Decoding Emotions from fNIRS: A Survey on Tensor-Based Approaches in Affective Computing and Medical Applications
Abstract
1. Introduction
2. Materials and Methods of the Review
3. Functional Near-Infrared Spectroscopy (fNIRS)
fNIRS in Affective Computing
- Emotion Recognition and Differentiation [30]:fNIRS technology is capable of distinguishing between different emotional states by detecting variations in blood oxygenation within the brain. Research has shown that fNIRS can differentiate not only between positive and negative emotions but also between various forms of positive emotions, such as joy, gratitude, and serenity. These emotions exhibit different patterns of hemodynamic response in the frontal cortex. By applying machine learning to these signals, researchers can effectively classify clusters of emotions with significant accuracy, thereby advancing the development of sophisticated emotion recognition systems.
- Mapping Brain Activation to Emotional Valence [24]:Research using fNIRS indicates that positive and negative emotions activate distinct regions of the prefrontal cortex (PFC). Positive emotions are associated with greater activation in the bilateral dorsolateral prefrontal cortex (DLPFC) and the orbitofrontal cortex (OFC), while negative emotions are associated with increased activation in the medial prefrontal cortex (mPFC). These findings support the concept of lateralized emotional processing in the brain and confirm fNIRS as a valuable tool to objectively capture neural activity related to emotions.
- Affective Brain–Computer Interfaces (BCIs) [31]:fNIRS facilitates the development of affective BCIs, allowing users to interact with computers or virtual agents by modulating their emotional states. For example, asymmetric activity in DLPFC, measured by fNIRS, has been used to control the facial expressions of virtual agents, allowing users to engage in affective communication through neurofeedback. This approach allows for the volitional activation of specific brain regions associated with emotion, which are typically not within conscious control.
- Multimodal Emotion Detection [22]:Integrating fNIRS with other modalities, such as EEG and facial video analysis, improves the accuracy and robustness of emotion detection systems. fNIRS offers an “internal” perspective on emotion generation, complementing external observations, like facial expressions, and electrophysiological signals from EEG.
4. Traditional Approach in Affective Computing
4.1. Dimensionality Reduction Techniques in Neuroimaging
- feature selection;
- feature extraction.
4.2. Motivation for Tensor Factorization Techniques
4.3. Tensor Decomposition
4.3.1. Canonical-Polyadic Decomposition
4.3.2. Tucker Decomposition
5. Tensor-Based Approaches in Medical Applications
Tensor-Based Approaches Using fNIRS Signals
6. Related Work
Background to the Study
- Scopus: 10 articles published between 2016 and 2025.
- WoS: 21 articles within the same time period.
- PubMed: No results.
- dblp: No results.
7. Discussion and Conclusions
7.1. Limitations of Current Studies
7.2. Further Research Plans
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADHD | attention-deficit/hyperactivity disorder |
ANOVA | analysis of variance |
BCI | Brain-Computer Interface |
CNN | convolutional neural network |
CP | Canonical Polyadic |
CPD | Canonical Polyadic Decomposition |
DL | deep learning |
DLPFC | dorsolateral prefrontal cortex |
EEG | electroencephalography |
FFT | Fast Fourier Transform |
fMRI | functional Magnetic Resonance Imaging |
fNIRS | functional near-infrared spectroscopy |
HbO | oxygenated hemoglobin |
HbR | deoxygenated hemoglobin |
LSTM | Long short-term memory |
ML | machine learning |
mPFC | medial prefrontal cortex |
OFC | orbitofrontal cortex |
PET | Positron Emission Tomography |
PFC | prefrontal cortex |
RNN | recurrent neural network |
SVM | Support Vector Machine |
WoS | Web of Science |
References
- Wang, Y.; Song, W.; Tao, W.; Liotta, A.; Yang, D.; Li, X.; Gao, S.; Sun, Y.; Ge, W.; Zhang, W.; et al. A systematic review on affective computing: Emotion models, databases, and recent advances. Inf. Fusion 2022, 83, 19–52. [Google Scholar] [CrossRef]
- Pei, G.; Li, H.; Lu, Y.; Wang, Y.; Hua, S.; Li, T. Affective computing: Recent advances, challenges, and future trends. Intell. Comput. 2024, 3, 0076. [Google Scholar] [CrossRef]
- Afzal, S.; Khan, H.A.; Piran, M.J.; Lee, J.W. A comprehensive survey on affective computing; challenges, trends, applications, and future directions. IEEE Access 2024, 12, 96150–96168. [Google Scholar] [CrossRef]
- Klein, F.; Kohl, S.H.; Lührs, M.; Mehler, D.M.; Sorger, B. From lab to life: Challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments. Philos. Trans. B 2024, 379, 20230087. [Google Scholar] [CrossRef]
- Ruotsalo, T.; Traver, V.J.; Kawala-Sterniuk, A.; Leiva, L.A. Affective relevance. IEEE Intell. Syst. 2024, 39, 12–22. [Google Scholar] [CrossRef]
- Dehais, F.; Ayaz, H.; Kawala-Sterniuk, A.; Ladouce, S.; Barreto, C.; Karwowski, W. Non-Invasive Brain-Computer Interfaces. In Interaction Techniques and Technologies in Human-Computer Interaction; CRC Press: Boca Raton, FL, USA, 2024; pp. 406–440. [Google Scholar]
- Friedman, B.H.; Thayer, J.F. Is emotion physiology more compatible with discrete, dimensional, or appraisal accounts? In Emotion Theory: The Routledge Comprehensive Guide; Routledge: Oxfordshire, UK, 2024; pp. 488–510. [Google Scholar]
- Kragel, P.A.; Sander, D.; LaBar, K.S. Can Brain Data Be Used to Arbitrate Among Emotion Theories? In Emotion Theory: The Routledge Comprehensive Guide; Routledge: Oxfordshire, UK, 2024; pp. 511–542. [Google Scholar]
- Pinti, P.; Tachtsidis, I.; Hamilton, A.; Hirsch, J.; Aichelburg, C.; Gilbert, S.; Burgess, P.W. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci. 2020, 1464, 5–29. [Google Scholar] [CrossRef]
- Ferrari, M.; Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 2012, 63, 921–935. [Google Scholar] [CrossRef] [PubMed]
- Cortinas-Lorenzo, K.; Lacey, G. Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience. R. Soc. Open Sci. 2025, 12, 241778. [Google Scholar] [CrossRef] [PubMed]
- Cortinas-Lorenzo, K.; Lacey, G. Toward Explainable Affective Computing: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 13101–13121. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, D.; Li, X. Dimensionality reduction methods for brain imaging data analysis. ACM Comput. Surv. (CSUR) 2021, 54, 1–36. [Google Scholar] [CrossRef]
- Taguchi, Y. Tensor decomposition-based unsupervised feature extraction applied to matrix products for multi-view data processing. PLoS ONE 2017, 12, e0183933. [Google Scholar] [CrossRef]
- Boas, D.A.; Elwell, C.E.; Ferrari, M.; Taga, G. Twenty years of functional near-infrared spectroscopy: Introduction for the special issue. Neuroimage 2014, 85, 1–5. [Google Scholar] [CrossRef]
- Naseer, N.; Hong, K.S. fNIRS-based brain-computer interfaces: A review. Front. Hum. Neurosci. 2015, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Leff, D.R.; Orihuela-Espina, F.; Elwell, C.E.; Athanasiou, T.; Delpy, D.T.; Darzi, A.W.; Yang, G.Z. Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage 2011, 54, 2922–2936. [Google Scholar] [CrossRef]
- Causse, M.; Chua, Z.; Peysakhovich, V.; Del Campo, N.; Matton, N. Mental workload and neural efficiency quantified in the prefrontal cortex using fNIRS. Sci. Rep. 2017, 7, 5222. [Google Scholar] [CrossRef]
- Paulmurugan, K.; Vijayaragavan, V.; Ghosh, S.; Padmanabhan, P.; Gulyás, B. Brain–computer interfacing using functional near-infrared spectroscopy (fNIRS). Biosensors 2021, 11, 389. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhao, W.; Lu, C.; Du, H.; Chi, P. Interpersonal neural synchronization during social interactions in close relationships: A systematic review and meta-analysis of fNIRS hyperscanning studies. Neurosci. Biobehav. Rev. 2024, 158, 105565. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhao, C.; Wang, F.; Zhang, D. Inter-brain amplitude correlation differentiates cooperation from competition in a motion-sensing sports game. Soc. Cogn. Affect. Neurosci. 2021, 16, 552–564. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Zhang, X. EEG–fNIRS-Based emotion recognition using graph convolution and capsule attention network. Brain Sci. 2024, 14, 820. [Google Scholar] [CrossRef]
- Tang, T.B.; Chong, J.S.; Kiguchi, M.; Funane, T.; Lu, C.K. Detection of emotional sensitivity using fNIRS based dynamic functional connectivity. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 894–904. [Google Scholar] [CrossRef]
- Ruotsalo, T.; Mäkelä, K.; Spapé, M.M.; Leiva, L.A. Affective relevance: Inferring emotional responses via fNIRS neuroimaging. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, Taipei, Taiwan, 23–27 July 2023; pp. 1796–1800. [Google Scholar]
- Wu, D.; Lu, B.L.; Hu, B.; Zeng, Z. Affective brain–computer interfaces (abcis): A tutorial. Proc. IEEE 2023, 111, 1314–1332. [Google Scholar] [CrossRef]
- Gunadi, S.; Leung, T.S.; Elwell, C.E.; Tachtsidis, I. Spatial sensitivity and penetration depth of three cerebral oxygenation monitors. Biomed. Opt. Express 2014, 5, 2896–2912. [Google Scholar] [CrossRef]
- Li, R.; Yang, D.; Fang, F.; Hong, K.S.; Reiss, A.L.; Zhang, Y. Concurrent fNIRS and EEG for brain function investigation: A systematic, methodology-focused review. Sensors 2022, 22, 5865. [Google Scholar] [CrossRef]
- Spapé, M.; Mäkelä, K.; Ruotsalo, T. NEMO: A Database for Emotion Analysis Using Functional Near-infrared Spectroscopy. IEEE Trans. Affect. Comput. 2023, 15, 1166–1177. [Google Scholar] [CrossRef]
- Yükselen, G.; Öztürk, O.C.; Canlı, G.D.; Erdoğan, S.B. Investigating the Neural Correlates of Processing Basic Emotions: A Functional Near-Infrared Spectroscopy (fNIRS) Study. bioRxiv 2023. [Google Scholar] [CrossRef]
- Si, X.; He, H.; Yu, J.; Ming, D. Cross-subject emotion recognition brain–computer interface based on fNIRS and DBJNet. Cyborg Bionic Syst. 2023, 4, 0045. [Google Scholar] [CrossRef] [PubMed]
- Trambaiolli, L.R.; Tiwari, A.; Falk, T.H. Affective neurofeedback under naturalistic conditions: A mini-review of current achievements and open challenges. Front. Neuroergonomics 2021, 2, 678981. [Google Scholar] [CrossRef] [PubMed]
- Doherty, E.J.; Spencer, C.A.; Burnison, J.; Čeko, M.; Chin, J.; Eloy, L.; Haring, K.; Kim, P.; Pittman, D.; Powers, S.; et al. Interdisciplinary views of fNIRS: Current advancements, equity challenges, and an agenda for future needs of a diverse fNIRS research community. Front. Integr. Neurosci. 2023, 17, 1059679. [Google Scholar] [CrossRef]
- Hüsser, A.; Caron-Desrochers, L.; Tremblay, J.; Vannasing, P.; Martínez-Montes, E.; Gallagher, A. Parallel factor analysis for multidimensional decomposition of functional near-infrared spectroscopy data. Neurophotonics 2022, 9, 045004. [Google Scholar] [CrossRef]
- Chan, J.; Wilcox, T.; Hssayeni, M.; Ghoraani, B. Multidimensional Analysis of Functional Near-Infrared Spectroscopy (fNIRS) Signal using Tucker Decomposition. In Proceedings of the 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic, 9–12 October 2022; pp. 1317–1321. [Google Scholar] [CrossRef]
- Chan, J.Y.; Hssayeni, M.D.; Wilcox, T.; Ghoraani, B. Exploring the feasibility of tensor decomposition for analysis of fNIRS signals: A comparative study with grand averaging method. Front. Neurosci. 2023, 17, 1180293. [Google Scholar] [CrossRef]
- Liu, J.; Song, T.; Shu, Z.; Han, J.; Yu, N. fNIRS Feature Extraction and Classification in Grip-Force Tasks. In Proceedings of the 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 27–31 December 2021; pp. 1087–1091. [Google Scholar]
- Cao, Z. Simple but effective: Rethinking the ability of deep learning in fnirs to exclude abnormal input. In Proceedings of the 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), Bari, Italy, 28 August–1 September 2024; IEEE: New York, NY, USA, 2024; pp. 1971–1976. [Google Scholar]
- Hu, H.; Lin, X.; Ye, Z.; Fang, L.; Gao, H.; Zhang, Q. Application of functional near-infrared spectroscopy (fNIRS) in tinnitus research: Contemporary insights and perspectives. Front. Psychol. 2024, 15, 1334660. [Google Scholar] [CrossRef]
- Liu, X.; Parhi, K.K. Tensor decomposition for model reduction in neural networks: A review [feature]. IEEE Circuits Syst. Mag. 2023, 23, 8–28. [Google Scholar] [CrossRef]
- Wang, C.; Sahebi, S.; Torkamaan, H. STRETCH: Stress and Behavior Modeling with Tensor Decomposition of Heterogeneous Data. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Melbourne, VIC, Australia, 14–17 December 2021; IEEE: New York, NY, USA, 2022. WI-IAT’21. pp. 453–462. [Google Scholar] [CrossRef]
- Liao, C.Y.; Li, C.Y.; Fang, W.C. AI-Based Emotion Recognition System with Tensor Decomposition Optimized Pre-processing. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Penghu, Taiwan, 15–17 September 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Papastergiou, T.; Zacharaki, E.I.; Megalooikonomou, V. Tensor Decomposition for Multiple-Instance Classification of High-Order Medical Data. Complexity 2018, 2018, 8651930. [Google Scholar] [CrossRef]
- Yu, H.; Larsen, K.G.; Christiansen, O. Optimization methods for tensor decomposition: A comparison of new algorithms for fitting the CP (CANDECOMP/PARAFAC) model. Chemom. Intell. Lab. Syst. 2025, 257, 105290. [Google Scholar] [CrossRef]
- Sztuka, I.M.; Kühn, S. Neurocognitive dynamics and behavioral differences of symmetry and asymmetry processing in working memory: Insights from fNIRS. Sci. Rep. 2025, 15, 4740. [Google Scholar] [CrossRef]
- Auddy, A.; Xia, D.; Yuan, M. Tensor methods in high dimensional data analysis: Opportunities and challenges. arXiv 2024, arXiv:2405.18412. [Google Scholar] [CrossRef]
- Sedighin, F. Tensor methods in biomedical image analysis. J. Med. Signals Sens. 2024, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Yamada, K. Machine learning studies on major brain diseases: 5-year trends of 2014–2018. Jpn. J. Radiol. 2019, 37, 34–72. [Google Scholar] [CrossRef]
- Lima, A.A.; Mridha, M.F.; Das, S.C.; Kabir, M.M.; Islam, M.R.; Watanobe, Y. A comprehensive survey on the detection, classification, and challenges of neurological disorders. Biology 2022, 11, 469. [Google Scholar] [CrossRef]
- Hamdi, S.M.; Wu, Y.; Boubrahimi, S.F.; Angryk, R.; Krishnamurthy, L.C.; Morris, R. Tensor decomposition for neurodevelopmental disorder prediction. In Proceedings of the Brain Informatics: International Conference, BI 2018, Arlington, TX, USA, 7–9 December 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 339–348. [Google Scholar]
- Karahan, E.; Rojas-Lopez, P.A.; Bringas-Vega, M.L.; Valdés-Hernández, P.A.; Valdes-Sosa, P.A. Tensor analysis and fusion of multimodal brain images. Proc. IEEE 2015, 103, 1531–1559. [Google Scholar] [CrossRef]
- Joshi, R.; Jadeja, M. The Synergy of Clinical Psychology and Affective Computing: Advancements in Emotion Recognition and Therapy. In Affective Computing for Social Good: Enhancing Well-Being, Empathy, and Equity; Springer: Berlin/Heidelberg, Germany, 2024; pp. 21–45. [Google Scholar]
- León-Carrión, J.; León-Domínguez, U. Functional near-infrared spectroscopy (fNIRS): Principles and neuroscientific applications. Neuroimaging Methods 2012, 97, 48–74. [Google Scholar]
- Quaresima, V.; Ferrari, M. A mini-review on functional near-infrared spectroscopy (fNIRS): Where do we stand, and where should we go? Photonics 2019, 6, 87. [Google Scholar] [CrossRef]
- Udina, C.; Avtzi, S.; Durduran, T.; Holtzer, R.; Rosso, A.L.; Castellano-Tejedor, C.; Perez, L.M.; Soto-Bagaria, L.; Inzitari, M. Functional near-infrared spectroscopy to study cerebral hemodynamics in older adults during cognitive and motor tasks: A review. Front. Aging Neurosci. 2020, 11, 367. [Google Scholar] [CrossRef]
- Ahmed, I.; Raihan, A.S. Spatiotemporal data analysis: A review of techniques, applications, and emerging challenges. In Multimodal and Tensor Data Analytics for Industrial Systems Improvement; Springer: Berlin/Heidelberg, Germany, 2024; pp. 125–166. [Google Scholar]
- Lin, J.; Lu, J.; Shu, Z.; Han, J.; Yu, N. Subject-Specific Modeling of EEG-fNIRS Neurovascular Coupling by Task-Related Tensor Decomposition. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Hssayeni, M.D.; Wilcox, T.; Ghoraani, B. Tensor decomposition of functional near-infrared spectroscopy (fNIRS) signals for pattern discovery of cognitive response in infants. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; IEEE: New York, NY, USA, 2020; pp. 394–397. [Google Scholar]
- Sinha, N. Affective computing and emotion-sensing technology for emotion recognition in mood disorders. In Enhanced Telemedicine and e-Health: Advanced IoT Enabled Soft Computing Framework; Springer: Berlin/Heidelberg, Germany, 2021; pp. 337–360. [Google Scholar]
- Hou, M.; Zhang, X.; Chen, G.; Huang, L.; Sun, Y. Emotion Recognition Based on a EEG–fNIRS Hybrid Brain Network in the Source Space. Brain Sci. 2024, 14, 1166. [Google Scholar] [CrossRef] [PubMed]
- Akhter, J.; Nazeer, H.; Naseer, N.; Naeem, R.; Kallu, K.D.; Lee, J.; Ko, S.Y. Improved performance of fNIRS-BCI by stacking of deep learning-derived frequency domain features. PloS ONE 2025, 20, e0314447. [Google Scholar] [CrossRef]
- Barnhardt, T.M.; Chan, J.Y.; Ghoraani, B.; Wilcox, T. Effects of Competition on Left Prefrontal and Temporal Cortex During Conceptual Comparison of Brand-Name Product Pictures: Analysis of fNIRS Using Tensor Decomposition. Brain Sci. 2025, 15, 127. [Google Scholar] [CrossRef]
- Erol, A.; Hunyadi, B. Tensors for neuroimaging: A review on applications of tensors to unravel the mysteries of the brain. In Tensors for Data Processing; Academic Press: Cambridge, MA, USA, 2022; pp. 427–482. [Google Scholar]
- Halkiopoulos, C.; Gkintoni, E.; Aroutzidis, A.; Antonopoulou, H. Advances in Neuroimaging and Deep Learning for Emotion Detection: A Systematic Review of Cognitive Neuroscience and Algorithmic Innovations. Diagnostics 2025, 15, 456. [Google Scholar] [CrossRef] [PubMed]
- Aranyi, G.; Pecune, F.; Charles, F.; Pelachaud, C.; Cavazza, M. Affective Interaction with a Virtual Character Through an fNIRS Brain-Computer Interface. Front. Comput. Neurosci. 2015, 10, 70. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawala-Sterniuk, A.; Podpora, M.; Mikolajewski, D.; Piasecki, M.; Rudnicka, E.; Luckiewicz, A.; Sudol, A.; Pelc, M. Decoding Emotions from fNIRS: A Survey on Tensor-Based Approaches in Affective Computing and Medical Applications. Appl. Sci. 2025, 15, 10525. https://doi.org/10.3390/app151910525
Kawala-Sterniuk A, Podpora M, Mikolajewski D, Piasecki M, Rudnicka E, Luckiewicz A, Sudol A, Pelc M. Decoding Emotions from fNIRS: A Survey on Tensor-Based Approaches in Affective Computing and Medical Applications. Applied Sciences. 2025; 15(19):10525. https://doi.org/10.3390/app151910525
Chicago/Turabian StyleKawala-Sterniuk, Aleksandra, Michal Podpora, Dariusz Mikolajewski, Maciej Piasecki, Ewa Rudnicka, Adrian Luckiewicz, Adam Sudol, and Mariusz Pelc. 2025. "Decoding Emotions from fNIRS: A Survey on Tensor-Based Approaches in Affective Computing and Medical Applications" Applied Sciences 15, no. 19: 10525. https://doi.org/10.3390/app151910525
APA StyleKawala-Sterniuk, A., Podpora, M., Mikolajewski, D., Piasecki, M., Rudnicka, E., Luckiewicz, A., Sudol, A., & Pelc, M. (2025). Decoding Emotions from fNIRS: A Survey on Tensor-Based Approaches in Affective Computing and Medical Applications. Applied Sciences, 15(19), 10525. https://doi.org/10.3390/app151910525