259, 703–714. [Google Scholar] [CrossRef]
- Li, R.; Chen, S.; Li, X.; Saifullah Lar, J.; He, Y.; Zhu, B. Anaerobic Codigestion of Kitchen Waste with Cattle Manure for Biogas Production. Energy Fuels 2009, 23, 2225–2228. [Google Scholar] [CrossRef]
- Demirel, B.; Scherer, P.; Yenigun, O.; Onay, T.T. Production of Methane and Hydrogen from Biomass through Conventional and High-Rate Anaerobic Digestion Processes. Crit. Rev. Environ. Sci. Technol. 2010, 40, 116–146. [Google Scholar] [CrossRef]
- Xie, B.; Cheng, J.; Zhou, J.; Song, W.; Cen, K. Cogeneration of Hydrogen and Methane from Glucose to Improve Energy Conversion Efficiency. Int. J. Hydrogen Energy 2008, 33, 5006–5011. [Google Scholar] [CrossRef]
- Sakamoto, M.; Benno, Y. Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis Gen. Nov., Comb. Nov., Parabacteroides goldsteinii Comb. Nov. and Parabacteroides merdae Comb. Nov. Int. J. Syst. Evol. Microbiol. 2006, 56, 1599–1605. [Google Scholar] [CrossRef]
- Moore, L.H.; Johnson, J.; Moore, W. Descriptions of Prevotella tannerae Sp. Nov. and Prevotella enoeca Sp. Nov. from the Human Gingival Crevice and Emendation of the Description of Prevotella zoogleoformans. Int. J. Syst. Evol. Microbiol. 1994, 44, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Morotomi, M.; Nagai, F.; Watanabe, Y. Description of Christensenella minuta Gen. Nov., Sp. Nov., Isolated from Human Faeces, Which Forms a Distinct Branch in the Order Clostridiales, and Proposal of Christensenellaceae Fam. Nov. Int. J. Syst. Evol. Microbiol. 2012, 62, 144–149. [Google Scholar] [CrossRef]
- Morris, B.E.L.; Henneberger, R.; Huber, H.; Moissl-Eichinger, C. Microbial Syntrophy: Interaction for the Common Good. FEMS Microbiol. Rev. 2013, 37, 384–406. [Google Scholar] [CrossRef]
- Schink, B. Energetics of Syntrophic Cooperation in Methanogenic Degradation. Microbiol. Mol. Biol. Rev. 1997, 61, 262–280. [Google Scholar] [CrossRef]
- Karakashev, D.; Batstone, D.J.; Trably, E.; Angelidaki, I. Acetate Oxidation Is the Dominant Methanogenic Pathway from Acetate in the Absence of Methanosaetaceae. Appl. Environ. Microbiol. 2006, 72, 5138–5141. [Google Scholar] [CrossRef] [PubMed]
- Mand, T.D.; Metcalf, W.W. Energy Conservation and Hydrogenase Function in Methanogenic Archaea, in Particular the Genus Methanosarcina. Microbiol. Mol. Biol. Rev. 2019, 83, e00020-19. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Kurade, M.B.; Ha, G.-S.; Lee, S.S.; Roh, H.-S.; Park, Y.-K.; Jeon, B.-H. Syntrophic Metabolism Facilitates Methanosarcina-Led Methanation in the Anaerobic Digestion of Lipidic Slaughterhouse Waste. Bioresour. Technol. 2021, 335, 125250. [Google Scholar] [CrossRef] [PubMed]
- Fricke, W.F.; Seedorf, H.; Henne, A.; Krüer, M.; Liesegang, H.; Hedderich, R.; Gottschalk, G.; Thauer, R.K. The Genome Sequence of Methanosphaera stadtmanae Reveals Why This Human Intestinal Archaeon Is Restricted to Methanol and H2 for Methane Formation and ATP Synthesis. J. Bacteriol. 2006, 188, 642–658. [Google Scholar] [CrossRef]
- Ikeda-Dantsuji, Y.; Feril, L.B., Jr.; Tachibana, K.; Ogawa, K.; Endo, H.; Harada, Y.; Suzuki, R.; Maruyama, K. Synergistic Effect of Ultrasound and Antibiotics against Chlamydia Trachomatis-Infected Human Epithelial Cells in Vitro. Ultrason. Sonochem. 2011, 18, 425–430. [Google Scholar] [CrossRef]
- Zhang, L.; Gu, J.; Wang, X.; Zhang, R.; Tuo, X.; Guo, A.; Qiu, L. Fate of Antibiotic Resistance Genes and Mobile Genetic Elements during Anaerobic Co-Digestion of Chinese Medicinal Herbal Residues and Swine Manure. Bioresour. Technol. 2018, 250, 799–805. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, M.; Sui, Q.; Wang, R.; Tong, J.; Wei, Y. Fate of Antibiotic Resistance Genes and Its Drivers during Anaerobic Co-Digestion of Food Waste and Sewage Sludge Based on Microwave Pretreatment. Bioresour. Technol. 2016, 217, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, Y.-S.; Zhao, J.-L.; Liu, W.-R.; Chen, J.; Zhang, Q.-Q.; He, L.-Y.; Ying, G.-G. Variations of Antibiotic Resistome in Swine Wastewater during Full-Scale Anaerobic Digestion Treatment. Environ. Int. 2021, 155, 106694. [Google Scholar] [CrossRef]
- Morris, R.L.; Tale, V.P.; Mathai, P.P.; Zitomer, D.H.; Maki, J.S. mcrA Gene Abundance Correlates with Hydrogenotrophic Methane Production Rates in Full-Scale Anaerobic Waste Treatment Systems. Lett. Appl. Microbiol. 2016, 62, 111–118. [Google Scholar] [CrossRef]
- Wilkins, D.; Lu, X.-Y.; Shen, Z.; Chen, J.; Lee, P.K.H. Pyrosequencing of mcrA and Archaeal 16S rRNA Genes Reveals Diversity and Substrate Preferences of Methanogen Communities in Anaerobic Digesters. Appl. Environ. Microbiol. 2015, 81, 604–613. [Google Scholar] [CrossRef]
Parameters | PW * | FWL ** | Parameters | PW | FWL |
---|---|---|---|---|---|
pH | 6.91 | 3.98 | COD (g/L) | 37.03 | 77.71 |
TS (g/L) | 17.95 | 60.45 | SCOD (g/L) | 22.26 | 59.06 |
TSS (g/L) | 9.16 | 20.37 | T-N (g/L) | 2.97 | 2.04 |
VS (g/L) | 11.16 | 47.98 | T-P (g/L) | 0.22 | 0.42 |
VSS (g/L) | 6.00 | 20.80 | NH4-N (g/L) | 2.79 | 0.54 |
Phase 1 | Phase 2 | Phase 3 | OLR Shock | Recovery | |
---|---|---|---|---|---|
HRT (day) | 2 | ||||
Time (day) | 1~14 | 15~28 | 29~42 | 43~45 | 46~50 |
OLR (g COD/L·day) | 2 | 2.5 | 3 | 6 | 2 |
substrate | PW * or PW + FWL ** | Glucose |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.; Gwon, J.; Kim, M.-S.; Lee, T.; Han, U.; Park, Y.; Jo, H.; Cho, S.-K. Synergistic Role of Low-Strength Ultrasound and Co-Digestion in Anaerobic Digestion of Swine Wastewater. Appl. Sci. 2025, 15, 10548. https://doi.org/10.3390/app151910548
Lee C, Gwon J, Kim M-S, Lee T, Han U, Park Y, Jo H, Cho S-K. Synergistic Role of Low-Strength Ultrasound and Co-Digestion in Anaerobic Digestion of Swine Wastewater. Applied Sciences. 2025; 15(19):10548. https://doi.org/10.3390/app151910548
Chicago/Turabian StyleLee, Changgee, Jaehun Gwon, Min-Sang Kim, Taehwan Lee, Uijeong Han, Yeongmi Park, Hongmok Jo, and Si-Kyung Cho. 2025. "Synergistic Role of Low-Strength Ultrasound and Co-Digestion in Anaerobic Digestion of Swine Wastewater" Applied Sciences 15, no. 19: 10548. https://doi.org/10.3390/app151910548
APA StyleLee, C., Gwon, J., Kim, M.-S., Lee, T., Han, U., Park, Y., Jo, H., & Cho, S.-K. (2025). Synergistic Role of Low-Strength Ultrasound and Co-Digestion in Anaerobic Digestion of Swine Wastewater. Applied Sciences, 15(19), 10548. https://doi.org/10.3390/app151910548