Dependence of Coseismic Landslide Distribution Patterns on Fault Movement
Abstract
1. Introduction
2. Materials and Methods
2.1. The Earthquake Events, CL Inventories, and Source Rupture Models
- (1)
- They were triggered by strong earthquakes with magnitudes of MW > 6.0.
- (2)
- The CL inventories are considered relatively comprehensive based on the completeness of information reported by the original authors [37].
- (3)
- The landslide-affected areas are associated with a single primary seismic event and have not experienced multiple strong earthquakes.
- (4)
- All landslides occurred on land.
2.2. Data Utilization and Analysis
2.3. Frequency–Area Distribution Analysis
3. Results
3.1. Differences in Frequency–Area Distributions of CLs Regarding Fault Types
- (1)
- Landslide area: A clear sequential decrease in the average area of CLs is observed from oblique-slip to dip-slip and then to strike-slip earthquakes. The largest range of landslide areas is associated with oblique-slip faults, suggesting a greater variability in the magnitude of failure. The average area of CLs for oblique-slip faults is approximately 900 m2, which is significantly larger than the average of 500 m2 for dip-slip faults and 300 m2 for strike-slip faults. This indicates that oblique-slip events, which combine both vertical and horizontal motion, are more prone to triggering larger landslides.
- (2)
- Exponent: The frequency–area distribution curves for CLs show distinct ranges and sequential decreases in their average power-law exponents across the three fault types: dip-slip, strike-slip, and oblique-slip earthquakes. The average exponents are 2.48 for oblique-slip, 2.07 for dip-slip, and 2.43 for strike-slip faults. This phenomenon suggests that the ratio of small-size to large-size landslides varies systematically with fault type. A higher exponent value, such as those found in oblique-slip and strike-slip earthquakes, indicates a greater relative abundance of small landslides compared to large ones. Conversely, the lower exponent for dip-slip events (2.07) reflects less variability, with a lower proportion of small landslides. This is consistent with the existing literature, which often finds a power-law exponent centered on 2.2–2.4 for medium- and large-scale landslides [73].
- (3)
- Rollover point: The average rollover point of the frequency–area distribution curve, which represents the transition from a power-law to an exponential distribution for small landslides, also exhibits a clear pattern linked to fault type. The average rollover value decreases sequentially for oblique-slip, dip-slip, and strike-slip earthquakes, indicating a corresponding increase in the frequency of small-size CLs. The range of rollover value is large in oblique-slip earthquakes (the average is 2331.11 m2), followed by strike-slip (1947.19 m2) and dip-slip (522.56 m2). This suggests that different fault mechanisms may influence the minimum size of a complete landslide inventory. A larger rollover value may imply that a greater number of small landslides are captured in the inventory, potentially due to differences in ground motion characteristics associated with each fault type [74].
3.2. Differences in Spatial Distribution of CLs Regarding Fault Types
3.2.1. Differences in the Distance to the Fault in the Distribution Patterns of CLs
3.2.2. Differences in the Hanging Wall and Footwall of the Fault in the Distribution Patterns of CLs
3.2.3. Differences in the Angle with Direction of the Fault in the Distribution Patterns of CLs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CLs | Coseismic Landslides |
References
- Keefer, D.K. Landslides caused by earthquakes. Geol. Soc. Am. Bull. 1984, 95, 406–421. [Google Scholar] [CrossRef]
- Leshchinsky, B.; Lehmann, P.; Or, D. Enhanced rainfall-induced shallow landslide activity following seismic disturb-ance—From triggering to healing. J. Geophys. Res. Earth Surf. 2021, 126, e2020JF005669. [Google Scholar] [CrossRef]
- Zhao, B.; Su, L.; Xu, Q.; Li, W.; Xu, C.; Wang, Y. A review of recent earthquake-induced landslides on the Tibetan Plateau. Earth Sci. Rev. 2023, 244, 104534. [Google Scholar] [CrossRef]
- Chigira, M.; Wu, X.; Inokuchi, T.; Wang, G. Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 2010, 118, 225–238. [Google Scholar] [CrossRef]
- Fan, X.; Yunus, A.P.; Scaringi, G.; Catani, F.; Siva Subramanian, S.; Xu, Q.; Huang, R. Rapidly evolving controls of landslides after a strong earthquake and implications for hazard assessments. Geophys. Res. Lett. 2021, 48, e2020GL090509. [Google Scholar] [CrossRef]
- Bommer, J.J.; Rodríguez, C.E. Earthquake-induced landslides in Central America. Eng. Geol. 2002, 63, 189–220. [Google Scholar] [CrossRef]
- Gorum, T.; Fan, X.; van Westen, C.J.; Huang, R.Q.; Xu, Q.; Tang, C.; Wang, G. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 2011, 133, 152–167. [Google Scholar] [CrossRef]
- Ohnaka, M. Large earthquake generation cycles and accompanying seismic activity. In The Physics of Rock Failure and Earthquakes; King, P.L., Jackson, R.E., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 134–156. [Google Scholar]
- Rodríguez, C.E.; Bommer, J.J.; Chandlerb, R.J. Earthquake-induced landslides 1980–1997. Soil Dyn. Earthq. Eng. 1999, 18, 325–346. [Google Scholar] [CrossRef]
- Huang, R.Q.; Li, W.L. Fault effect analysis of geo-hazard triggered by Wenchuan earthquake. J. Eng. Geol. 2009, 17, 19–28. [Google Scholar]
- Celebi, M. Topographic and geological amplification determined from strong motion and aftershock records of 3 March 1985 Chile earthquake. Bull. Seismol. Soc. Am. 1987, 77, 1141–1147. [Google Scholar] [CrossRef]
- Chang, K.T.; Chiang, S.H.; Hsu, M. Modeling typhoon-and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology 2007, 89, 335–347. [Google Scholar] [CrossRef]
- Chen, X.L.; Shan, X.J.; Zhang, L.; Liu, C.G.; Han, N.N.; Lan, J. Quick assessment of earthquake-triggered landslide Hazards: A case study of the 2017 MS 7.0 Jiuzhaigou earthquake. Earth Sci. Front. 2019, 26, 312–320. [Google Scholar]
- Rajabi, A.M.; Khamehchiyan, M.; Mahdavifar, M.R.; Del Gaudio, V.; Capolongo, D. A time probabilistic approach to seismic landslide hazard estimates in Iran. Soil Dyn. Earthq. Eng. 2013, 48, 25–34. [Google Scholar] [CrossRef]
- Li, W.L.; Huang, R.Q.; Pei, X.J.; Zhang, X.; Zhang, Y. Study on geological disasters caused by Haiyuan M8. 5 earthquake in 1920 based on Google Earth. J. Catastrophol. 2015, 30, 26–31. [Google Scholar]
- Qi, S.W.; Xu, Q.; Liu, C.L.; Zhang, B.; Liang, N.; Tong, L.Q. Slope instabilities in the severest disaster areas of 5·12 Wenchuan earthquake. J. Eng. Geol. 2009, 17, 39–49. [Google Scholar]
- Huang, Y.D.; Xie, C.C.; Li, T.; Xu, C.; He, X.L.; Shao, X.Y.; Xu, X.W.; Zhan, T.; Chen, Z.N. An open-accessed inventory of landslides triggered by the MS 6.8 Luding earthquake, China on September 5, 2022. Earthq. Res. Adv. 2023, 3, 100181. [Google Scholar] [CrossRef]
- Li, W.P.; Wu, Y.M.; Gao, X.; Wang, W.M. The distribution pattern of ground movement and co-seismic landslides: A case study of the 5 September 2022 Luding earthquake, China. J. Geophys. Res. Earth Surf. 2024, 129, e2023JF007534. [Google Scholar] [CrossRef]
- Zhao, B. Landslides triggered by the 2018 Mw 7.5 Palu supershear earthquake in Indonesia. Eng. Geol. 2021, 294, 106406. [Google Scholar] [CrossRef]
- Khazai, B.; Sitar, N. Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events. Eng. Geol. 2004, 71, 79–95. [Google Scholar] [CrossRef]
- Valagussa, A.; Marc, O.; Frattini, P.; Crosta, G.B. Seismic and geological controls on earthquake-induced landslide size. Earth Planet. Sci. Lett. 2019, 506, 268–281. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, R.; Ju, N.; Zhao, J. Assessment model for earthquake-triggered landslides based on quantification theory I: Case study of Jushui River basin in Sichuan, China. Nat. Hazards 2014, 70, 821–838. [Google Scholar] [CrossRef]
- Song, C.; Yu, C.; Li, Z.H.; Utili, S.; Frattini, P.; Crosta, G.; Peng, J. Triggering and recovery of earthquake accelerated landslides in Central Italy revealed by satellite radar observations. Nat. Commun. 2022, 13, 7278. [Google Scholar] [CrossRef]
- Zhang, S.; Li, R.; Wang, F.; Iio, A. Characteristics of landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake, Northern Japan. Landslides 2019, 16, 1691–1708. [Google Scholar] [CrossRef]
- Gorum, T.; van Westen, C.J.; Korup, O.; van der Meijde, M.; Fan, X.; van der Meer, F.D. Complex rupture mechanism and topography control symmetry of mass-wasting pattern, 2010 Haiti earthquake. Geomorphology 2013, 184, 127–138. [Google Scholar] [CrossRef]
- Rault, C.; Robert, A.; Marc, O.; Hovius, N.; Meunier, P. Seismic and geologic controls on spatial clustering of landslides in three large earthquakes. Earth Surf. Dynam. 2019, 7, 829–839. [Google Scholar] [CrossRef]
- Lin, C.W.; Shieh, C.L.; Yuan, B.D.; Shieh, Y.C.; Liu, S.H.; Lee, S.Y. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: Example from the Chenyulan River watershed, Nantou, Taiwan. Eng. Geol. 2004, 71, 49–61. [Google Scholar] [CrossRef]
- Parker, R.; Densmore, A.; Rosser, N.; De Michele, M.; Li, Y.; Huang, R.; Whadcoat, S.; d Petley, D.N. Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth. Nat. Geosci. 2011, 4, 449–452. [Google Scholar] [CrossRef]
- Sato, H.P.; Hasegawa, H.; Fujiwara, S.; Tobita, M.; Koarai, M.; Une, H.; Iwahashi, J. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landslides 2007, 4, 113–122. [Google Scholar] [CrossRef]
- Gorum, T.; Carranza, E.J.M. Control of style-of-faulting on spatial pattern of earthquake-triggered landslides. Int. J. Environ. Sci. Technol. 2015, 12, 3189–3212. [Google Scholar] [CrossRef]
- Ghosh, S.; Carranza, E.J.M. Spatial analysis of mutual fault/fracture and slope controls on rocksliding in Darjeeling Himalaya, India. Geomorphology 2010, 122, 1–24. [Google Scholar] [CrossRef]
- Bucci, F.; Santangelo, M.; Cardinali, M.; Fiorucci, F.; Guzzetti, F. Landslide distribution and size in response to Quaternary fault activity: The Peloritani Range, NE Sicily, Italy. Earth Surf. Process. Landf. 2016, 41, 711–720. [Google Scholar] [CrossRef]
- Tibaldi, A.; Ferrari, L.; Pasquarè, G. Landslides triggered by earthquakes and their relations with faults and mountain slope geometry: An example from Ecuador. Geomorphology 1995, 11, 215–226. [Google Scholar] [CrossRef]
- Harp, E.L.; Jibson, R.W. Inventory of landslides triggered by the 1994 Northridge, California earthquake. In U.S. Geological Survey Open-File Report; US Geological Survey: Tallahassee, FL, USA, 1995; pp. 95–213. [Google Scholar]
- Liao, H.W.; Lee, C.T. Landslides triggered by the Chi-Chi earthquake. In Proceedings of the 21st Asian Conference on Remote Sensing, Taipei, Taiwan, 4–8 December 2000; Volume 1, pp. 383–388. [Google Scholar]
- Gorum, T.; Korup, O.; van Westen, C.J.; van der Meijde, M.; Xu, C.; van der Meer, F.D. Why so few? Landslides triggered by the 2002 Denali earthquake. Alaska. Quat. Sci. Rev. 2014, 95, 80–94. [Google Scholar] [CrossRef]
- Tanyaş, H.; van Westen, C.J.; Allstadt, K.E.; Anna Nowicki Jessee, M.; Görüm, T.; Jibson, R.W.; Godt, J.W.; Sato, H.P.; Schmitt, R.G.; Marc, O.; et al. Presentation and analysis of a worldwide database of earthquake-induced landslide inventories. J. Geophys. Res. Earth Surf. 2017, 122, 1991–2015. [Google Scholar] [CrossRef]
- Morton, D.M. Seismically triggered landslides in the area above the San Fernando Valley. In U.S. Geological Survey Data Release; US Geological Survey: Tallahassee, FL, USA, 2017. [Google Scholar]
- Heaton, T.H. The 1971 San-Fernando Earthquake—A Double Event? Bull. Seismol. Soc. Am. 1982, 72, 2037–2062. [Google Scholar] [CrossRef]
- Keefer, D.K.; Manson, M.W. Regional distribution and characteristics of landslides generated by the earthquake. Loma Prieta Calif. Earthq. October 1989, 17, C7–C32. [Google Scholar]
- Emolo, A.; Zollo, A. Kinematic Source Parameters for the 1989 Loma Prieta Earthquake from the Nonlinear Inversion of Accelerograms. Bull. Seismol. Soc. Am. 2005, 95, 981–994. [Google Scholar] [CrossRef]
- Wald, D.J.; Heaton, T.H.; Hudnut, K.W. The slip history of the 1994 Northridge, California, earthquake determined from strong-motion, teleseismic, GPS, and leveling data. Bull. Seismol. Soc. Am. 1996, 86, S49–S70. [Google Scholar] [CrossRef]
- Uchida, T.; Kataoka, S.; Iwao, T.; Matsuo, O.; Terada, H.; Nakano, Y.; Sugiura, N.; Osanai, N. A study on methodology for assessing the potential of slope failures during earthquakes. Tech. Note Natl. Inst. Land Infra. Manag. 2004, 204, 91. [Google Scholar]
- Koketsu, K.; Yoshida, S.; Higashihara, H. A fault model of the 1995 Kobe earthquake derived from the GPS data on the Akashi Kaikyo Bridge and other datasets. Earth Planet Space 1998, 50, 803–811. [Google Scholar] [CrossRef]
- Wang, W.M.; He, Y.M.; Yao, Z.X. Complexity of the coseismic rupture for 1999 Chi-Chi Earthquake (Taiwan) from inversion of GPS observations. Tectonophysics 2004, 382, 151–172. [Google Scholar] [CrossRef]
- Oglesby, D.D.; Dreger, D.S.; Harris, R.A.; Ratchkovski, N.; Hansen, R. Inverse kinematic and forward dynamic models of the 2002 Denali fault earthquake, Alaska. Bull. Seismol. Soc. Am. 2004, 94, S214–S233. [Google Scholar] [CrossRef]
- Basharat, M.; Ali, A.; Jadoon, I.A.K.; Rohn, J. Landsliding in the 2005 Kashmir earthquake region, NW Himalayas, Pakistan, Open Repository of Earthquake-triggered Ground Failure Inventories. In US Geological Survey Data Release Collection Dataset; US Geological Survey: Tallahassee, FL, USA, 2017. [Google Scholar]
- Avouac, J.P.; Ayoub, F.; Leprince, S.; Konca, O.; Helmberger, D.V. The 2005 Mw 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth Planet. Sci. Lett. 2006, 249, 514–528. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.W.; Yao, X.; Dai, F. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides 2014, 11, 441–461. [Google Scholar] [CrossRef]
- Wang, W.M.; Zhao, L.F.; Li, J.; Yao, Z.X. Rupture process of the Ms 8.0 Wenchuan earthquake of Sichuan, China. Chin. J. Geophys. 2008, 51, 1403–1410. [Google Scholar]
- Yagi, H.; Sato, G.; Higaki, D.; Yamamoto, M.; Yamasaki, T. Distribution and characteristics of landslides induced by the Iwate–Miyagi Nairiku Earthquake in 2008 in Tohoku District, Northeast Japan. Landslides 2009, 6, 335–344. [Google Scholar] [CrossRef]
- Suzuki, W.; Aoi, S.; Sekiguchi, H. Rupture Process of the 2008 Iwate-Miyagi Nairiku, Japan, Earthquake Derived from Near-Source Strong-Motion Records. Bull. Seismol. Soc. Am. 2010, 100, 256–266. [Google Scholar] [CrossRef]
- Harp, E.L.; Jibson, R.W.; Schmitt, R.G. Map of landslides triggered by the January 12, 2010, Haiti earthquake. In U.S. Geological Survey Open-File Report; US Geological Survey: Tallahassee, FL, USA, 2016; p. 3353. [Google Scholar]
- Hayes, G.P.; Briggs, R.W.; Sladen, A.; Fielding, E.J.; Prentice, C.; Hudnut, K.; Mann, P.; Taylor, F.W.; Crone, A.J.; Gold, R.; et al. Complex rupture during the 12 January 2010 Haiti earthquake. Nat. Geosci. 2010, 3, 800–805. [Google Scholar] [CrossRef]
- Barlow, J.; Barisin, I.; Rosser, N.; Petley, D.; Densmore, A.; Wright, T. Seismically-induced mass movements and volumetric fluxes resulting from the 2010 Mw = 7.2 earthquake in the Sierra Cucapah, Mexico. Geomorphology 2015, 230, 138–145. [Google Scholar] [CrossRef]
- Wei, S.; Fielding, E.; Leprince, S.A.; Sladen, A.; Avouac, J.P.; Helmberger, D.; Hauksson, E.; Chu, R.S.; Simons, M.; Hudnut, K.; et al. Super-ficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico. Nat. Geosci. 2011, 4, 615–618. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Yu, G. Landslides triggered by slipping-fault-generated earthquake on a plateau: An example of the 14 April 2010, Ms 7.1, Yushu, China earthquake. Landslides 2013, 10, 421–431. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y.; Sun, M.; Wang, W.M. Rupture process of the 2010 Mw6.9 Yushu earthquake in Qinghai Province. Geol. Bull. China 2014, 33, 517–523. [Google Scholar]
- Xu, C.; Xu, X.; Shyu, J.B.H. Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013. Geomorphology 2015, 248, 77–92. [Google Scholar] [CrossRef]
- Wang, W.M.; Hao, J.L.; Yao, Z.X. Preliminary result for rupture process of Apr.20, 2013, Lushan Earthquake, Sichuan, China. Chin. J. Geophys. 2013, 56, 1412–1417. [Google Scholar]
- Gnyawali, K.R.; Adhikari, B.R. Spatial relations of earthquake induced landslides triggered by 2015 Gorkha earthquake Mw = 7.8. In Advancing Culture of Living with Landslides: Volume 4 Diversity of Landslide Forms; Springer: Berlin/Heidelberg, Germany, 2017; pp. 85–93. [Google Scholar]
- Wang, W.M.; Hao, J.L.; He, J.K.; Yao, Z.X. Rupture process of the Mw7.9 Nepal earthquake April 25, 2015. Sci. China Earth Sci. 2015, 58, 1895–1900. [Google Scholar] [CrossRef]
- NIED. Distribution Map of Mass Movement by the 2016 Kumamoto Earthquake. Edited by National Research Institute for Earth Science and Disaster of Japan 2016. Available online: http://www.bosai.go.jp/mizu/dosha.html (accessed on 10 April 2024). (In Japanese).
- Hao, J.L.; Ji, C.; Yao, Z. Slip history of the 2016 Mw 7.0 Kumamoto earthquake: Intraplate rupture in complex tectonic environment. Geophys. Res. Lett. 2017, 44, 743–750. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, X.; You, Y.; Hu, X.; Liu, W.; Li, Y. Landslides and dammed lakes triggered by the 2017 Ms6. 9 Milin earthquake in the Tsangpo gorge. Landslides 2019, 16, 993–1001. [Google Scholar] [CrossRef]
- Wang, W.M.; He, J.K.; Hao, J.L.; Yao, Z.X. Preliminary Result for Rupture Process of Nov.18, 2017, M6.5 Earthquake, Nyingchi, Tibet, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences: Beijing, China, 2017; Available online: http://itpcas.cas.cn/new_kycg/new_kyjz/202007/t20200718_5637215.html (accessed on 18 November 2017).
- Song, X.; Zhang, Y.; Shan, X.; Liu, Y.; Gong, W.; Qu, C. Geodetic observations of the 2018 Mw 7.5 Sulawesi earthquake and its implications for the kinematics of the Palu fault. Geophys. Res. Lett. 2019, 46, 4212–4220. [Google Scholar] [CrossRef]
- Wang, W.M.; He, J.K.; Ding, L.; Hao, J.L.; Yao, Z.X. Preliminary Result for Rupture Process of Sep.5, 2022, M6.8 Earthquake, Luding, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences: Beijing, China, 2022; Available online: http://itpcas.cas.cn/new_kycg/new_kyjz/202209/t20220906_6509485.html (accessed on 5 September 2022).
- Malamud, B.D.; Turcotte, D.L.; Guzzetti, F.; Reichenbach, P. Landslide inventories and their statistical properties. Earth Surf. Process. Landf. 2004, 29, 687–711. [Google Scholar] [CrossRef]
- Tanyaş, H.; van Westen, C.J.; Allstadt, K.E.; Jibson, R.W. Factors controlling landslide frequency-area distributions. Earth Surf. Process. Landf. 2018, 44, 900–917. [Google Scholar] [CrossRef]
- Medwedeff, W.G.; Clark, M.K.; Zekkos, D.; West, A.J. Characteristic landslide distributions: An investigation of landscape controls on landslide size. Earth Planet. Sci. Lett. 2020, 539, 116203. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math. Statist. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Jafarimanesh, A.; Mignan, A.; Danciu, L. Origin of the power-law exponent in the landslide frequency-size distribution. Nat. Hazards Earth Syst. Sci. Discuss 2018, preprint. [Google Scholar] [CrossRef]
- Huang, J.C.; Lee, T.Y.; Teng, T.Y.; Chen, Y.C.; Huang, C.Y.; Lee, C.T. Validating the operational bias and hypothesis of uni-versal exponent in landslide frequency-area distribution. PLoS ONE 2014, 9, e98125. [Google Scholar]
- Ma, S.Y.; Shao, X.Y.; Xu, C.; Chen, X.; Lu, Y.; Xia, C.; Qi, W.; Yuan, R. Distribution pattern, geometric characteristics and tectonic significance of landslides triggered by the strike-slip faulting 2022 Ms 6.8 Luding earthquake. Geomorphology 2024, 453, 109138. [Google Scholar] [CrossRef]
- Qi, S.; Xu, Q.; Lan, H.; Zhang, B.; Liu, J. Spatial distribution analysis of landslides triggered by 2008.5. 12 Wenchuan Earthquake, China. Eng. Geol. 2010, 116, 95–108. [Google Scholar] [CrossRef]
- Shao, X.; Ma, S.; Xu, C. Distribution and characteristics of shallow landslides triggered by the 2018 Mw 7.5 Palu earthquake, Indonesia. Landslides 2023, 20, 157–175. [Google Scholar] [CrossRef]
- Keefer, D.K. Investigating landslides caused by earthquakes–a historical review. Surv. Geophys. 2002, 23, 473–510. [Google Scholar] [CrossRef]
- Yuan, R.M.; Deng, Q.H.; Cunningham, D.; Xu, C.; Xu, X.W.; Chang, C.P. Density distribution of landslides triggered by the 2008 Wenchuan earthquake and their relationships to peak ground acceleration. Bull. Seismol. Soc. Am. 2013, 103, 2344–2355. [Google Scholar] [CrossRef]
- Kargel, J.S.; Leonard, G.J.; Shugar, D.H.; Haritashya, U.K.; Bevington, A.; Fielding, E.J.; Fujita, K.; Geertsema, M.; Miles, E.S.; Steiner, J.; et al. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 2016, 351, aac8353. [Google Scholar] [CrossRef] [PubMed]
- Abrahamson, N.A.; Somerville, P.G. Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake. Bull. Seismol. Soc. Am. 1996, 86, S93–S99. [Google Scholar] [CrossRef]
- Bao, Y.; Huang, Y.; Zhu, C. Effects of near-fault ground motions on dynamic response of slopes based on shaking table model tests. Soil Dyn. Earthq. Eng. 2021, 149, 106869. [Google Scholar] [CrossRef]
- Yang, Z.; Pang, B.; Dong, W.; Li, D. Spatial Pattern and Intensity Mapping of Coseismic Landslides Triggered by the 2022 Luding Earthquake in China. Remote Sens. 2023, 15, 1323. [Google Scholar] [CrossRef]
- Petley, D. The Distribution of Landslides from the M = 7.0 Kumamoto Earthquake. The Landslide Blog. 26 April 2016. Available online: https://blogs.agu.org/landslideblog/2016/04/26/m7-0_kumamoto-earthquake/ (accessed on 12 April 2024).
- Donahue, J.L.; Abrahamson, N.A. Simulation-based hanging wall effects. Earthq. Spectra 2014, 30, 1269–1284. [Google Scholar] [CrossRef]
- Meunier, P.; Hovius, N.; Haines, A.J. Regional patterns of earthquake-triggered landslides and their relation to ground motion. Geophys. Res. Lett. 2007, 34, L20408. [Google Scholar] [CrossRef]
- Lombardo, L.; Tanyas, H.; Huser, R.; Guzzetti, F.; Castro-Camilo, D. Landslide size matters: A new data-driven, spatial pro-totype. Eng. Geol. 2021, 293, 106288. [Google Scholar] [CrossRef]
- Xu, Q.; Li, W.L. Distribution of large-scale landslides induced by the Wenchuan earthquake. J. Eng. Geol. 2010, 18, 818–826. [Google Scholar]
- Chigira, M.; Wang, G.; Wu, X. Landslides induced by the Wenchuan earthquake. In Landslides: Types, Mechanisms and Modeling; Clague, J.J., Stead, D., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 383–392. [Google Scholar]
- Chen, C.W.; Iida, T.; Yamada, R. Effects of active fault types on earthquake-induced deep-seated landslides: A study of historical cases in Japan. Geomorphology 2017, 295, 680–689. [Google Scholar] [CrossRef]
- von Specht, S.; Ozturk, U.; Veh, G.; Cotton, F.; Korup, O. Effects of finite source rupture on landslide triggering: The 2016 Mw 7.1 Kumamoto earthquake. Solid Earth 2019, 10, 463–486. [Google Scholar] [CrossRef]
- Meunier, P.; Uchida, T.; Hovius, N. Landslide patterns reveal the sources of large earthquakes. Earth Planet. Sci. Lett. 2013, 363, 27–33. [Google Scholar] [CrossRef]
- Marc, O.; Hovius, N.; Meunier, P.; Gorum, T.; Uchida, T. A seismologically consistent expression for the total area and volume of earthquake-triggered landsliding. J. Geophys. Res. 2016, 121, 640–663. [Google Scholar] [CrossRef]
- Bard, P.Y. Effects of surface geology on ground motion: Recent results and remaining issues. In Proceedings of the 10th European Conference, Vienna, Austria, 28 August–2 September 1994; pp. 305–323. [Google Scholar]
- Havenith, H.B.; Torgoev, A.; Braun, A.; Schlögel, R.; Micu, M. A new classification of earthquake-induced landslide event sizes based on seismotectonic, topographic, climatic and geologic factors. Geoenviron. Disasters 2016, 3, 6. [Google Scholar] [CrossRef]
- Spudich, P.; Hellweg, M.; Lee, W.H.K. Directional topographic site response at Tarzana observed in aftershocks of the Northridge, California, earthquake: Implications for mainshock motions. Bull. Seismol. Soc. Am. 1996, 86, S193–S208. [Google Scholar] [CrossRef]
- Havenith, H.B.; Strom, A.; Jongmans, D.; Abdrakhmatov, A.; Delvaux, D.; Tréfois, P. Seismic triggering of landslides, Part A: Field evidence from the Northern Tien Shan. Nat. Hazards Earth Syst. Sci. 2003, 3, 135–149. [Google Scholar] [CrossRef]
- Li, G.K.; Moon, S. Topographic stress control on bedrock landslide size. Nat. Geosci. 2021, 14, 307–313. [Google Scholar] [CrossRef]
ID | Fault Type | Location | Date | Magnitude (Mw) | Reference for CL Inventories | Reference for Source Rupture Model |
---|---|---|---|---|---|---|
1 | Oblique slip | San Fernando (USA) | 9 February 1971 | 6.6 | [38] | [39] |
2 | Oblique slip | Loma Prieta (USA) | 18 October 1989 | 6.9 | [40] | [41] |
3 | Dip slip | Northridge (USA) | 17 January 1994 | 6.7 | [34] | [42] |
4 | Strike slip | Hyogo-ken Nanbu (Japan) | 16 January 1995 | 6.9 | [43] | [44] |
5 | Dip slip | Chi-chi (Taiwan) | 20 September 1999 | 7.7 | [35] | [45] |
6 | Strike slip | Denali (USA) | 3 November 2002 | 7.9 | [36] | [46] |
7 | Oblique slip | Kashmir (India–Pakistan) | 8 October 2005 | 7.6 | [47] | [48] |
8 | Oblique slip | Wenchuan (China) | 12 May 2008 | 7.9 | [49] | [50] |
9 | Dip slip | Iwate-Miyagi Nairiku (Japan) | 13 June 2008 | 6.9 | [51] | [52] |
10 | Oblique slip | Haiti | 12 January 2010 | 7.0 | [53] | [54] |
11 | Oblique slip | Sierra Cucapah (Mexico) | 4 April 2010 | 7.2 | [55] | [56] |
12 | Strike slip | Yushu (China) | 14 April 2010 | 6.9 | [57] | [58] |
13 | Dip slip | Lushan (China) | 20 April 2013 | 6.6 | [59] | [60] |
14 | Dip slip | Gorkha (Nepal) | 25 April 2015 | 7.8 | [61] | [62] |
15 | Strike slip | Kumamoto (Japan) | 15 April 2016 | 7.0 | [63] | [64] |
16 | Dip slip | Milin (China) | 17 November 2017 | 6.9 | [65] | [66] |
17 | Strike slip | Palu (Indonesia) | 28 September 2018 | 7.5 | [19] | [67] |
18 | Strike slip | Luding (China) | 5 September 2022 | 6.7 | [17] | [68] |
Fault Type | Earthquake Event | Area (m2) | Exponent | Rollover (m2) | ||
---|---|---|---|---|---|---|
Minimum | Maximum | Average | ||||
Oblique slip | 2005 Kashmir | 9.77 | 1,898,050.00 | 37,330.54 | −2.57 | 913.19 |
2008 Wenchuan | 31.22 | 6,972,824.30 | 5874.11 | −2.33 | 459.42 | |
2010 Haiti | 0.46 | 234,370.79 | 1054.78 | −1.82 | 47.12 | |
2010 Sierra Cucapah | 53.11 | 12,379.54 | 1545.93 | −3.20 | 7904.70 | |
Dip slip | 1994 Northridge | 0.90 | 258,804.00 | 2144.33 | −2.55 | 388.97 |
1999 Chi-chi | 67.73 | 5,538,272.83 | 13,757.77 | −1.95 | 928.80 | |
2008 Iwate-Miyagi | 38.10 | 1,008,110.91 | 3356.24 | −2.11 | 339.50 | |
2013 Lushan | 1.00 | 122,616.00 | 1192.69 | −2.19 | 197.50 | |
2015 Gorkha | 5.52 | 1,668,237.80 | 3039.78 | −1.83 | 144.00 | |
2017 Milin | 62.94 | 4,955,928.69 | 43,978.33 | −1.81 | 1136.60 | |
Strike slip | 1995 Hyogo-ken Nanbu | 11.92 | 7382.43 | 211.06 | −2.60 | 52.90 |
2002 Denali | 889.87 | 8,984,617.86 | 76,790.64 | −2.53 | 9913.55 | |
2010 Yushu | 15.29 | 13,135.95 | 585.02 | −2.32 | 93.85 | |
2016 Kumamoto | 16.97 | 238,369.07 | 3227.64 | −1.98 | 238.91 | |
2018 Palu | 60.99 | 2,007,125.13 | 4200.66 | −2.73 | 730.88 | |
2022 Luding | 61.87 | 120,566.63 | 3461.45 | −2.44 | 653.02 |
Fault Type | Oblique Slip | Dip Slip | Strike Slip | |
---|---|---|---|---|
Indicator | ||||
Q1 | 3775.66 | 3965.08 | 2901.96 | |
Median | 9049.81 | 9644.98 | 6907.45 | |
Q3 | 16,629.24 | 18,524.77 | 15,145.65 | |
Fault-pairs | strike-dip | strike-oblique | oblique-dip | |
-value | 0.03 * | 0.62 | 0.04 * |
Sample | Oblique Slip | Dip Slip | Strike Slip | ||||
---|---|---|---|---|---|---|---|
Indicator | CLs on Hxf * | CLs on Fwf * | CLs on Hxf * | CLs on Fwf * | CLs on Hwf * | CLs on Fwf * | |
Q1 | 766.29 | 804.87 | 270.00 | 436.82 | 711.06 | 790.01 | |
Median | 1672.49 | 2006.00 | 681.09 | 1051.32 | 1619.88 | 1975.87 | |
Q3 | 3879.33 | 5070.26 | 1790.13 | 3066.95 | 3825.07 | 5016.87 |
Sample | The Number of CLs | The Area of CLs | |||||
---|---|---|---|---|---|---|---|
Indicator | Oblique Slip | Dip Slip | Strike Slip | Oblique Slip | Dip Slip | Strike Slip | |
-value | 0.08 | 0.04 * | 0.08 | 0.06 | 0.03 * | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wu, Y.; Gao, X.; Wang, W. Dependence of Coseismic Landslide Distribution Patterns on Fault Movement. Appl. Sci. 2025, 15, 10305. https://doi.org/10.3390/app151910305
Li W, Wu Y, Gao X, Wang W. Dependence of Coseismic Landslide Distribution Patterns on Fault Movement. Applied Sciences. 2025; 15(19):10305. https://doi.org/10.3390/app151910305
Chicago/Turabian StyleLi, Wenping, Yuming Wu, Xing Gao, and Weimin Wang. 2025. "Dependence of Coseismic Landslide Distribution Patterns on Fault Movement" Applied Sciences 15, no. 19: 10305. https://doi.org/10.3390/app151910305
APA StyleLi, W., Wu, Y., Gao, X., & Wang, W. (2025). Dependence of Coseismic Landslide Distribution Patterns on Fault Movement. Applied Sciences, 15(19), 10305. https://doi.org/10.3390/app151910305