Improvement of Mandibular Kinetics and Quality of Life in Elderly with Mini-Implant Retained Overdentures: A Preliminary Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Evaluation of Mandibular Movements
2.1.1. Evaluation of Mandibular Border Movements: Before Mini-Implants Installation and Five Months After
2.1.2. Evaluation of Functional Mandibular Movements During Mastication (EMG Synchronized with 3D EMA): Before Mini-Implants Installation and Five Months After
2.2. Mini-Implants
2.2.1. Surgical Procedure
2.2.2. Prosthodontics
2.3. Quality of Life Assessment
2.4. Statistical Analysis
3. Results
3.1. Mini-Implants
3.2. Evaluation of Mandibular Movements
3.2.1. Evaluation of Mandibular Border Movements
3.2.2. Evaluation of Functional Mandibular Movements
3.3. Quality of Life Assessment
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CBCT | Cone Beam Computed Tomography |
OHRQoL | Oral Health-Related Quality of Life |
TMJ | Temporomandibular Joint |
MIP | Maximum Intercuspation |
3D-EMA | 3D Electromagnetic Articulator |
EMG | Electromyography |
PLA | Polylactic Acid |
MBM | Mandibular Border Movements |
MO | Maximum Opening |
CR | Centric Relation |
MPC | Maximum Protrusion with Contact |
References
- Furuta, M.; Takeuchi, K.; Adachi, M.; Kinoshita, T.; Eshima, N.; Akifusa, S.; Kikutani, T.; Yamashita, Y. Tooth loss, swallowing dysfunction and mortality in Japanese older adults receiving home care services. Geriatr. Gerontol. Int. 2018, 18, 873–880. [Google Scholar] [CrossRef]
- Gupta, A.; Felton, D.A.; Jemt, T.; Koka, S. Rehabilitation of Edentulism and Mortality: A Systematic Review. J. Prosthodont. 2019, 28, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Marcello-Machado, R.M.; Faot, F.; Schuster, A.J.; Nascimento, G.G.; Del Bel Cury, A.A. Mini-implants and narrow diameter implants as mandibular overdenture retainers: A systematic review and meta-analysis of clinical and radiographic outcomes. J. Oral Rehabil. 2018, 45, 161–183. [Google Scholar] [CrossRef]
- Takagaki, K.; Gonda, T.; Maeda, Y. Number and Location of Mini-Implants Retaining a Mandibular Overdenture to Resist Lateral Forces: A Preliminary In Vitro Study. Int. J. Prosthodont. 2017, 30, 248–250. [Google Scholar] [CrossRef] [PubMed]
- Borges, G.A.; Presotto, A.G.C.; Caldas, R.A.; Pisani, M.X.; Mesquita, M.F. Is one dental mini-implant biomechanically appropriate for the retention of a mandibular overdenture? A comparison with Morse taper and external hexagon platforms. J. Prosthet. Dent. 2021, 125, 491–499. [Google Scholar] [CrossRef]
- Tsolianos, I.; Haidich, A.B.; Goulis, D.G.; Kotsiomiti, E. The effect of mandibular implant overdentures o masticatory performance: A systematic review and meta-analysis. Dent. Rev. 2023, 3, 4. [Google Scholar] [CrossRef]
- Toman, M.; Toksavul, S.; Saracoglu, A.; Cura, C.; Hatipoglu, A. Masticatory performance and mandibular movement patterns of patients with natural dentitions, complete dentures, and implant-supported overdentures. Int. J. Prosthodont. 2012, 25, 135–137. [Google Scholar]
- Okeson, J.P. Management of Temporomandibular Disorders and Occlusion; Elsevier: Barcelona, Spain, 2019; pp. 63–72. [Google Scholar]
- Okeson, J.P.J.P.; Sosa, G.E.E.S.; Bumann, A.; Bumann, U.; Lotzmann, U. Tratamiento de Oclusión y Afecciones Temporomandibulares, 5th ed.; Elsevier: Barcelona, Spain, 2008. [Google Scholar]
- Fuentes, R.; Arias, A.; Lezcano, M.F.; Saravia, D.; Kuramochi, G.; Navarro, P.; Dias, F.J. A New Tridimensional Insight into Geometric and Kinematic Characteristics of Masticatory Cycles in Participants with Normal Occlusion. BioMed Res. Int. 2018, 2018, 2527463. [Google Scholar] [CrossRef]
- Fuentes, R.; Arias, A.; Lezcano, M.F.; Saravia, D.; Kuramochi, G.; Dias, F.J. Systematic Standardized and Individualized Assessment of Masticatory Cycles Using Electromagnetic 3D Articulography and Computer Scripts. BioMed Res. Int. 2017, 2017, 7134389. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Agurto, S.A.; Lezcano, M.F.; Álvarez, G.; Navarro, P.; Fuentes, R. Análisis Tridimensional de Movimientos Mandibulares Bordeantes en Participantes Dentados Totales. Int. J. Morphol. 2020, 38, 983–989. [Google Scholar] [CrossRef]
- von der Gracht, I.; Derks, A.; Haselhuhn, K.; Wolfart, S. EMG correlations of edentulous patients with implant overdentures and fixed dental prostheses compared to conventional complete dentures and dentates: A systematic review and meta-analysis. Clin. Oral Implant. Res. 2017, 28, 765–773. [Google Scholar] [CrossRef]
- Gadotti, I.; Hicks, K.; Koscs, E.; Lynn, B.; Estrazulas, J.; Civitella, F. Electromyography of the masticatory muscles during chewing in different head and neck postures—A pilot study. J. Oral Biol. Craniofac. Res. 2020, 10, 23–27. [Google Scholar] [CrossRef]
- Lezcano, M.F.; Dias, F.J.; Chuhuaicura, P.; Navarro, P.; Fuentes, R. Symmetry of mandibular movements: A 3D electromagnetic articulography technique applied on asymptomatic participants. J. Prosthet. Dent. 2021, 125, 746–752. [Google Scholar] [CrossRef]
- Misch, C.E.; Perel, M.L.; Wang, H.L.; Sammartino, G.; Galindo-Moreno, P.; Trisi, P.; Steigmann, M.; Rebaudi, A.; Palti, A.; Pikos, M.A.; et al. Implant success, survival, and failure: The International Congress of Oral Implantologists (ICOI) Pisa Consensus Conference. Implant Dent. 2008, 17, 5–15. [Google Scholar] [CrossRef]
- Feine, J.S.; Carlsson, G.E.; Awad, M.A.; Chehade, A.; Duncan, W.J.; Gizani, S.; Head, T.; Heydecke, G.; Lund, J.P.; MacEntee, M.; et al. The McGill consensus statement on overdentures. Mandibular two-implant overdentures as first choice standard of care for edentulous patients. Gerodontology 2002, 19, 3–4. [Google Scholar] [PubMed]
- León, S.; Correa-Beltrán, G.; De Marchi, R.J.; Giacaman, R.A. Ultra-short version of the oral health impact profile in elderly Chileans. Geriatr. Gerontol. Int. 2017, 17, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, S.M.; Chan, C.L.; Campbell, M.J.; Bond, C.M.; Hopewell, S.; Thabane, L.; Lancaster, G.A. CONSORT 2010 statement: Extension to randomised pilot and feasibility trials. Pilot Feasibility Stud. 2016, 2, 64. [Google Scholar] [CrossRef]
- Farfán, N.C.; Lezcano, M.F.; Navarro-Cáceres, P.E.; Sandoval-Vidal, H.P.; Martinez-Gomis, J.; Muñoz, L.; Marinelli, F.; Fuentes, R. Characterization of Mandibular Border Movements and Mastication in Each Skeletal Class Using 3D Electromagnetic Articulography: A Preliminary Study. Diagnostics 2023, 13, 2405. [Google Scholar] [CrossRef]
- Sutariya, P.V.; Shah, H.M.; Patel, S.D. Mandibular implant-supported overdenture: A systematic review and meta-analysis for optimum selection of attachment system. J. Indian Prosthodont. Soc. 2021, 21, 319–327. [Google Scholar] [PubMed]
- Lemos, C.A.; Ferro-Alves, M.L.; Okamoto, R.; Mendonça, M.R.; Pellizzer, E.P. Short dental implants versus standard dental implants placed in the posterior jaws: A systematic review and meta-analysis. J. Dent. 2016, 47, 8–17. [Google Scholar] [CrossRef]
- Bidra, A.S.; Almas, K. Mini implants for definitive prosthodontic treatment: A systematic review. J. Prosthet. Dent. 2013, 109, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.B.; Della Vecchia, M.P.; Cunha, T.R.; Sorgini, D.B.; Dos Reis, A.C.; Muglia, V.A.; de Albuquerque Jr, R.F.; de Souza, R.F. Short-term post-operative pain and discomfort following insertion of mini-implants for retaining mandibular overdentures: A randomized controlled trial. J. Oral Rehabil. 2015, 42, 605–614. [Google Scholar] [CrossRef]
- de Souza, R.F.; Ribeiro, A.B.; Della Vecchia, M.P.; Costa, L.; Cunha, T.R.; Reis, A.C.; Albuquerque Jr, R.F. Mini vs. Standard Implants for Mandibular Overdentures: A Randomized Trial. J. Dent. Res. 2015, 94, 1376–1384. [Google Scholar] [CrossRef] [PubMed]
- Catalán, A.; Martínez, A.; Marchesani, F.; González, U. Mandibular Overdentures Retained by Two Mini-Implants: A Seven-Year Retention and Satisfaction Study. J. Prosthodont. 2016, 25, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Borges, G.A.; Codello, D.J.; Del Rio Silva, L.; Dini, C.; Barão, V.A.R.; Mesquita, M.F. Factors and clinical outcomes for standard and mini-implants retaining mandibular overdentures: A systematic review and meta-analysis. J. Prosthet. Dent. 2023, 130, 677–689. [Google Scholar] [CrossRef]
- Batisse, C.; Bonnet, G.; Bessadet, M.; Veyrune, J.L.; Hennequin, M.; Peyron, M.A.; Nicolas, E. Stabilization of mandibular complete dentures by four mini implants: Impact on masticatory function. J. Dent. 2016, 50, 43–50. [Google Scholar] [CrossRef]
- Chuhuaicura, P.; Lezcano, M.F.; Dias, F.J.; Fuentes, A.D.; Arias, A.; Fuentes, R. Mandibular border movements: The two envelopes of motion. J. Oral Rehabil. 2021, 48, 384–391. [Google Scholar] [CrossRef]
- Bellia, E.; Boggione, L.; Terzini, M.; Manzella, C.; Menicucci, G. Immediate Loading of Mandibular Overdentures Retained by Two Mini-Implants: A Case Series Preliminary Report. Int. J. Prosthodont. 2018, 31, 558–564. [Google Scholar] [CrossRef]
- Gonçalves, T.M.; Vilanova, L.S.; Gonçalves, L.M.; Rodrigues Garcia, R.C. Effect of complete and partial removable dentures on chewing movements. J. Oral Rehabil. 2014, 41, 177–183. [Google Scholar] [CrossRef]
- Mostovei, M.; Solomon, O.; Chele, N.; Sinescu, C.; Duma, V.F.; Mostovei, A. Electromyographic Evaluation of Muscle Activity in Patients Rehabilitated with Full Arch Fixed Implant-Supported Prostheses. Medicina 2023, 59, 299. [Google Scholar] [CrossRef]
- Peršić, S.; Ćelić, R.; Vojvodić, D.; Petričević, N.; Kranjčić, J.; Zlatarić, D.K.; Čelebić, A. Oral Health-Related Quality of Life in Different Types of Mandibular Implant Overdentures in Function Longer Than 3 Years. Int. J. Prosthodont. 2016, 29, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Ashmawy, T.M.; El Talawy, D.B.; Shaheen, N.H. Effect of mini-implant-supported mandibular overdentures on electromyographic activity of the masseter muscle during chewing of hard and soft food. Quintessence Int. 2014, 45, 663–671. [Google Scholar] [PubMed]
- Al-Ayyad, M.; Owida, H.A.; De Fazio, R.; Al-Naami, B.; Visconti, P. Electromyography Monitoring Systems in Rehabilitation: A Review of Clinical Applications, Wearable Devices and Signal Acquisition Methodologies. Electronics 2023, 12, 1520. [Google Scholar] [CrossRef]
- Sônego, M.V.; Goiato, M.C.; Dos Santos, D.M. Electromyography evaluation of masseter and temporalis, bite force, and quality of life in elderly patients during the adaptation of mandibular implant-supported overdentures. Clin. Oral Implants Res. 2017, 28, e169–e174. [Google Scholar] [CrossRef]
- Neves, B.R.; Costa, R.T.F.; Vasconcelos, B.C.D.E.; Pellizzer, E.P.; Moraes, S.L.D. Muscle activity between dentate and edentulous patients rehabilitated with dental prostheses: A systematic review. J. Oral Rehabil. 2023, 50, 1508–1517. [Google Scholar] [CrossRef]
- Nuño Licona, A.; Angeles Medina, F.; Pacheco Segura, M.E.; Sarabia Villa, A.; García Moreira, C. Electromyographic activity (EMG) of masseter and temporal muscles in edentulous patients before and after complete dentures. Pract. Odontol. 1990, 11, 54–56. [Google Scholar]
- Scepanovic, M.; Calvo-Guirado, J.L.; Markovic, A.; Delgardo-Ruiz, R.; Todorovic, A.; Milicic, B.; Misic, T. A 1-year prospective cohort study on mandibular overdentures retained by mini dental implants. Eur. J. Oral Implantol. 2012, 5, 367–379. [Google Scholar]
- Griffitts, T.M.; Collins, C.P.; Collins, P.C. Mini dental implants: An adjunct for retention, stability, and comfort for the edentulous patient. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005, 100, e81–e84. [Google Scholar] [CrossRef] [PubMed]
Criteria | Inclusion | Exclusion |
---|---|---|
Clinical |
|
|
Anatomical |
| |
Behavioral |
|
|
Envelope | Right | Left |
Front | Mandibular displacement with tooth contact from MIP to maximum right laterality. From the position of maximum right laterality, movement of the right lateral opening until MO is reached. | Mandibular displacement with tooth contact from MIP to maximum left laterality. From the position of maximum left laterality, movement of the left lateral opening until MO is reached. |
Horizontal | Mandibular displacement with dental contact from CR to maximum right laterality followed by protrusive displacement to the left until MPC is reached. | Mandibular displacement with dental contact from CR to maximum left laterality followed by protrusive displacement to the left until MPC is reached. |
Envelope | Anterior | Posterior |
Sagittal | Mandibular displacement with MIP to MPC tooth contact followed by anterior opening until MO is reached. | Mandibular displacement with PMI to CR tooth contact followed by posterior opening until MO is reached. |
Patient | Age | Bone Density | Marginal Contour | Cortical | Bone Width 4.3 (mm) | Bone Width 3.3 (mm) |
---|---|---|---|---|---|---|
Subject 1 | 60 | Normal | Flat | Thick | 5.0/6.2 | 6.2/7.4 |
Subject 2 | 61 | Normal | Flat | Thick | 5.0/5.9 | 5.3/6.2 |
Subject 3 | 81 | Normal | Angled | Thick | 2.7/3.3 | 1.8/4.5 |
Subject 4 | 61 | Normal | Angled | Normal/vestibulat Thick lingual | 1.1/1.8 | 0.9/3.2 |
Subject 5 | 71 | Normal | Angled | Thick | 6.8/8.2 | 7.0/8.4 |
Subject 6 | 84 | Normal | Rounded | Normal/vestibulat Thick lingual | 5.6/7.2 | 6.0/7.7 |
MBM Before | MBM After | p-Value | |||
---|---|---|---|---|---|
Maximum Opening | Trajectory [mm] | 50.87 ± 12.02 | 48.48 ± 6.24 | 0.616 | |
Vertical range [mm] | 36.72 ± 5.49 | 40.09 ± 4.04 | 0.05 * | ||
Non-Contacting Side | Trajectory [mm] | Right eccentric | 21.71 ± 11.30 | 18.93 ± 7.38 | 0.472 |
Right concentric | 22.42 ± 13.99 | 21.01 ± 10.17 | 0.711 | ||
Left eccentric | 17.17 ± 8.01 | 17.80 ± 5.6 | 0.879 | ||
Left concentric | 23.14 ± 10.96 | 22.97 ± 6.09 | 0.913 | ||
Ranges [mm] | Right | 8.65 ± 3.2 | 9.37 ± 3.05 | 0.879 | |
Left | 9.62 ± 4.60 | 11.31 ± 3.07 | 0.215 | ||
Frontal Envelope | Area [mm2] | Frontal | 219.39 ± 76.17 | 325.54 ± 113.93 | 0.004 * |
Trajectories [mm] | Right side | 14.49 ± 9.21 | 21.78 ± 9.74 | 0.022 * | |
Right opening | 40.11 ± 11.56 | 48.80 ± 8.06 | 0.003 * | ||
Left side | 17.28 ± 9.54 | 19.93 ± 8.52 | 0.396 | ||
Left opening | 39.34 ± 11.02 | 47.49 ± 7.03 | 0.007 * | ||
Ranges [mm] | Right opening | 5.79 ± 2.23 | 8.11 ± 1.78 | 0.005 * | |
Left opening | 6.02 ± 2.84 | 7.36 ± 1.79 | 0.145 | ||
Horizontal Envelope | Area [mm2] | Horizontal | 58.27 ± 62.92 | 92.38 ± 54.47 | 0.064 |
Trajectories [mm] | Right | 32.96 ± 11.95 | 35.18 ± 11.88 | 0.744 | |
Left | 34.36 ± 11.74 | 35.36 ± 11.76 | 0.777 | ||
Ranges [mm] | Right | 6.90 ± 2.61 | 7.84 ± 2.55 | 0.170 | |
Left | 7.95 ± 2.56 | 8.30 ± 2.72 | 0.679 | ||
Sagittal Envelope | Area [mm2] | Sagittal | 264.44 ± 140.40 | 294.81 ± 162.31 | 0.306 |
Trajectories [mm] | Protrusion | 62.25 ± 15.01 | 70.46 ± 13.84 | 0.14 | |
Retrusion | 43.87 ± 9.32 | 53.33 ± 9.93 | 0.002 * | ||
Ranges [mm] | Protrusion | 8.75 ± 3.46 | 11.00 ± 3.01 | 0.025 * | |
Retrusion | 15.05 ± 5.37 | 16.47 ± 3.59 | 0.122 |
FMM Before | FMM After | p-Value | ||
---|---|---|---|---|
Areas | Frontal | 20.13 ± 10.58 | 24.76 ± 13.57 | 0.796 |
Sagittal | 10.96 ± 7.60 | 10.10 ± 5.22 | 0.879 | |
Horizontal | 6.40 ± 5.68 | 4.40 ± 2.10 | 0.326 | |
Speed | Ascent | 29.44 ± 10.47 | 34.82 ± 7.18 | 0.196 |
Descent | 34.96 ± 9.05 | 41.04 ± 6.31 | 0.163 | |
Number of cycles | 61 ± 12.7 | 78.4 ± 17.8 | 0.225 |
Normalized Area Before | Normalized Area After | p-Value | |
---|---|---|---|
Frontal | 5.83% ± 4.07 | 9.37% ± 4.66 | 0.026 * |
Sagittal | 5.83% ± 2.22 | 7.17% ± 3.66 | 0.361 |
Horizontal | 6.72% ± 3.25% | 16.94% ± 9.5 | 0.002 * |
Record [uV]. Level of Muscle Activation | |||
---|---|---|---|
Muscle | Before | After | p-Value |
Right Temporal | 24.50 ± 11.09 | 24.28 ± 7.04 | 0.140 |
Left Temporal | 17.95 ± 4.82 | 25.26 ± 10.48 | 0.88 |
Right Masseter | 23.09 ± 7.34 | 24.44 ± 10.25 | 0.623 |
Left Masseter | 17.39 ± 5.45 | 16.02 ± 5.69 | 0.277 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alarcón–Apablaza, J.; Borie, E.; Marinelli, F.; Navarro, P.; Venegas-Ocampo, C.; Jarpa–Parra, M.; Fuentes, R. Improvement of Mandibular Kinetics and Quality of Life in Elderly with Mini-Implant Retained Overdentures: A Preliminary Study. Appl. Sci. 2025, 15, 10391. https://doi.org/10.3390/app151910391
Alarcón–Apablaza J, Borie E, Marinelli F, Navarro P, Venegas-Ocampo C, Jarpa–Parra M, Fuentes R. Improvement of Mandibular Kinetics and Quality of Life in Elderly with Mini-Implant Retained Overdentures: A Preliminary Study. Applied Sciences. 2025; 15(19):10391. https://doi.org/10.3390/app151910391
Chicago/Turabian StyleAlarcón–Apablaza, Josefa, Eduardo Borie, Franco Marinelli, Pablo Navarro, Camila Venegas-Ocampo, Marcela Jarpa–Parra, and Ramón Fuentes. 2025. "Improvement of Mandibular Kinetics and Quality of Life in Elderly with Mini-Implant Retained Overdentures: A Preliminary Study" Applied Sciences 15, no. 19: 10391. https://doi.org/10.3390/app151910391
APA StyleAlarcón–Apablaza, J., Borie, E., Marinelli, F., Navarro, P., Venegas-Ocampo, C., Jarpa–Parra, M., & Fuentes, R. (2025). Improvement of Mandibular Kinetics and Quality of Life in Elderly with Mini-Implant Retained Overdentures: A Preliminary Study. Applied Sciences, 15(19), 10391. https://doi.org/10.3390/app151910391