BIONIB: Blockchain-Based IoT Using Novelty Index in Bridge Health Monitoring
Abstract
1. Introduction
- We propose a scalable blockchain-based framework utilizing the EOSIO platform to efficiently manage and analyze IoT sensor data in bridge health monitoring. This system ensures secure and transparent storage, integrity, and traceability of structural data across distributed networks.
- We integrate a smart contract system that ingests NI values in real time and automatically triggers alerts when a threshold is crossed. This design enables prompt identification of unhealthy bridge states without relying on centralized infrastructure.
- By storing only NI values rather than full time-series sensor data, BIONIB achieves an over 99.9% data reduction, improving blockchain storage efficiency and lowering transaction overhead.
- We evaluate the scalability and efficiency of BIONIB under varying numbers of IoT sensors and blockchain nodes. Results show that throughput scales linearly while CPU utilization remains stable below 40%, validating the system’s robustness and suitability for large-scale SHM deployments.
2. Related Work
2.1. IoT Based Blockchain
2.2. SHM
2.3. Blockchain in SHM
2.3.1. Why EOSIO for IoT SHM?
2.3.2. Comparison with Central Storage
2.4. Comparative Analysis of Structural Health Monitoring Approaches
3. Network Architecture
EOSIO Consensus
4. Data Collection and Analysis
4.1. Collection of Data
4.2. Novelty Index Calculation
5. Proposed Approach: BIONIB
5.1. EOSIO Integration with IoT Data
5.2. Smart Contract EOSIO Using NI
Algorithm 1 BIONIB |
|
6. Performance Analysis
6.1. Implementation Details
Comparison of With and Without NI
6.2. Performance for Increasing Blockchain Nodes
6.3. Performance with Increasing of IoT Sensors
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sony, S.; Laventure, S.; Sadhu, A. A literature review of next-generation smart sensing technology in structural health monitoring. Struct. Control Health Monit. 2019, 26, e2321. [Google Scholar] [CrossRef]
- Skordilis, E.; Moghaddass, R. A deep reinforcement learning approach for real-time sensor-driven decision making and predictive analytics. Comput. Ind. Eng. 2020, 147, 106600. [Google Scholar] [CrossRef]
- Yi, L.; Deng, X.; Yang, L.T.; Wu, H.; Wang, M.; Situ, Y. Reinforcement-learning-enabled partial confident information coverage for IoT-based bridge structural health monitoring. IEEE Internet Things J. 2020, 8, 3108–3119. [Google Scholar] [CrossRef]
- Xu, J.; Liu, H.; Han, Q. Blockchain technology and smart contract for civil structural health monitoring system. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 1288–1305. [Google Scholar] [CrossRef]
- Ali, M.S.; Vecchio, M.; Pincheira, M.; Dolui, K.; Antonelli, F.; Rehmani, M.H. Applications of blockchains in the Internet of Things: A comprehensive survey. IEEE Commun. Surv. Tutorials 2018, 21, 1676–1717. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, X.; Wang, X.; Dong, L.; Qian, Y. Deployment of a smart structural health monitoring system for long-span arch bridges: A review and a case study. Sensors 2017, 17, 2151. [Google Scholar] [CrossRef]
- Alenazy, W.M. Blockchain-Enabled internet of things for unsupervised structural health monitoring in potential building structures. In Handbook of Research on Innovations and Applications of AI, IoT, and Cognitive Technologies; IGI Global: Hershey, PA, USA, 2021; pp. 158–170. [Google Scholar]
- Abou Jaoude, J.; Saade, R.G. Blockchain applications–usage in different domains. IEEE Access 2019, 7, 45360–45381. [Google Scholar] [CrossRef]
- Wu, M.; Wang, K.; Cai, X.; Guo, S.; Guo, M.; Rong, C. A comprehensive survey of blockchain: From theory to IoT applications and beyond. IEEE Internet Things J. 2019, 6, 8114–8154. [Google Scholar] [CrossRef]
- Bodkhe, U.; Tanwar, S.; Parekh, K.; Khanpara, P.; Tyagi, S.; Kumar, N.; Alazab, M. Blockchain for industry 4.0: A comprehensive review. IEEE Access 2020, 8, 79764–79800. [Google Scholar] [CrossRef]
- Gadiraju, D.S.; Lalitha, V.; Aggarwal, V. Secure regenerating codes for reducing storage and bootstrap costs in sharded blockchains. In Proceedings of the 2020 IEEE International Conference on Blockchain (Blockchain), Rhodes, Greece, 2–6 November 2020; pp. 229–236. [Google Scholar]
- Cai, X.; Geng, S.; Zhang, J.; Wu, D.; Cui, Z.; Zhang, W.; Chen, J. A sharding scheme-based many-objective optimization algorithm for enhancing security in blockchain-enabled industrial internet of things. IEEE Trans. Ind. Inform. 2021, 17, 7650–7658. [Google Scholar] [CrossRef]
- Khan, P.W.; Byun, Y.C.; Park, N. IoT-blockchain enabled optimized provenance system for food industry 4.0 using advanced deep learning. Sensors 2020, 20, 2990. [Google Scholar] [CrossRef]
- Gadiraju, D.S.; Lalitha, V.; Aggarwal, V. An optimization framework based on deep reinforcement learning approaches for prism blockchain. IEEE Trans. Serv. Comput. 2023, 16, 2451–2461. [Google Scholar] [CrossRef]
- Aljuhani, A.; Kumar, P.; Alanazi, R.; Albalawi, T.; Taouali, O.; Islam, A.N.; Kumar, N.; Alazab, M. A Deep Learning Integrated Blockchain Framework for Securing Industrial IoT. IEEE Internet Things J. 2023, 11, 7817–7827. [Google Scholar] [CrossRef]
- Du, A.; Ghavidel, A. Parameterized deep reinforcement learning-enabled maintenance decision-support and life-cycle risk assessment for highway bridge portfolios. Struct. Saf. 2022, 97, 102221. [Google Scholar] [CrossRef]
- Gadiraju, D.S.; Muthiah, S.R.; Khazanchi, D. A Deep Reinforcement Learning based Approach for Bridge Health Maintenance. In Proceedings of the 2023 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 13–15 December 2023; pp. 43–48. [Google Scholar] [CrossRef]
- Da Silva, S.; Dias Junior, M.; Lopes Junior, V. Structural health monitoring in smart structures through time series analysis. Struct. Health Monit. 2008, 7, 231–244. [Google Scholar] [CrossRef]
- Xiao, F.; Mao, Y.; Tian, G.; Chen, G.S. Partial-Model-Based Damage Identification of Long-Span Steel Truss Bridge Based on Stiffness Separation Method. Struct. Control Health Monit. 2024, 2024, 5530300. [Google Scholar] [CrossRef]
- Ardani, S.; Akintunde, E.; Linzell, D.; Azam, S.E.; Alomari, Q. Evaluating pod-based unsupervised damage identification using controlled damage propagation of out-of-service bridges. Eng. Struct. 2023, 286, 116096. [Google Scholar] [CrossRef]
- Akintunde, E.; Azam, S.E.; Rageh, A.; Linzell, D.G. Unsupervised machine learning for robust bridge damage detection: Full-scale experimental validation. Eng. Struct. 2021, 249, 113250. [Google Scholar] [CrossRef]
- Jo, B.W.; Khan, R.M.A.; Lee, Y.S. Hybrid blockchain and internet-of-things network for underground structure health monitoring. Sensors 2018, 18, 4268. [Google Scholar] [CrossRef]
- Gordan, M.; Ismail, Z.; Mohd Rahim, F.A.; Chao, O.Z.; Ibrahim, Z.; Hashim, H.; Kiong, L.C. Defining a conceptual framework for vibration-based damage detection platforms using blockchain. J. Civ. Eng. Mater. Appl. 2021, 5, 25–33. [Google Scholar]
- Zhang, D.M.; Nie, C.; Zhang, J.Z.; Huang, H.W.; Huang, X. Consortium blockchain-based tunnel data bank for traceable sharing and treatment of structural health monitoring data. Autom. Constr. 2024, 167, 105720. [Google Scholar] [CrossRef]
- Zheng, W.; Zheng, Z.; Dai, H.N.; Chen, X.; Zheng, P. XBlock-EOS: Extracting and exploring blockchain data from EOSIO. Inf. Process. Manag. 2021, 58, 102477. [Google Scholar] [CrossRef]
- Perez, D.; Xu, J.; Livshits, B. Revisiting transactional statistics of high-scalability blockchains. In Proceedings of the ACM Internet Measurement Conference, Virtual, 27–29 October 2020; pp. 535–550. [Google Scholar]
- He, N.; Zhang, R.; Wang, H.; Wu, L.; Luo, X.; Guo, Y.; Yu, T.; Jiang, X. EOSAFE: Security analysis of EOSIO smart contracts. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Vancouver, BC, USA, 11–13 August 2021; pp. 1271–1288. [Google Scholar]
- Liu, J.; Zheng, W.; Lu, D.; Wu, J.; Zheng, Z. From decentralization to oligopoly: A data-driven analysis of decentralization evolution and voting behaviors on EOSIO. IEEE Trans. Comput. Soc. Syst. 2022, 10, 2752–2763. [Google Scholar] [CrossRef]
- Fernández-Carrasco, J.Á.; Echeberria-Barrio, X.; Paredes-García, D.; Zola, F.; Orduna-Urrutia, R. ChronoEOS 2.0: Device Fingerprinting and EOSIO Blockchain Technology for On-Running Forensic Analysis in an IoT Environment. Smart Cities 2023, 6, 897–912. [Google Scholar] [CrossRef]
- He, N.; Wang, H.; Wu, L.; Luo, X.; Guo, Y.; Chen, X. A Survey on EOSIO Systems Security: Vulnerability, Attack, and Mitigation. Front. Comput. Sci. 2025, 19, 196806. [Google Scholar] [CrossRef]
- Gadiraju, D.S.; Aggarwal, V. Prism blockchain enabled Internet of Things with deep reinforcement learning. Blockchain Res. Appl. 2024, 5, 100205. [Google Scholar] [CrossRef]
- Gadiraju, D.S.; Khazanchi, D. Blockchain-Driven Framework for DRL-Controlled UAV Bridge Health Monitoring. IEEE Intell. Syst. 2025, 40, 19–28. [Google Scholar] [CrossRef]
- Pathirage, C.S.N.; Li, J.; Li, L.; Hao, H.; Liu, W.; Ni, P. Structural damage identification based on autoencoder neural networks and deep learning. Eng. Struct. 2018, 172, 13–28. [Google Scholar] [CrossRef]
- Diez, A.; Khoa, N.L.D.; Makki Alamdari, M.; Wang, Y.; Chen, F.; Runcie, P. A clustering approach for structural health monitoring on bridges. J. Civ. Struct. Health Monit. 2016, 6, 429–445. [Google Scholar] [CrossRef]
- Grigg, I. Eos—An Introduction. White Paper. 2017. Available online: https://www.semanticscholar.org/paper/EOS-An-Introduction-Grigg/c7a922dffb06ee1a75e1a5527c557da21b3c1d90 (accessed on 25 September 2025).
- EOSIO. EOSIO GitHub Organization. 2024. Available online: https://github.com/EOSIO (accessed on 25 September 2025).
Feature | BIONIB (This Work) | Deep Autoencoder + One-Class SVM [33] | Density-Peaks Clustering [34] | Traditional SHM (No Blockchain) [6] |
---|---|---|---|---|
Damage Detection Approach | Novelty Index (NI) | Autoencoder + One-Class SVM | Unsupervised Clustering | Rule-based or threshold |
Damage Localization | Sensor-level (threshold) | Yes | Yes | Limited |
Blockchain Integration | EOSIO (C++ smart contracts) | Not used | Not used | Not used |
Real-Time Alerting | Yes | Often post-processed | Post-processed | Rare |
Data Integrity and Security | High (blockchain-based) | Low | Low | Low |
Scalability and Traceability | High | Medium | Medium | Low |
Parameters | Value |
---|---|
Total Sensors | 51 strain transducers |
Maximum EOSIO nodes | 50 |
Maximum smart contracts per node | 50 |
Memory buffer size | 150 MB |
Sampling rate | 256 |
Data rate | 100 Mbps |
Propagation delay of data | 5 ms |
Parameter | BIONIB with NI | BIONIB Without NI |
---|---|---|
Storage Efficiency | O (ns) | O (nms) |
Data Retrieval Time | O (ks) | O (kms) |
Scalability with bridges | O (n) | O (n) |
Latency per epoch | O (Bs) | O (Bms) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadiraju, D.S.; McMaster, R.; Eftekhar Azam, S.; Khazanchi, D. BIONIB: Blockchain-Based IoT Using Novelty Index in Bridge Health Monitoring. Appl. Sci. 2025, 15, 10542. https://doi.org/10.3390/app151910542
Gadiraju DS, McMaster R, Eftekhar Azam S, Khazanchi D. BIONIB: Blockchain-Based IoT Using Novelty Index in Bridge Health Monitoring. Applied Sciences. 2025; 15(19):10542. https://doi.org/10.3390/app151910542
Chicago/Turabian StyleGadiraju, Divija Swetha, Ryan McMaster, Saeed Eftekhar Azam, and Deepak Khazanchi. 2025. "BIONIB: Blockchain-Based IoT Using Novelty Index in Bridge Health Monitoring" Applied Sciences 15, no. 19: 10542. https://doi.org/10.3390/app151910542
APA StyleGadiraju, D. S., McMaster, R., Eftekhar Azam, S., & Khazanchi, D. (2025). BIONIB: Blockchain-Based IoT Using Novelty Index in Bridge Health Monitoring. Applied Sciences, 15(19), 10542. https://doi.org/10.3390/app151910542