New Advances in 3D Models to Improve Diabetic Keratopathy Research: A Narrative Review
Abstract
1. Introduction
2. Anatomy of the Cornea and Structural Organization
3. Diabetic Keratopathy (DK)
- -
- Corneal thickness
- -
- Corneal sensitivity
- -
- Corneal erosions
- -
- Epithelial defects and wound healing
- -
- Corneal cell density
- -
- Tear secretion
- -
- Biomechanics and crosslinking
4. Overview of 3D Corneal Models
4.1. Organotypic Models
4.2. Organoid Technology
5. Exploring 3D Models for DK
Corneal Layer | Cell Type | Technology | DK Model | Molecular Markers | Nerve Function | Thickness | Cell Density | Advantages | Limitations | References |
---|---|---|---|---|---|---|---|---|---|---|
Stroma | Primary fibroblasts of the human cornea from healthy donors and patients with T1DM and T2DM | Transwell inserts | T1DM and T2DM | ↑ α-SMA, mitochondrial damage, altered glycolysis/TCA | Not specified | ↑ | ↑ | Structural and biochemical characteristics similar to those of the cornea in vivo | No innervation | [127] |
Epithelium | Human corneal epithelial cells (hCECs) derived from donor cornea | ALI | 25 mM glucose | ↑ IL-1β, TNF-α, p-NF-kB, COX-2, MMP-2, MMP-9 | Not specified | ↓ | ↓ | Reproduces epithelial inflammation in DK | No stroma or nerves | [128] |
Stroma and endothelium | Corneal stromal cells (CSCs), corneal endothelial cells (CEnCs), and dorsal root ganglion organoids (DRGOs) | Scaffold of collagen. ALI | 65 mM glucose | ↓Axon/synapse genes, ↑ immune/oxidative stress pathways | ↓ | ↓ | ↓ | Full-thickness biomimetic corneal model, innervation | No epithelium interaction | [129] |
Corneal innervation, stroma and epithelium | Human cornea epithelial cells (hCECs), stromal cells (hCSSCs), and sensory neural stem cells derived from induced human neuronal stem cells (hiNSCs) | Scaffold of silk | 35–45 mM glucose | ↓ Nerve fiber density/length, ↑ IL-1β | ↓ | ↓ | ↓ | Functional co-culture with sensory neurons | No epithelium interaction | [92] |
Corneal innervation, stroma | Human corneal fibroblasts from healthy donors and patients with type 1 and 2 diabetes; SH-SY5Y human neuroblastoma cells | 3D scaffold | T1DM and T2DM | ↑ Collagen III, IGF1, IGF1-R, Tubulin βIII, Nestin | ↓ | ↓ | ↓ | Neurons similar to mature human neurons | No epithelium or endothelium interaction | [133] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
3D-HCE | Three-dimensional normal human corneal epithelial |
AGEs | Advanced glycation end-products |
ALI | Air–liquid interface |
AQP | Aquaporin |
CCT | Central corneal thickness |
CEnCs | Corneal endothelial cells |
CL-ORG | Corneal limbal organoid |
CSCs | Corneal stromal cells |
DED | Dry eye disease |
DES | Dry eye syndrome |
DK | Diabetic keratopathy |
DM | Diabetes mellitus |
DRG | Dorsal root ganglion |
DRGO | Dorsal root ganglion organoid |
ECM | Extracellular matrix |
ESCs | Embryonic stem cells |
hCEC | Human corneal epithelial cell |
hCSSC | Human corneal stromal cell |
HG | High glucose |
hiNSC | Human induced neural stem cell |
hiPSC | Human induced pluripotent stem cell |
IL-1β | Interleukin-1β |
iPSC | Induced pluripotent stem cell |
LESC | Limbal epithelial stem cell |
LSCD | Limbal stem cell deficit |
MMP | Matrix metalloproteinase |
mzOPC | Multizone ocular progenitor cell |
NG | Normal glucose |
OS | External segment |
NGF | Nerve growth factor |
NK | Neurotrophic keratopathy |
PKC | Protein kinase C |
PSC | Pluripotent stem cell |
ROS | Reactive oxygen species |
RPE | Retinal pigmented epithelium |
SPK | Superficial punctate keratopathy |
T1DM | Diabetes mellitus type 1 |
T2DM | Diabetes mellitus type 2 |
UV | Ultraviolet radiation |
References
- Hossain, M.J.; Al-Mamun, M.; Islam, M.R. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci. Rep. 2024, 7, e2004. [Google Scholar] [CrossRef] [PubMed]
- Shih, K.C.; Lam, K.S.; Tong, L. A systematic review on the impact of diabetes mellitus on the ocular surface. Nutr. Diabetes 2017, 7, e251. [Google Scholar] [CrossRef]
- Mansoor, H.; Tan, H.C.; Lin, M.T.; Mehta, J.S.; Liu, Y.C. Diabetic Corneal Neuropathy. J. Clin. Med. 2020, 9, 3956. [Google Scholar] [CrossRef]
- Skarbez, K.; Priestley, Y.; Hoepf, M.; Koevary, S.B. Comprehensive Review of the Effects of Diabetes on Ocular Health. Expert Rev. Ophthalmol. 2010, 5, 557–577. [Google Scholar] [CrossRef]
- Schultz, R.O.; Van Horn, D.L.; Peters, M.A.; Klewin, K.M.; Schutten, W.H. Diabetic keratopathy. Trans. Am. Ophthalmol. Soc. 1981, 79, 180–199. [Google Scholar]
- Eghrari, A.O.; Riazuddin, S.A.; Gottsch, J.D. Overview of the Cornea: Structure, Function, and Development. Prog. Mol. Biol. Transl. Sci. 2015, 134, 7–23. [Google Scholar] [CrossRef]
- Shaheen, B.S.; Bakir, M.; Jain, S. Corneal nerves in health and disease. Surv. Ophthalmol. 2014, 59, 263–285. [Google Scholar] [CrossRef]
- DelMonte, D.W.; Kim, T. Anatomy and physiology of the cornea. J. Cataract. Refract. Surg. 2011, 37, 588–598. [Google Scholar] [CrossRef]
- Maurice, D.M. The structure and transparency of the cornea. J. Physiol. 1957, 136, 263–286. [Google Scholar] [CrossRef]
- Torricelli, A.A.; Singh, V.; Santhiago, M.R.; Wilson, S.E. The corneal epithelial basement membrane: Structure, function, and disease. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6390–6400. [Google Scholar] [CrossRef]
- Ban, Y.; Dota, A.; Cooper, L.J.; Fullwood, N.J.; Nakamura, T.; Tsuzuki, M.; Mochida, C.; Kinoshita, S. Tight junction-related protein expression and distribution in human corneal epithelium. Exp. Eye Res. 2003, 76, 663–669. [Google Scholar] [CrossRef]
- Tseng, S.C.; He, H.; Zhang, S.; Chen, S.Y. Niche Regulation of Limbal Epithelial Stem Cells: Relationship between Inflammation and Regeneration. Ocul. Surf. 2016, 14, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.E.; Hong, J.W. Bowman’s layer structure and function: Critical or dispensable to corneal function? A hypothesis. Cornea 2000, 19, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.E. Bowman’s layer in the cornea- structure and function and regeneration. Exp. Eye Res. 2020, 195, 108033. [Google Scholar] [CrossRef] [PubMed]
- Dewitt, E.N. The Histopathology of Bowman’s Membrane. Trans. Am. Ophthalmol. Soc. 1931, 29, 461–485. [Google Scholar]
- Bron, A.J. The architecture of the corneal stroma. Br. J. Ophthalmol. 2001, 85, 379–381. [Google Scholar] [CrossRef]
- Quantock, A.J.; Young, R.D. Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function. Dev. Dyn. 2008, 237, 2607–2621. [Google Scholar] [CrossRef]
- West-Mays, J.A.; Dwivedi, D.J. The keratocyte: Corneal stromal cell with variable repair phenotypes. Int. J. Biochem. Cell Biol. 2006, 38, 1625–1631. [Google Scholar] [CrossRef]
- Jester, J.V.; Moller-Pedersen, T.; Huang, J.; Sax, C.M.; Kays, W.T.; Cavangh, H.D.; Petroll, W.M.; Piatigorsky, J. The cellular basis of corneal transparency: Evidence for ‘corneal crystallins’. J. Cell Sci. 1999, 112 Pt 5, 613–622. [Google Scholar] [CrossRef]
- Wilson, S.E. Corneal wound healing. Exp. Eye Res. 2020, 197, 108089. [Google Scholar] [CrossRef]
- Rocher, M.; Robert, P.Y.; Desmoulière, A. The myofibroblast, biological activities and roles in eye repair and fibrosis. A focus on healing mechanisms in avascular cornea. Eye 2020, 34, 232–240. [Google Scholar] [CrossRef]
- Marfurt, C.F.; Cox, J.; Deek, S.; Dvorscak, L. Anatomy of the human corneal innervation. Exp. Eye Res. 2010, 90, 478–492. [Google Scholar] [CrossRef]
- Dua, H.S.; Freitas, R.; Mohammed, I.; Ting, D.S.J.; Said, D.G. The pre-Descemet’s layer (Dua’s layer, also known as the Dua-Fine layer and the pre-posterior limiting lamina layer): Discovery, characterisation, clinical and surgical applications, and the controversy. Prog. Retin. Eye Res. 2023, 97, 101161. [Google Scholar] [CrossRef] [PubMed]
- Timpl, R.; Brown, J.C. Supramolecular assembly of basement membranes. Bioessays 1996, 18, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Bahn, C.F.; Falls, H.F.; Varley, G.A.; Meyer, R.F.; Edelhauser, H.F.; Bourne, W.M. Classification of corneal endothelial disorders based on neural crest origin. Ophthalmology 1984, 91, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Verkman, A.S. Role of aquaporin water channels in eye function. Exp. Eye Res. 2003, 76, 137–143. [Google Scholar] [CrossRef]
- Klyce, S.D. 12. Endothelial pump and barrier function. Exp. Eye Res. 2020, 198, 108068. [Google Scholar] [CrossRef]
- Joyce, N.C. Proliferative capacity of corneal endothelial cells. Exp. Eye Res. 2012, 95, 16–23. [Google Scholar] [CrossRef]
- Sheng, H.; Bullimore, M.A. Factors affecting corneal endothelial morphology. Cornea 2007, 26, 520–525. [Google Scholar] [CrossRef]
- Nentwich, M.M.; Ulbig, M.W. Diabetic retinopathy—Ocular complications of diabetes mellitus. World J. Diabetes 2015, 6, 489–499. [Google Scholar] [CrossRef]
- Bikbova, G.; Oshitari, T.; Tawada, A.; Yamamoto, S. Corneal changes in diabetes mellitus. Curr. Diabetes Rev. 2012, 8, 294–302. [Google Scholar] [CrossRef]
- Shah, R.; Amador, C.; Tormanen, K.; Ghiam, S.; Saghizadeh, M.; Arumugaswami, V.; Kumar, A.; Kramerov, A.A.; Ljubimov, A.V. Systemic diseases and the cornea. Exp. Eye Res. 2021, 204, 108455. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.L.; Lin, C.T.; Ko, P.S.; Yeh, P.T.; Kuan, Y.H.; Hu, F.R.; Yang, C.M. In vivo confocal microscopic findings of corneal wound healing after corneal epithelial debridement in diabetic vitrectomy. Ophthalmology 2009, 116, 1038–1047. [Google Scholar] [CrossRef] [PubMed]
- Kabosova, A.; Kramerov, A.A.; Aoki, A.M.; Murphy, G.; Zieske, J.D.; Ljubimov, A.V. Human diabetic corneas preserve wound healing, basement membrane, integrin and MMP-10 differences from normal corneas in organ culture. Exp. Eye Res. 2003, 77, 211–217. [Google Scholar] [CrossRef]
- Yu, F.S.; Yin, J.; Lee, P.; Hwang, F.S.; McDermott, M. Sensory nerve regeneration after epithelium wounding in normal and diabetic cornea. Expert. Rev. Ophthalmol. 2015, 10, 383–392. [Google Scholar] [CrossRef]
- Kaji, Y. Prevention of diabetic keratopathy. Br. J. Ophthalmol. 2005, 89, 254–255. [Google Scholar] [CrossRef]
- Sellers, E.A.; Clark, I.; Tavakoli, M.; Dean, H.J.; McGavock, J.; Malik, R.A. The acceptability and feasibility of corneal confocal microscopy to detect early diabetic neuropathy in children: A pilot study. Diabet. Med. 2013, 30, 630–631. [Google Scholar] [CrossRef]
- NaPier, E.; Camacho, M.; McDevitt, T.F.; Sweeney, A.R. Neurotrophic keratopathy: Current challenges and future prospects. Ann. Med. 2022, 54, 666–673. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, L.; Wang, Q.; Li, Y.; Wei, C.; Xie, L. Mechanistic investigations of diabetic ocular surface diseases. Front. Endocrinol. 2022, 13, 1079541. [Google Scholar] [CrossRef]
- Ljubimov, A.V. Diabetic complications in the cornea. Vision Res. 2017, 139, 138–152. [Google Scholar] [CrossRef]
- Wang, F.; Gao, N.; Yin, J.; Yu, F.S. Reduced innervation and delayed re-innervation after epithelial wounding in type 2 diabetic Goto-Kakizaki rats. Am. J. Pathol. 2012, 181, 2058–2066. [Google Scholar] [CrossRef]
- Xu, K.P.; Li, Y.; Ljubimov, A.V.; Yu, F.S. High glucose suppresses epidermal growth factor receptor/phosphatidylinositol 3-kinase/Akt signaling pathway and attenuates corneal epithelial wound healing. Diabetes 2009, 58, 1077–1085. [Google Scholar] [CrossRef]
- Yeung, A.; Dwarakanathan, S. Diabetic keratopathy. Dis. Mon. 2021, 67, 101135. [Google Scholar] [CrossRef]
- Sayin, N.; Kara, N.; Pekel, G. Ocular complications of diabetes mellitus. World J. Diabetes 2015, 6, 92–108. [Google Scholar] [CrossRef]
- Vieira-Potter, V.J.; Karamichos, D.; Lee, D.J. Ocular Complications of Diabetes and Therapeutic Approaches. Biomed. Res. Int. 2016, 2016, 3801570. [Google Scholar] [CrossRef] [PubMed]
- Lutty, G.A. Effects of diabetes on the eye. Investig. Ophthalmol. Vis. Sci. 2013, 54, Orsf81–Orsf87. [Google Scholar] [CrossRef]
- Negi, A.; Vernon, S.A. An overview of the eye in diabetes. J. R. Soc. Med. 2003, 96, 266–272. [Google Scholar] [CrossRef]
- Priyadarsini, S.; Whelchel, A.; Nicholas, S.; Sharif, R.; Riaz, K.; Karamichos, D. Diabetic keratopathy: Insights and challenges. Surv. Ophthalmol. 2020, 65, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Busted, N.; Olsen, T.; Schmitz, O. Clinical observations on the corneal thickness and the corneal endothelium in diabetes mellitus. Br. J. Ophthalmol. 1981, 65, 687–690. [Google Scholar] [CrossRef]
- Lee, J.S.; Oum, B.S.; Choi, H.Y.; Lee, J.E.; Cho, B.M. Differences in corneal thickness and corneal endothelium related to duration in diabetes. Eye 2006, 20, 315–318. [Google Scholar] [CrossRef]
- Murphy, P.J.; Patel, S.; Kong, N.; Ryder, R.E.; Marshall, J. Noninvasive assessment of corneal sensitivity in young and elderly diabetic and nondiabetic subjects. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1737–1742. [Google Scholar] [CrossRef]
- Didenko, T.N.; Smoliakova, G.P.; Sorokin, E.L.; Egorov, V.V. Clinical and pathogenetic features of neurotrophic corneal disorders in diabetes. Vestn. Oftalmol. 1999, 115, 7–11. [Google Scholar]
- Han, S.B.; Yang, H.K.; Hyon, J.Y. Influence of diabetes mellitus on anterior segment of the eye. Clin. Interv. Aging 2019, 14, 53–63. [Google Scholar] [CrossRef]
- Millodot, M.; Owens, H. The influence of age on the fragility of the cornea. Acta Ophthalmol 1984, 62, 819–824. [Google Scholar] [CrossRef]
- Spadea, L.; Paroli, M.P. Laser refractive surgery in diabetic patients: A review of the literature. Clin. Ophthalmol. 2012, 6, 1775–1783. [Google Scholar] [CrossRef]
- Sitompul, R. Corneal Sensitivity as a Potential Marker of Diabetic Neuropathy. Acta Med. Indones. 2017, 49, 166–172. [Google Scholar]
- Goldich, Y.; Barkana, Y.; Gerber, Y.; Rasko, A.; Morad, Y.; Harstein, M.; Avni, I.; Zadok, D. Effect of diabetes mellitus on biomechanical parameters of the cornea. J. Cataract. Refract. Surg. 2009, 35, 715–719. [Google Scholar] [CrossRef]
- Karamichos, D.; Brown, R.A.; Mudera, V. Collagen stiffness regulates cellular contraction and matrix remodeling gene expression. J. Biomed. Mater. Res. A 2007, 83, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, A.; Oddone, F.; Sinapis, C.; Elsheikh, A.; Sinapis, D.; Sinapis, A.; Garway-Heath, D.F. Corneal biomechanical characteristics in patients with diabetes mellitus. J. Cataract. Refract. Surg. 2010, 36, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Thorin, J.C. The cornea in diabetes mellitus. Int. Ophthalmol. Clin. 1998, 38, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Friend, J.; Ishii, Y.; Thoft, R.A. Corneal epithelial changes in diabetic rats. Ophthalmic Res. 1982, 14, 269–278. [Google Scholar] [CrossRef]
- Zagon, I.S.; Sassani, J.W.; McLaughlin, P.J. Insulin treatment ameliorates impaired corneal reepithelialization in diabetic rats. Diabetes 2006, 55, 1141–1147. [Google Scholar] [CrossRef]
- Wilson, S.E.; Liu, J.J.; Mohan, R.R. Stromal-epithelial interactions in the cornea. Prog. Retin. Eye Res. 1999, 18, 293–309. [Google Scholar] [CrossRef]
- Wirostko, B.; Rafii, M.; Sullivan, D.A.; Morelli, J.; Ding, J. Novel Therapy to Treat Corneal Epithelial Defects: A Hypothesis with Growth Hormone. Ocul. Surf. 2015, 13, 204–212.e201. [Google Scholar] [CrossRef] [PubMed]
- Zieske, J.D. Extracellular matrix and wound healing. Curr. Opin. Ophthalmol. 2001, 12, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Del Buey, M.A.; Casas, P.; Caramello, C.; López, N.; de la Rica, M.; Subirón, A.B.; Lanchares, E.; Huerva, V.; Grzybowski, A.; Ascaso, F.J. An Update on Corneal Biomechanics and Architecture in Diabetes. J. Ophthalmol. 2019, 2019, 7645352. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Titone, R.; Robertson, D.M. The impact of hyperglycemia on the corneal epithelium: Molecular mechanisms and insight. Ocul. Surf. 2019, 17, 644–654. [Google Scholar] [CrossRef]
- Reins, R.Y.; Hanlon, S.D.; Magadi, S.; McDermott, A.M. Effects of Topically Applied Vitamin D during Corneal Wound Healing. PLoS ONE 2016, 11, e0152889. [Google Scholar] [CrossRef]
- Inoue, K.; Kato, S.; Inoue, Y.; Amano, S.; Oshika, T. The corneal endothelium and thickness in type II diabetes mellitus. Jpn. J. Ophthalmol. 2002, 46, 65–69. [Google Scholar] [CrossRef]
- Milner, M.S.; Beckman, K.A.; Luchs, J.I.; Allen, Q.B.; Awdeh, R.M.; Berdahl, J.; Boland, T.S.; Buznego, C.; Gira, J.P.; Goldberg, D.F.; et al. Dysfunctional tear syndrome: Dry eye disease and associated tear film disorders—New strategies for diagnosis and treatment. Curr. Opin. Ophthalmol. 2017, 27 (Suppl. S1), 3–47. [Google Scholar] [CrossRef]
- Dogru, M.; Okada, N.; Asano-Kato, N.; Tanaka, M.; Igarashi, A.; Takano, Y.; Fukagawa, K.; Shimazaki, J.; Tsubota, K.; Fujishima, H. Atopic ocular surface disease: Implications on tear function and ocular surface mucins. Cornea 2005, 24 (Suppl. S8), S18–S23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, L.; Deng, S.; Sun, X.; Wang, N. Dry Eye Syndrome in Patients with Diabetes Mellitus: Prevalence, Etiology, and Clinical Characteristics. J. Ophthalmol. 2016, 2016, 8201053. [Google Scholar] [CrossRef] [PubMed]
- Georgakopoulos, C.D.; Makri, O.E.; Pagoulatos, D.; Vasilakis, P.; Peristeropoulou, P.; Kouli, V.; Eliopoulou, M.I.; Psachoulia, C. Effect of Omega-3 Fatty Acids Dietary Supplementation on Ocular Surface and Tear Film in Diabetic Patients with Dry Eye. J. Am. Coll. Nutr. 2017, 36, 38–43. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, V.S.; Dupps, W.J., Jr. Biomechanical Diagnostics of the Cornea. Int. Ophthalmol. Clin. 2017, 57, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Wang, S.; Huang, F.; Zhang, Y.A. Advanced glycation end products and ultrastructural changes in corneas of long-term streptozotocin-induced diabetic monkeys. Cornea 2012, 31, 1455–1459. [Google Scholar] [CrossRef]
- Módis, L., Jr.; Szalai, E.; Kertész, K.; Kemény-Beke, A.; Kettesy, B.; Berta, A. Evaluation of the corneal endothelium in patients with diabetes mellitus type I and II. Histol. Histopathol. 2010, 25, 1531–1537. [Google Scholar] [CrossRef]
- Yu, F.X.; Lee, P.S.Y.; Yang, L.; Gao, N.; Zhang, Y.; Ljubimov, A.V.; Yang, E.; Zhou, Q.; Xie, L. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog. Retin. Eye Res. 2022, 89, 101039. [Google Scholar] [CrossRef]
- Buonfiglio, F.; Wasielica-Poslednik, J.; Pfeiffer, N.; Gericke, A. Diabetic Keratopathy: Redox Signaling Pathways and Therapeutic Prospects. Antioxidants 2024, 13, 120. [Google Scholar] [CrossRef]
- Furuyama, A.; Hosokawa, T.; Mochitate, K. Interleukin-1beta and tumor necrosis factor-alpha have opposite effects on fibroblasts and epithelial cells during basement membrane formation. Matrix Biol. 2008, 27, 429–440. [Google Scholar] [CrossRef]
- Dai, J.; Shen, J.; Chai, Y.; Chen, H. IL-1β Impaired Diabetic Wound Healing by Regulating MMP-2 and MMP-9 through the p38 Pathway. Mediat. Inflamm. 2021, 2021, 6645766. [Google Scholar] [CrossRef]
- Chen, S.; Barnstable, C.J.; Zhang, X.; Li, X.; Zhao, S.; Tombran-Tink, J. A PEDF peptide mimetic effectively relieves dry eye in a diabetic murine model by restoring corneal nerve, barrier, and lacrimal gland function. Ocul. Surf. 2024, 32, 1–12. [Google Scholar] [CrossRef]
- Peterson, C.; Chandler, H.L. Insulin facilitates corneal wound healing in the diabetic environment through the RTK-PI3K/Akt/mTOR axis in vitro. Mol. Cell Endocrinol. 2022, 548, 111611. [Google Scholar] [CrossRef]
- Pflugfelder, S.C.; Massaro-Giordano, M.; Perez, V.L.; Hamrah, P.; Deng, S.X.; Espandar, L.; Foster, C.S.; Affeldt, J.; Seedor, J.A.; Afshari, N.A.; et al. Topical Recombinant Human Nerve Growth Factor (Cenegermin) for Neurotrophic Keratopathy: A Multicenter Randomized Vehicle-Controlled Pivotal Trial. Ophthalmology 2020, 127, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay. Drug Dev. Technol. 2014, 12, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Duval, K.; Grover, H.; Han, L.H.; Mou, Y.; Pegoraro, A.F.; Fredberg, J.; Chen, Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology 2017, 32, 266–277. [Google Scholar] [CrossRef]
- Baker, B.M.; Chen, C.S. Deconstructing the third dimension: How 3D culture microenvironments alter cellular cues. J. Cell Sci. 2012, 125 Pt 13, 3015–3024. [Google Scholar] [CrossRef]
- Bonnier, F.; Keating, M.E.; Wróbel, T.P.; Majzner, K.; Baranska, M.; Garcia-Munoz, A.; Blanco, A.; Byrne, H.J. Cell viability assessment using the Alamar blue assay: A comparison of 2D and 3D cell culture models. Toxicol. Vitr. 2015, 29, 124–131. [Google Scholar] [CrossRef]
- Shiju, T.M.; Carlos de Oliveira, R.; Wilson, S.E. 3D in vitro corneal models: A review of current technologies. Exp. Eye Res. 2020, 200, 108213. [Google Scholar] [CrossRef]
- McKay, T.B.; Ford, A.; Wang, S.; Cairns, D.M.; Parker, R.N.; Deardorff, P.M.; Ghezzi, C.E.; Kaplan, D.L. Assembly and Application of a Three-Dimensional Human Corneal Tissue Model. Curr. Protoc. Toxicol. 2019, 81, e84. [Google Scholar] [CrossRef]
- Guo, X.; Hutcheon, A.E.; Melotti, S.A.; Zieske, J.D.; Trinkaus-Randall, V.; Ruberti, J.W. Morphologic characterization of organized extracellular matrix deposition by ascorbic acid-stimulated human corneal fibroblasts. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4050–4060. [Google Scholar] [CrossRef]
- Sharif, R.; Priyadarsini, S.; Rowsey, T.G.; Ma, J.X.; Karamichos, D. Corneal Tissue Engineering: An In Vitro Model of the Stromal-nerve Interactions of the Human Cornea. J. Vis. Exp. 2018, 131, 56308. [Google Scholar] [CrossRef]
- Deardorff, P.M.; McKay, T.B.; Wang, S.; Ghezzi, C.E.; Cairns, D.M.; Abbott, R.D.; Funderburgh, J.L.; Kenyon, K.R.; Kaplan, D.L. Modeling Diabetic Corneal Neuropathy in a 3D In Vitro Cornea System. Sci. Rep. 2018, 8, 17294. [Google Scholar] [CrossRef]
- Lawrence, B.D.; Marchant, J.K.; Pindrus, M.A.; Omenetto, F.G.; Kaplan, D.L. Silk film biomaterials for cornea tissue engineering. Biomaterials 2009, 30, 1299–1308. [Google Scholar] [CrossRef]
- Roeder, B.A.; Kokini, K.; Sturgis, J.E.; Robinson, J.P.; Voytik-Harbin, S.L. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 2002, 124, 214–222. [Google Scholar] [CrossRef]
- Jin, H.-J.; Park, J.; Karageorgiou, V.; Kim, U.-J.; Valluzzi, R.; Cebe, P.; Kaplan, D.L. Water-Stable Silk Films with Reduced β-Sheet Content. Adv. Funct. Mater. 2005, 15, 1241–1247. [Google Scholar] [CrossRef]
- Horan, R.L.; Antle, K.; Collette, A.L.; Wang, Y.; Huang, J.; Moreau, J.E.; Volloch, V.; Kaplan, D.L.; Altman, G.H. In vitro degradation of silk fibroin. Biomaterials 2005, 26, 3385–3393. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ghezzi, C.E.; Gomes, R.; Pollard, R.E.; Funderburgh, J.L.; Kaplan, D.L. In vitro 3D corneal tissue model with epithelium, stroma, and innervation. Biomaterials 2017, 112, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ghezzi, C.E.; White, J.D.; Kaplan, D.L. Coculture of dorsal root ganglion neurons and differentiated human corneal stromal stem cells on silk-based scaffolds. J. Biomed. Mater. Res. A 2015, 103, 3339–3348. [Google Scholar] [CrossRef]
- Wu, J.; Rnjak-Kovacina, J.; Du, Y.; Funderburgh, M.L.; Kaplan, D.L.; Funderburgh, J.L. Corneal stromal bioequivalents secreted on patterned silk substrates. Biomaterials 2014, 35, 3744–3755. [Google Scholar] [CrossRef]
- Blanco-Mezquita, T.; Martinez-Garcia, C.; Proença, R.; Zieske, J.D.; Bonini, S.; Lambiase, A.; Merayo-Lloves, J. Nerve growth factor promotes corneal epithelial migration by enhancing expression of matrix metalloprotease-9. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3880–3890. [Google Scholar] [CrossRef]
- Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459, 262–265. [Google Scholar] [CrossRef]
- Lancaster, M.A.; Knoblich, J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science 2014, 345, 1247125. [Google Scholar] [CrossRef]
- Fatehullah, A.; Tan, S.H.; Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 2016, 18, 246–254. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, X.; Dowbaj, A.M.; Sljukic, A.; Bratlie, K.; Lin, L.; Fong, E.L.S.; Balachander, G.M.; Chen, Z.; Soragni, A.; et al. Organoids. Nat. Rev. Methods Primers 2022, 2, 94. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.Y.; Wu, S.; Wang, D.; Chu, C.; Hong, Y.; Tao, M.; Hu, H.; Xu, M.; Guo, X.; Liu, Y. Human organoids in basic research and clinical applications. Signal Transduct. Target. Ther. 2022, 7, 168. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhang, X.; Ding, R.; Yang, L.; Lyu, X.; Zeng, J.; Lei, J.H.; Wang, L.; Bi, J.; Shao, N.; et al. Patient-Derived Organoids Can Guide Personalized-Therapies for Patients with Advanced Breast Cancer. Adv. Sci. 2021, 8, e2101176. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.H.; Bae, D.H.; Yoo, J. Current status and prospects of organoid-based regenerative medicine. BMB Rep. 2023, 56, 10–14. [Google Scholar] [CrossRef]
- Jalan-Sakrikar, N.; Brevini, T.; Huebert, R.C.; Sampaziotis, F. Organoids and regenerative hepatology. Hepatology 2023, 77, 305–322. [Google Scholar] [CrossRef]
- Lu, C.; Le, Q. Advances in Organoid Technology: A Focus on Corneal Limbal Organoids. Stem Cell Rev. Rep. 2024, 20, 1227–1235. [Google Scholar] [CrossRef]
- Foster, J.W.; Wahlin, K.; Adams, S.M.; Birk, D.E.; Zack, D.J.; Chakravarti, S. Cornea organoids from human induced pluripotent stem cells. Sci. Rep. 2017, 7, 41286. [Google Scholar] [CrossRef]
- Higa, K.; Higuchi, J.; Kimoto, R.; Miyashita, H.; Shimazaki, J.; Tsubota, K.; Shimmura, S. Human corneal limbal organoids maintaining limbal stem cell niche function. Stem Cell Res. 2020, 49, 102012. [Google Scholar] [CrossRef] [PubMed]
- Higa, K.; Ishiwata, M.; Kimoto, R.; Hirayama, M.; Yamaguchi, T.; Shimmura, S. Human corneal organoid has a limbal function that supplies epithelium to the cornea with limbal deficiency. Regen. Ther. 2025, 29, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Susaimanickam, P.J.; Maddileti, S.; Pulimamidi, V.K.; Boyinpally, S.R.; Naik, R.R.; Naik, M.N.; Reddy, G.B.; Sangwan, V.S.; Mariappan, I. Generating minicorneal organoids from human induced pluripotent stem cells. Development 2017, 144, 2338–2351. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, A.Z.; Møller, R.; Makovoz, B.; Uhl, S.A.; tenOever, B.R.; Blenkinsop, T.A. SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium. Cell Stem Cell 2021, 28, 1205–1220.e7. [Google Scholar] [CrossRef]
- Armstrong, L.; Collin, J.; Mostafa, I.; Queen, R.; Figueiredo, F.C.; Lako, M. In the eye of the storm: SARS-CoV-2 infection and replication at the ocular surface? Stem Cells Transl. Med. 2021, 10, 976–986. [Google Scholar] [CrossRef]
- Van Meenen, J.; Dhubhghaill, S.N.; Bogerd, B.V.D.; Koppen, C. An Overview of Advanced In Vitro Corneal Models: Implications for Pharmacological Testing. Tissue Eng. Part B Rev. 2022, 28, 506–516. [Google Scholar] [CrossRef]
- Foster, J.W.; Wahlin, K.J.; Chakravarti, S. A Guide to the Development of Human CorneaOrganoids from Induced Pluripotent Stem Cells in Culture. Methods Mol. Biol. 2020, 2145, 51–58. [Google Scholar] [CrossRef]
- Wan, X.; Gu, J.; Zhou, X.; Le, Q.; Wang, J.; Xin, C.; Chen, Z.; He, Y.; Hong, J. Establishment of human corneal epithelial organoids for ex vivo modelling dry eye disease. Cell Prolif. 2024, 57, e13704. [Google Scholar] [CrossRef]
- Isla-Magrané, H.; Veiga, A.; García-Arumí, J.; Duarri, A. Multiocular organoids from human induced pluripotent stem cells displayed retinal, corneal, and retinal pigment epithelium lineages. Stem Cell Res. Ther. 2021, 12, 581. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Hayashi, R.; Shibata, S.; Quantock, A.J.; Nishida, K. Ocular surface ectoderm instigated by WNT inhibition and BMP4. Stem Cell Res. 2020, 46, 101868. [Google Scholar] [CrossRef]
- Merjava, S.; Neuwirth, A.; Tanzerova, M.; Jirsova, K. The spectrum of cytokeratins expressed in the adult human cornea, limbus and perilimbal conjunctiva. Histol. Histopathol. 2011, 26, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Turner, H.C.; Budak, M.T.; Akinci, M.A.; Wolosin, J.M. Comparative analysis of human conjunctival and corneal epithelial gene expression with oligonucleotide microarrays. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2050–2061. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Choi, K.; Lin, A.; Kim, J. Current and Future Cornea Chip Models for Advancing Ophthalmic Research and Therapeutics. Adv. Biol. 2025, 9, e2400571. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Saha, A.; Trisha, F.A.; Gonzalez-Andrades, M.; Patra, H.K.; Griffith, M.; Chodosh, J.; Rajaiya, J. An in vitro 3-dimensional Collagen-based Corneal Construct with Innervation Using Human Corneal Cell Lines. Ophthalmol. Sci. 2024, 4, 100544. [Google Scholar] [CrossRef]
- Bonneau, N.; Potey, A.; Vitoux, M.A.; Magny, R.; Guerin, C.; Baudouin, C.; Peyrin, J.M.; Brignole-Baudouin, F.; Réaux-Le Goazigo, A. Corneal neuroepithelial compartmentalized microfluidic chip model for evaluation of toxicity-induced dry eye. Ocul. Surf. 2023, 30, 307–319. [Google Scholar] [CrossRef]
- Mörö, A.; Samanta, S.; Honkamäki, L.; Rangasami, V.K.; Puistola, P.; Kauppila, M.; Narkilahti, S.; Miettinen, S.; Oommen, O.; Skottman, H. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation. Biofabrication 2022, 15, 015020. [Google Scholar] [CrossRef]
- Priyadarsini, S.; Sarker-Nag, A.; Rowsey, T.G.; Ma, J.X.; Karamichos, D. Establishment of a 3D In Vitro Model to Accelerate the Development of Human Therapies against Corneal Diabetes. PLoS ONE 2016, 11, e0168845. [Google Scholar] [CrossRef]
- Maugeri, G.; D’Amico, A.G.; Saccone, S.; Bruno, F.; Pricoco, E.; Scollo, D.; Avitabile, T.; Longo, A.; D’Agata, V. Modeling diabetic epitheliopathy using 3D-Organotypic corneal epithelium. Transl. Res. 2025, 280, 55–63. [Google Scholar] [CrossRef]
- Cui, Z.; Li, X.; Ou, Y.; Sun, X.; Gu, J.; Ding, C.; Yu, Z.; Guo, Y.; Liang, Y.; Mao, S.; et al. Novel full-thickness biomimetic corneal model for studying pathogenesis and treatment of diabetic keratopathy. Mater. Today Bio 2025, 30, 101409. [Google Scholar] [CrossRef]
- Wilson, S.E.; Esposito, A. Focus on molecules: Interleukin-1: A master regulator of the corneal response to injury. Exp. Eye Res. 2009, 89, 124–125. [Google Scholar] [CrossRef]
- Yan, C.; Gao, N.; Sun, H.; Yin, J.; Lee, P.; Zhou, L.; Fan, X.; Yu, F.S. Targeting Imbalance between IL-1β and IL-1 Receptor Antagonist Ameliorates Delayed Epithelium Wound Healing in Diabetic Mouse Corneas. Am. J. Pathol. 2016, 186, 1466–1480. [Google Scholar] [CrossRef]
- Kaluzhny, Y.; Kinuthia, M.W.; Lapointe, A.M.; Truong, T.; Klausner, M.; Hayden, P. Oxidative stress in corneal injuries of different origin: Utilization of 3D human corneal epithelial tissue model. Exp. Eye Res. 2020, 190, 107867. [Google Scholar] [CrossRef]
- Priyadarsini, S.; Rowsey, T.G.; Ma, J.X.; Karamichos, D. Unravelling the stromal-nerve interactions in the human diabetic cornea. Exp. Eye Res. 2017, 164, 22–30. [Google Scholar] [CrossRef]
- Encinas, M.; Iglesias, M.; Liu, Y.; Wang, H.; Muhaisen, A.; Ceña, V.; Gallego, C.; Comella, J.X. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J. Neurochem. 2000, 75, 991–1003. [Google Scholar] [CrossRef]
Complication | Description and Main Mechanisms | References |
---|---|---|
Increased corneal thickness (CCT) | Observed in diabetic patients, especially those with long-standing disease. Caused by stromal edema, epithelial and endothelial dysfunction, AGE formation, and chronic hyperglycemia. Associated with high HbA1c, hyperglycemia, and retinal complications. | [2,4,48,49] |
Reduced corneal sensitivity | Due to degeneration of corneal nerve fibers. Impairs epithelial integrity and healing. Associated with prolonged and recurrent lesions. | [4,10,50,51,52,53,54,55] |
Corneal erosions | Caused by epithelial barrier dysfunction and reduced by regeneration. Increased risk of infection. May cause stromal disorganization and corneal thinning. | [4,56,57,58,59] |
Epithelial defects and impaired wound healing | High susceptibility to erosions and ulcerations, with delayed healing. Can lead to scarring, visual acuity loss, and neovascularization. | [32,33,39,40,59,60,61,62,63,64,65,66] |
Reduced cell density | Disruption in balance of proliferation, differentiation, and death. Increased risk of infections and erosions. Basal epithelial cell density reduced, likely due to innervation loss. Endothelial density remains comparable to that of healthy subjects. | [44,67,68] |
Altered tear secretion | Lacrimal gland dysfunction reduces secretion. Reduction in the lipid layer and mucin layer, and impairment of the aqueous component of tears. Neuropathy, microangiopathy, and hyperglycemia involved. Goblet cell loss reduces the mucin layer. | [69,70,71,72] |
Biomechanical alterations | Structural changes in the stroma affect elasticity and mechanical strength. Structural change can alter visual quality and refractive properties. | [73] |
Model | Scaffold Material | Cell Type | Duration | Measured Parameters | References |
---|---|---|---|---|---|
Stacked fibroblasts and hCECs | None (self-produced ECM) | Human corneal epithelial cells (hCECs), stromal fibroblasts | Not specified | ECM production | [86,87] |
Stromal–neuronal co-culture | None (self-produced ECM) | Corneal fibroblasts, neuronal cells | Not specified | Cell–matrix and cell–cell (stromal and neuronal cells) interactions; model for DK, keratoconus, and Fuchs’ dystrophy | [88] |
hiNSC peripheral silk sponge with central stacked construct | Silk sponge | hiNSC, stromal, and epithelial corneal cells | Not specified | Neuronal differentiation, co-culture compatibility | [89,90,91] |
ALI co-culture with DRG neurons | Silk films | Human corneal stromal stem cells (hCSSCs), hCECs, DRG neurons | 28 days | Morphological stability, innervation, transparency, epithelial maturation | [92,94] |
Model | Cell Types | Culture Duration | Measured Parameters | References |
---|---|---|---|---|
CL-ORG from hiPSCs | Corneal epithelial, stromal, and endothelial cells | Not specified | Disease modeling, drug screening, and gene editing and tissue replacement. | [105] |
CL-ORG from ESCs and LESCs | ESCs and limbal epithelial stem cells, central corneal epithelial cells | Not specified | Mimic corneal development, disease modeling, drug screening, limbal stem cell deficiency treatment, and regenerative capacity | [104,106,107] |
CL-ORG used in SARS-CoV-2 studies | PSC-derived epithelial/stromal cells | Not specified | Virus interaction with ocular surface cells | [109,110] |
Human epithelial organoid | ASC-derived corneal epithelial cells | Not specified | Dry eye disease modeling | [113] |
CL-ORG from ESCs and iPSCs | ESC- and iPSC-derived cells (corneal, retinal, accessory) | 15 weeks | Early stages of eye development, adult-like corneal features | [108] |
Multiocular organoids | Retina, RPE, cornea, conjunctiva | 3 weeks to differentiation + maturation | Marker expression: CK3, AQP1, and N-Cad for the cornea; CK5, CK19, and p63 for the limbo-conjunctive | [114,115,116,117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmeri, N.; D’Amico, A.G.; Cavallaro, C.; Evola, G.; D’Agata, V.; Maugeri, G. New Advances in 3D Models to Improve Diabetic Keratopathy Research: A Narrative Review. Appl. Sci. 2025, 15, 9794. https://doi.org/10.3390/app15179794
Palmeri N, D’Amico AG, Cavallaro C, Evola G, D’Agata V, Maugeri G. New Advances in 3D Models to Improve Diabetic Keratopathy Research: A Narrative Review. Applied Sciences. 2025; 15(17):9794. https://doi.org/10.3390/app15179794
Chicago/Turabian StylePalmeri, Nicoletta, Agata Grazia D’Amico, Carla Cavallaro, Giuseppe Evola, Velia D’Agata, and Grazia Maugeri. 2025. "New Advances in 3D Models to Improve Diabetic Keratopathy Research: A Narrative Review" Applied Sciences 15, no. 17: 9794. https://doi.org/10.3390/app15179794
APA StylePalmeri, N., D’Amico, A. G., Cavallaro, C., Evola, G., D’Agata, V., & Maugeri, G. (2025). New Advances in 3D Models to Improve Diabetic Keratopathy Research: A Narrative Review. Applied Sciences, 15(17), 9794. https://doi.org/10.3390/app15179794