A Simplified Method for HPGe Detector Efficiency Calibration Using Certified Reference Materials Containing Natural Radionuclides
Abstract
1. Introduction
- -
- a relatively short half-life (ranging from several tens to several hundreds of days) of most radionuclides included in the calibration source, which means that the source becomes of limited use after approximately one year,
- -
- the epoxy resin matrix source can only be used to calibrate the detector in a single measurement geometry; an alternative is the purchase of a liquid source, which enables the preparation of standards for several measurement geometries; however, this approach introduces issues related to the dilution of standard solutions and the homogeneity of calibration sources, both of which may constitute additional sources of uncertainty,
- -
- high cost; for calibration sources with epoxy resin matrix this disadvantage is amplified by the need to purchase a separate source for each geometry and the short useful lifespan of the source.
2. Materials and Methods
2.1. Gamma-Ray Spectrometer
2.2. Calibration Sources
- -
- RGK-1—high-purity potassium sulphate (K2SO4), used as a calibration source for K-40.
- -
- RGU-1—a mixture of certified uranium ore and silica, serving as a calibration source for radionuclides of the uranium series. This material is characterised by secular equilibrium between U-238 and its progeny, including Ra-226 and Pb-210.
- -
- RGTh-1—a mixture of certified thorium ore and silica, used as a calibration source for thorium series radionuclides, with confirmed equilibrium between Th-232 and its decay products, including Ra-228 and Th-228.
2.3. Calculations of Efficiency, Cs and Cc Corrections
- -
- a precise description of the measurement geometry (detector, sample, etc.), including the dimensions and material specifications of all components,
- -
- the energy dependencies ε(E) and εt(E),
- -
- the nuclear data of the nuclide under investigation, as well as the attenuation coefficients of the materials used; these data are contained in the program’s internal database.
2.4. Selection of Calibration Lines
3. Results
3.1. Efficiency Calibration
3.2. Validation of Calibration
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alharbi, S.H.; Akber, R.A. Broad-energy germanium detector for routine and rapid analysis of naturally occurring radioactive materials. J. Radioanal. Nucl. Chem. 2017, 311, 59–75. [Google Scholar] [CrossRef]
- Hanfi, M.Y.; Abd El Rahman, R.M.; Alqahtani, M.S. Assessment of environmental hazard impacts in building materials (Marble), Gabal El-Galala El-Bahariya, Northeastern Desert, Egypt. Nucl. Eng. Technol. 2024, 56, 4966–4974. [Google Scholar] [CrossRef]
- Mantero, J.; Thomas, R.; Isaksson, M.; Forssell-Aronsson, E.; Holm, E.; Garcia-Tenorio, R. Quality assurance via internal tests in a newly setup laboratory for environmental radioactivity. J. Radioanal. Nucl. Chem. 2019, 322, 891–900. [Google Scholar] [CrossRef]
- Martínez-Ruiz, F.; Borrego, E.; Miguel, E.G.S.; Bolívar, J.P. An efficiency calibration for 210Pb and 7Be measurements by gamma-ray spectrometry in atmospheric filters. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 580, 663–666. [Google Scholar] [CrossRef]
- Ramsiya, M.; Joseph, A.; Eappen, K.P.; Visnuprasad, A.K. Activity concentrations of radionuclides in soil samples along the coastal areas of Kerala, India and the assessment of radiation hazard indices. J. Radioanal. Nucl. Chem. 2019, 320, 291–298. [Google Scholar] [CrossRef]
- Barba-Lobo, A.; Bolivar, J.P. A practical and general methodology for efficiency calibration of coaxial Ge detectors. Measurement 2022, 197, 111295. [Google Scholar] [CrossRef]
- Eleftheriou, G.; Tsabaris, C.; Androulakaki, E.G.; Pappa, F.K.; Patiris, D.L. High resolution gamma-ray spectrometry for routine measurements of environmental samples. Appl. Radiat. Isot. 2024, 206, 111234. [Google Scholar] [CrossRef] [PubMed]
- Huy, N.Q.; Binh, D.Q. A semi-empirical approach to analyze the activities of cylindrical radioactive samples using gamma energies from 185 to 1764 keV. Appl. Radiat. Isot. 2014, 94, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Iurian, A.R.; Cosma, C. A practical experimental approach for the determination of gamma-emitting radionuclides in environmental samples. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 763, 132–136. [Google Scholar] [CrossRef]
- Tedjani, A.; Mavon, C.; Belafrites, A.; Degrelle, D.; Boumala, D.; Rius, D.; Groetz, J.-E. Well GeHP detector calibration for environmental measurements using reference materials. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 838, 12–17. [Google Scholar] [CrossRef]
- Xhixha, G.; Alberi, M.; Baldoncini, M.; Bode, K.; Bylyku, E.; Cfarku, F.; Callegari, I.; Hasani, F.; Landsberger, S.; Mantovani, F.; et al. Calibration of HPGe detectors using certified reference materials of natural origin. J. Radioanal. Nucl. Chem. 2016, 307, 1507–1517. [Google Scholar] [CrossRef]
- Jodłowski, P.; Kalita, S.J. Gamma-Ray Spectrometry Laboratory for high-precision measurements of radionuclide concentrations in environmental samples. Nukleonika 2010, 55, 143–148. [Google Scholar]
- IAEA. Preparation of Gamma-Ray Spectrometry Reference Materials RGK-1, RGTh-1, and RGK-1; Report, IAEA/RL/148; International Atomic Energy Agency: Vienna, Austria, 1987. [Google Scholar]
- IAEA. Certificate; Certified Reference Material IAEA-RGK-1; Potassium Sulphure; IAEA-RGK-1_Rev.01; International Atomic Energy Agency: Vienna, Austria, 2024; Available online: https://nucleus.iaea.org/sites/AnalyticalReferenceMaterials/Shared%20Documents/ReferenceMaterials/Radionuclides/IAEA-RGK-1/IAEA-RGK-1_Certificate.pdf (accessed on 29 July 2025).
- IAEA. Reference Sheet; Certified Reference Material IAEA-RGU-1; Uranium Ore; RS_IAEA-RGU-1; International Atomic Energy Agency: Vienna, Austria, 2016; Available online: https://nucleus.iaea.org/sites/AnalyticalReferenceMaterials/Shared%20Documents/ReferenceMaterials/Radionuclides/IAEA-RGU-1/RS_IAEA-RGU-1.pdf (accessed on 29 July 2025).
- IAEA. Reference Sheet; Certified Reference Material IAEA-RGTh-1; Thorium Ore; RS_IAEA-RGTH-1; International Atomic Energy Agency: Vienna, Austria, 2016; Available online: https://nucleus.iaea.org/sites/AnalyticalReferenceMaterials/Shared%20Documents/ReferenceMaterials/Radionuclides/IAEA-RGTh-1/RS_IAEA-RGTh-1.pdf (accessed on 29 July 2025).
- Polatom. Multigamma Sources. Available online: https://www.polatom.pl/kategoria-produktu/radioactivity-standards/multigamma-sources/ (accessed on 29 July 2025).
- DDEP Webpage. Available online: http://www.lnhb.fr/accueil/donnees-nucleaires/donnees-nucleaires-tableau/ (accessed on 29 July 2025).
- Debertin, K.; Helmer, R.G. Gamma- and X-Ray Spectrometry with Semiconductor Detectors; North-Holland: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Pelowitz, D.B.; Goorley, J.T.; James, M.R.; Booth, T.E.; Brown, F.B.; Bull, J.S.; Zukaitis, A.J. MCNP6 User’s Manual; Tech. Rep. LA-CP-13-00634; Los Alamos National Laboratory: Los Alamos, NM, USA, 2013.
- Debertin, K.; Ren, J. Measurement of the activity of radioactive samples in Marinelli beakers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1989, 278, 541–549. [Google Scholar] [CrossRef]
- Jodłowski, P. Self-absorption correction in gamma-ray spectrometry of environmental samples—An overview of methods and correction values obtained for the selected geometries. Nukleonika 2006, 51, S21–S25. [Google Scholar]
- Lépy, M.-C.; Bé, M.-M.; Piton, F. ETNA (Efficiency Transfer for Nuclide Activity Measurements): Software for Efficiency Transfer and Coincidence Summing Corrections in Gamma-Ray Spectrometry; Note Technique LNHB 01/09/A; Laboratoire National Henri Becquerel: Saclay, France, 2004. [Google Scholar]
- Lepy, M.-C.; Ferreux, L.; Pierre, S. Coincidence summing corrections applied to volume sources. Appl. Radiat. Isot. 2012, 70, 2137–2140. [Google Scholar] [CrossRef] [PubMed]
- Fedasz, E. Determination of Coincidence-Summing Corrections for Gamma-Ray Spectrometer. Bachelor’s Thesis, Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland, January 2012. (In Polish). [Google Scholar]
- Gorzkiewicz, K. Efficiency Calibration of Gamma-Ray Spectrometer for Selected Measurement Geometries. Bachelor’s Thesis, Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland, February 2014. (In Polish). [Google Scholar]
Reference Material | Activity Concentration 1 | Radioactive Substance | Bulk Density 3 [g/cm3] | ||
---|---|---|---|---|---|
K-40 [Bq/kg] | U-238 [Bq/kg] | Th-232 [Bq/kg] | |||
RGK-1 | 14,180 (160) 4 | <0.01 | <0.04 | 99.8% K2SO4 | 1.680 |
RGU-1 | <0.6 | 4950 (100) | <4 | BL-5 U ore 2 | 1.505 |
RGTh-1 | 6.3 (16) | 78 (3) | 3250 (180) | OKA-2 Th ore 2 | 1.390 |
Nuclide | Activity 2 [Bq] | T1/2 | E [keV] | Iγ 3 [%] |
---|---|---|---|---|
Am-241 | 1094 (19) 4 | 432.6 a 4 | 59.5 | 35.92 (17) |
Cd-109 | 4222 (95) | 461.9 d 4 | 88.0 | 3.66 (5) |
Co-57 | 233 (3) | 271.81 d | 122.1 | 85.49 (14) |
Co-57 | 233 (3) | 271.81 d | 136.5 | 10.71 (15) |
Cr-51 | 4275 (87) | 27.704 d | 320.1 | 9.89 (2) |
Sn-113 | 849 (19) | 115.09 d | 255.1 | 2.11 (8) |
Sn-113 | 849 (19) | 115.09 d | 391.7 | 64.97 (17) |
Sr-85 | 583 (9) | 64.850 d | 514.0 | 98.5 (4) |
Cs-137 | 828 (22) | 30.018 a | 661.7 | 85.01 (20) |
Mn-54 | 1316 (24) | 312.19 d | 834.8 | 99.9752 (5) |
Zn-65 | 2381 (37) | 244.01 d | 1115.5 | 50.22 (11) |
Co-60 | 2291 (32) | 5.2711 a | 1173.2 | 99.85 (3) |
Co-60 | 2291 (32) | 5.2711 a | 1332.5 | 99.9826 (6) |
Energy [keV] | Nuclide | Decay Series | Present Work 1 Cylindrical Source | Xhixha 2 et al. [11] | Present Work 3 Point Source |
---|---|---|---|---|---|
186.2 | Ra-226 | uranium | 1.000 (1) 4 | No data | 1.000 (1) |
238.6 | Pb-212 | thorium | 1.000 (1) | No data | 1.001 (1) |
241.0 | Ra-224 | thorium | 1.000 (1) | No data | 1.001 (1) |
242.0 | Pb-214 | uranium | 1.008 (1) | 1.0020 (2) | 1.026 (3) |
295.2 | Pb-214 | uranium | 0.998 (1) | 0.9993 (1) | 0.990 (1) |
351.9 | Pb-214 | uranium | 1.001 (1) | 1.0017 (2) | 1.002 (1) |
1001.0 | Pa-234m | uranium | 0.995 (1) | No data | 0.984 (2) |
1460.8 | K-40 | - | 1.000 (1) | No data | 1.000 (1) |
1764.5 | Bi-214 | uranium | 0.999 (1) | 0.9970 (1) | 0.994 (1) |
2204.2 | Bi-214 | uranium | 0.998 (1) | 0.9950 (1) | 0.993 (1) |
Energy [keV] | Calibration Source | Nuclide | Iγ [%] | Activity Concentration [Bq/kg] | Cs 1 | ε(E) [%] | Fit Residuals [%] |
---|---|---|---|---|---|---|---|
238.6 | RGTh | Pb-212 | 43.6 (5) 2 | 3250 | 0.982 (5) | 4.73 (27) | −1.1 |
351.9 | RGU | Pb-214 | 35.60 (7) | 4950 | N/A | 3.637 (75) | 1.8 |
1001.0 | RGU | Pa-234m | 0.847 (8) | 4950 | N/A | 1.581 (40) | −0.9 |
1460.8 | RGK | K-40 | 10.55 (11) | 14180 | 1.011 (5) | 1.169 (18) | −1.2 |
1764.5 | RGU | Bi-214 | 15.31 (5) | 4950 | N/A | 1.034 (21) | 1.6 |
2204.2 | RGU | Bi-214 | 4.913 (23) | 4950 | N/A | 0.851 (18) | −0.1 |
Energy [keV] | Iγ [%] | Activity 1 [Bq] | Cc | ε(E) [%] Resin 2 | Fit Residuals [%] | Cs 3 | ε(E) [%] SiO2 2 |
---|---|---|---|---|---|---|---|
391.7 | 64.97 (17) 4 | 196 (4) | 1.000 | 3.267 (74) | 0.2 | 0.965 (5) | 3.159 (72) |
661.7 | 85.01 (20) | 815 (22) | 1.000 | 2.269 (61) | −1.1 | 0.972 (5) | 2.182 (59) |
834.8 | 99.9752 (5) | 767 (14) | 1.000 | 1.869 (34) | 1.0 | 0.975 (5) | 1.840 (33) |
1115.5 | 50.22 (11) | 1193 (19) | 1.000 | 1.512 (24) | 0.2 | 0.976 (5) | 1.481 (23) |
1173.2 | 99.85 (3) | 2099 (29) | 1.098 (10) | 1.456 (20) | 0.1 | 0.978 (5) | 1.425 (19) |
1332.5 | 99.9826 (6) | 2099 (29) | 1.103 (10) | 1.325 (19) | −0.4 | 0.978 (5) | 1.292 (18) |
Energy [keV] | Nuclide | ε(E) RG CRM Source [%] | ε(E) Multinuclide Source [%] | Relative Bias [%] |
---|---|---|---|---|
391.7 | Sn-113 | 3.293 (99) 1 | 3.159 (95) | −4.1 |
661.7 | Cs-137 | 2.203 (66) | 2.182 (65) | −0.9 |
834.8 | Mn-54 | 1.839 (55) | 1.840 (55) | 0.0 |
1115.5 | Zn-65 | 1.465 (44) | 1.481 (44) | 1.0 |
1173.2 | Co-60 | 1.408 (42) | 1.425 (43) | 1.2 |
1332.5 | Co-60 | 1.273 (38) | 1.292 (39) | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jodłowski, P. A Simplified Method for HPGe Detector Efficiency Calibration Using Certified Reference Materials Containing Natural Radionuclides. Appl. Sci. 2025, 15, 9774. https://doi.org/10.3390/app15179774
Jodłowski P. A Simplified Method for HPGe Detector Efficiency Calibration Using Certified Reference Materials Containing Natural Radionuclides. Applied Sciences. 2025; 15(17):9774. https://doi.org/10.3390/app15179774
Chicago/Turabian StyleJodłowski, Paweł. 2025. "A Simplified Method for HPGe Detector Efficiency Calibration Using Certified Reference Materials Containing Natural Radionuclides" Applied Sciences 15, no. 17: 9774. https://doi.org/10.3390/app15179774
APA StyleJodłowski, P. (2025). A Simplified Method for HPGe Detector Efficiency Calibration Using Certified Reference Materials Containing Natural Radionuclides. Applied Sciences, 15(17), 9774. https://doi.org/10.3390/app15179774