Trimester-Specific Air Pollutant Exposure During Pregnancy and Infant Neurodevelopment at One Year: Insights into the Role of Inflammation and Oxidative Stress
Abstract
1. Introduction
2. Materials and Method
2.1. Study Population
2.2. Air Pollution Exposure Assessment
2.3. Maternal Inflammatory and Oxidative Stress Biomarkers
2.4. Neurodevelopment Assessment
2.5. Statistical Analysis
2.6. Mediation Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yi, C.; Wang, Q.; Qu, Y.; Niu, J.; Oliver, B.G.; Chen, H. In-Utero Exposure to Air Pollution and Early-Life Neural Development and Cognition. Ecotoxicol. Environ. Saf. 2022, 238, 113589. [Google Scholar] [CrossRef]
- Niu, Y.; Chen, R.; Kan, H. Air Pollution, Disease Burden, and Health Economic Loss in China. In Advances in Experimental Medicine and Biology; Springer New York LLC: New York, NY, USA, 2017; Volume 1017, pp. 233–242. [Google Scholar]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-Year Trends of the Global Burden of Disease Attributable to Ambient Air Pollution: An Analysis of Data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Atuyambe, L.M.; Arku, R.E.; Naidoo, N.; Kapwata, T.; Asante, K.P.; Cissé, G.; Simane, B.; Wright, C.Y.; Berhane, K. The Health Impacts of Air Pollution in the Context of Changing Climate in Africa: A Narrative Review with Recommendations for Action. Ann. Glob. Health 2024, 90, 76. [Google Scholar] [CrossRef]
- Gheissari, R.; Liao, J.; Garcia, E.; Pavlovic, N.; Gilliland, F.D.; Xiang, A.H.; Chen, Z. Health Outcomes in Children Associated with Prenatal and Early-Life Exposures to Air Pollution: A Narrative Review. Toxics 2022, 10, 458. [Google Scholar] [CrossRef] [PubMed]
- Hahad, O.; Lelieveld, J.; Birklein, F.; Lieb, K.; Daiber, A.; Münzel, T. Ambient Air Pollution Increases the Risk of Cerebrovascular and Neuropsychiatric Disorders through Induction of Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2020, 21, 4306. [Google Scholar] [CrossRef] [PubMed]
- Thangavel, P.; Park, D.; Lee, Y.-C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef]
- Johnson, N.M.; Hoffmann, A.R.; Behlen, J.C.; Lau, C.; Pendleton, D.; Harvey, N.; Shore, R.; Li, Y.; Chen, J.; Tian, Y.; et al. Air Pollution and Children’s Health—A Review of Adverse Effects Associated with Prenatal Exposure from Fine to Ultrafine Particulate Matter. Environ. Health Prev. Med. 2021, 26, 72. [Google Scholar] [CrossRef]
- Vilotić, A.; Nacka-Aleksić, M.; Pirković, A.; Bojić-Trbojević, Ž.; Dekanski, D.; Jovanović Krivokuća, M. IL-6 and IL-8: An Overview of Their Roles in Healthy and Pathological Pregnancies. Int. J. Mol. Sci. 2022, 23, 14574. [Google Scholar] [CrossRef] [PubMed]
- Han, V.X.; Patel, S.; Jones, H.F.; Dale, R.C. Maternal Immune Activation and Neuroinflammation in Human Neurodevelopmental Disorders. Nat. Rev. Neurol. 2021, 17, 564–579. [Google Scholar] [CrossRef]
- Usui, N.; Kobayashi, H.; Shimada, S. Neuroinflammation and Oxidative Stress in the Pathogenesis of Autism Spectrum Disorder. Int. J. Mol. Sci. 2023, 24, 5487. [Google Scholar] [CrossRef]
- Kwon, H.K.; Choi, G.B.; Huh, J.R. Maternal Inflammation and Its Ramifications on Fetal Neurodevelopment. Trends Immunol. 2022, 43, 230–244. [Google Scholar] [CrossRef] [PubMed]
- Juan-Reyes, S.S.; Gómez-Oliván, L.M.; Juan-Reyes, N.S.; Islas-Flores, H.; Dublán-García, O.; Orozco-Hernández, J.M.; Pérez-Álvarez, I.; Mejía-García, A. Women with Preeclampsia Exposed to Air Pollution during Pregnancy: Relationship between Oxidative Stress and Neonatal Disease—Pilot Study. Sci. Total Environ. 2023, 871, 161858. [Google Scholar] [CrossRef] [PubMed]
- Dowell, J.; Elser, B.A.; Schroeder, R.E.; Stevens, H.E. Cellular Stress Mechanisms of Prenatal Maternal Stress: Heat Shock Factors and Oxidative Stress. Neurosci. Lett. 2019, 709, 134368. [Google Scholar] [CrossRef]
- Lavigne, E.; Yasseen, A.S.; Stieb, D.M.; Hystad, P.; van Donkelaar, A.; Martin, R.V.; Brook, J.R.; Crouse, D.L.; Burnett, R.T.; Chen, H.; et al. Ambient Air Pollution and Adverse Birth Outcomes: Differences by Maternal Comorbidities. Environ. Res. 2016, 148, 457–466. [Google Scholar] [CrossRef]
- Christensen, G.M.; Marcus, M.; Vanker, A.; Eick, S.M.; Malcolm-Smith, S.; Suglia, S.F.; Chang, H.H.; Zar, H.J.; Stein, D.J.; Hüls, A. Joint Effects of Indoor Air Pollution and Maternal Psychosocial Factors during Pregnancy on Trajectories of Early Childhood Psychopathology. Am. J. Epidemiol. 2024, 193, 1352–1361. [Google Scholar] [CrossRef]
- Carter, S.A.; Rahman, M.M.; Lin, J.C.; Chow, T.; Yu, X.; Martinez, M.P.; Levitt, P.; Chen, Z.; Chen, J.C.; Eckel, S.P.; et al. Maternal Exposure to Aircraft Emitted Ultrafine Particles during Pregnancy and Likelihood of ASD in Children. Environ. Int. 2023, 178, 108061. [Google Scholar] [CrossRef]
- Annavarapu, R.N.; Kathi, S. Cognitive Disorders in Children Associated with Urban Vehicular Emissions. Environ. Pollut. 2016, 208, 74–78. [Google Scholar] [CrossRef]
- Costa, L.G.; Cole, T.B.; Dao, K.; Chang, Y.-C.; Coburn, J.; Garrick, J.M. Effects of Air Pollution on the Nervous System and Its Possible Role in Neurodevelopmental and Neurodegenerative Disorders. Pharmacol. Ther. 2020, 210, 107523. [Google Scholar] [CrossRef]
- Ananth, C.V.; Brandt, J.S. A Principled Approach to Mediation Analysis in Perinatal Epidemiology. Am. J. Obstet. Gynecol. 2022, 226, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Valente, M.J.; Pelham, W.E.; Smyth, H.; MacKinnon, D.P. Confounding in Statistical Mediation Analysis: What It Is and How to Address It. J. Couns. Psychol. 2017, 64, 659–671. [Google Scholar] [CrossRef]
- Gérard-Monnier, D.; Erdelmeier, I.; Régnard, K.; Moze-Henry, N.; Yadan, J.-C.; Chaudière, J. Reactions of 1-Methyl-2-Phenylindole with Malondialdehyde and 4-Hydroxyalkenals. Analytical Applications to a Colorimetric Assay of Lipid Peroxidation. Chem. Res. Toxicol. 1998, 11, 1176–1183. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Milzani, A.; Colombo, R. Protein Carbonyl Groups as Biomarkers of Oxidative Stress. Clin. Chim. Acta 2003, 329, 23–38. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademi˙r, S.E.; Altun, M. Total Antioxidant Capacity Assay of Human Serum Using Copper(II)-Neocuproine as Chromogenic Oxidant: The CUPRAC Method. Free Radic. Res. 2005, 39, 949–961. [Google Scholar] [CrossRef]
- Ghahari, N.; Yousefian, F.; Najafi, E. Prenatal Exposure to Ambient Air Pollution and Autism Spectrum Disorders: Results from a Family-Based Case-Control Study. JCPP Adv. 2023, 3, e12129. [Google Scholar] [CrossRef]
- Wang, L.; Wang, A.; Supplee, W.W.; Koffler, K.; Cheng, Y.; Quezado, Z.M.N.; Levy, R.J. Carbon Monoxide Incompletely Prevents Isoflurane-Induced Defects in Murine Neurodevelopment. Neurotoxicol. Teratol. 2017, 61, 92–103. [Google Scholar] [CrossRef]
- Trentini, J.F.; O’Neill, J.T.; Poluch, S.; Juliano, S.L. Prenatal Carbon Monoxide Impairs Migration of Interneurons into the Cerebral Cortex. Neurotoxicology 2016, 53, 31–44. [Google Scholar] [CrossRef]
- Lopez, I.A.; Acuna, D.; Beltran-Parrazal, L.; Lopez, I.E.; Amarnani, A.; Cortes, M.; Edmond, J. Evidence for Oxidative Stress in the Developing Cerebellum of the Rat after Chronic Mild Carbon Monoxide Exposure (0.0025% in Air). BMC Neurosci. 2009, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- André, L.; Gouzi, F.; Thireau, J.; Meyer, G.; Boissiere, J.; Delage, M.; Abdellaoui, A.; Feillet-Coudray, C.; Fouret, G.; Cristol, J.P.; et al. Carbon Monoxide Exposure Enhances Arrhythmia after Cardiac Stress: Involvement of Oxidative Stress. Basic Res. Cardiol. 2011, 106, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.J. Carbon Monoxide Pollution and Neurodevelopment: A Public Health Concern. Neurotoxicol. Teratol. 2015, 49, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Dix-Cooper, L.; Eskenazi, B.; Romero, C.; Balmes, J.; Smith, K.R. Neurodevelopmental Performance among School Age Children in Rural Guatemala Is Associated with Prenatal and Postnatal Exposure to Carbon Monoxide, a Marker for Exposure to Woodsmoke. Neurotoxicology 2012, 33, 246–254. [Google Scholar] [CrossRef]
- Bos, B.; Barratt, B.; Batalle, D.; Gale-Grant, O.; Hughes, E.J.; Beevers, S.; Cordero-Grande, L.; Price, A.N.; Hutter, J.; Hajnal, J.V.; et al. Prenatal Exposure to Air Pollution Is Associated with Structural Changes in the Neonatal Brain. Environ. Int. 2023, 174, 107921. [Google Scholar] [CrossRef]
- Kusters, M.S.W.; López-Vicente, M.; Muetzel, R.L.; Binter, A.-C.; Petricola, S.; Tiemeier, H.; Guxens, M. Residential Ambient Air Pollution Exposure and the Development of White Matter Microstructure throughout Adolescence. Environ. Res. 2024, 262, 119828. [Google Scholar] [CrossRef]
- Sukumaran, K.; Botternhorn, K.L.; Schwartz, J.; Gauderman, J.; Cardenas-Iniguez, C.; McConnell, R.; Hackman, D.A.; Berhane, K.; Ahmadi, H.; Abad, S.; et al. Associations between Fine Particulate Matter Components, Their Sources, and Cognitive Outcomes in Children Ages 9-10 Years Old from the United States. Environ. Health Perspect. 2024, 132, 107009. [Google Scholar] [CrossRef] [PubMed]
- McGuinn, L.A.; Bellinger, D.C.; Colicino, E.; Coull, B.A.; Just, A.C.; Kloog, I.; Osorio-Valencia, E.; Schnaas, L.; Wright, R.J.; Téllez-Rojo, M.M.; et al. Prenatal PM2.5 Exposure and Behavioral Development in Children from Mexico City. Neurotoxicology 2020, 81, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Du, X.; Li, H.; Jiang, Y.; Zhu, X.; Zhang, Y.; Niu, Y.; Liu, C.; Ji, J.; Chillrud, S.N.; et al. Cardiovascular Effects of Traffic-Related Air Pollution: A Multi-Omics Analysis from a Randomized, Crossover Trial. J. Hazard. Mater. 2022, 435, 129031. [Google Scholar] [CrossRef] [PubMed]
- Morgan, Z.E.M.; Bailey, M.J.; Trifonova, D.I.; Naik, N.C.; Patterson, W.B.; Lurmann, F.W.; Chang, H.H.; Peterson, B.S.; Goran, M.I.; Alderete, T.L. Prenatal Exposure to Ambient Air Pollution Is Associated with Neurodevelopmental Outcomes at 2 Years of Age. Environ. Health 2023, 22, 11. [Google Scholar] [CrossRef]
- Perera, F.; Miao, Y.; Ross, Z.; Rauh, V.; Margolis, A.; Hoepner, L.; Riley, K.W.; Herbstman, J.; Wang, S. Prenatal Exposure to Air Pollution during the Early and Middle Stages of Pregnancy Is Associated with Adverse Neurodevelopmental Outcomes at Ages 1 to 3 Years. Environ. Health 2024, 23, 95. [Google Scholar] [CrossRef]
- Cserbik, D.; Chen, J.C.; McConnell, R.; Berhane, K.; Sowell, E.R.; Schwartz, J.; Hackman, D.A.; Kan, E.; Fan, C.C.; Herting, M.M. Fine Particulate Matter Exposure during Childhood Relates to Hemispheric-Specific Differences in Brain Structure. Environ. Int. 2020, 143, 105933. [Google Scholar] [CrossRef]
- Guxens, M.; Lubczyńska, M.J.; Pérez-Crespo, L.; Muetzel, R.L.; El Marroun, H.; Basagaña, X.; Hoek, G.; Tiemeier, H. Associations of Air Pollution on the Brain in Children: A Brain Imaging Study. Res. Rep. Health Eff. Inst. 2022, 2022, 209. [Google Scholar]
- Burnor, E.; Cserbik, D.; Cotter, D.L.; Palmer, C.E.; Ahmadi, H.; Eckel, S.P.; Berhane, K.; McConnell, R.; Chen, J.C.; Schwartz, J.; et al. Association of Outdoor Ambient Fine Particulate Matter with Intracellular White Matter Microstructural Properties among Children. JAMA Netw. Open 2021, 4, e2138300. [Google Scholar] [CrossRef]
- Cotter, D.L.; Campbell, C.E.; Sukumaran, K.; McConnell, R.; Berhane, K.; Schwartz, J.; Hackman, D.A.; Ahmadi, H.; Chen, J.C.; Herting, M.M. Effects of Ambient Fine Particulates, Nitrogen Dioxide, and Ozone on Maturation of Functional Brain Networks across Early Adolescence. Environ. Int. 2023, 177, 108001. [Google Scholar] [CrossRef]
- Yu, T.; Zhou, L.; Xu, J.; Kan, H.; Chen, R.; Chen, S.; Hua, H.; Liu, Z.; Yan, C. Effects of Prenatal Exposures to Air Sulfur Dioxide/Nitrogen Dioxide on Toddler Neurodevelopment and Effect Modification by Ambient Temperature. Ecotoxicol. Environ. Saf. 2022, 230, 113118. [Google Scholar] [CrossRef]
- Ha, Y.W.; Kim, T.H.; Kang, D.R.; Park, K.S.; Shin, D.C.; Cho, J.; Kim, C. Estimation of Attributable Risk and Direct Medical and Non-Medical Costs of Major Mental Disorders Associated with Air Pollution Exposures Among Children and Adolescents in the Republic of Korea, 2011–2019. J. Korean Med. Sci. 2024, 39, e218. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Min, W.K.; Choi, Y.J.; Jin, S.; Park, K.H.; Kim, S. The Effect of Maternal Exposure to Air Pollutants and Heavy Metals during Pregnancy on the Risk of Neurological Disorders Using the National Health Insurance Claims Data of South Korea. Medicina 2023, 59, 951. [Google Scholar] [CrossRef]
- Li, Y.; Xie, T.; Cardoso Melo, R.D.; de Vries, M.; Lakerveld, J.; Zijlema, W.; Hartman, C.A. Longitudinal Effects of Environmental Noise and Air Pollution Exposure on Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder during Adolescence and Early Adulthood: The TRAILS Study. Environ. Res. 2023, 227, 115704. [Google Scholar] [CrossRef] [PubMed]
- Grineski, S.E.; Renteria, R.; Bakian, A.; Collins, T.W.; VanDerslice, J.; Alexander, C.J.; Bilder, D. Prenatal Ozone Exposure and Risk of Intellectual Disability. J. Expo. Sci. Environ. Epidemiol. 2024. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Q.; Hua, C.; Ci, X. Melatonin Alleviates Particulate Matter-Induced Liver Fibrosis by Inhibiting ROS-Mediated Mitophagy and Inflammation via Nrf2 Activation. Ecotoxicol. Environ. Saf. 2023, 268, 115717. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Gong, X.; Han, B.; Chu, M.; Gong, C.; Yang, J.; Chen, L.; Wang, J.; Bai, Z.; Zhang, Y. Ambient PM2.5 Exposures and Systemic Inflammation in Women with Early Pregnancy. Sci. Total Environ. 2022, 829, 154564. [Google Scholar] [CrossRef]
Characteristic | Receptive Language | Expressive Language | Socioemotional | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Normal (n = 36) | Altered (n = 51) | p Value | Normal (n = 47) | Altered (n = 40) | p Value | Normal (n = 66) | Altered (n = 21) | p Value | |||
Mothers | Total (n = 87) | ||||||||||
Maternal age (Years) | 30 ± 5 | 30 ± 5 | 0.38 | 29 ± 5 | 31 ± 5 | 0.28 | 30 ± 5 | 30 ± 6 | 0.82 | 29.94 ± 5.2 | |
p-BMI (kg/m2) | 26.23 ± 5.3 | 28.23 ± 4.53 | 0.06 | 26.9 ± 5.81 | 28.13 ± 4.38 | 0.26 | 27.27 ± 5.44 | 28.08 ± 4.46 | 0.5 | 27.46 ± 5.19 | |
Maternal education at enrollment | |||||||||||
Less than high school | 13 (14.9%) | 11 (12.6%) | 14 (16.1%) | 10 (%) | 4 (4.6%) | 20 (%) | 24 (27.6%) | ||||
Some high school/high school graduate | 9 (10.3%) | 16 (18.4%) | 14 (16.1%) | 11 (12.6%) | 8 (9.2%) | 17 (%) | 25 (28.7%) | ||||
More than high school | 14 (16.1%) | 24 (27.6%) | 0.24 | 19 (21.8%) | 19 (21.8%) | 0.79 | 9 (10.3%) | 29 (%) | 0.45 | 38 (43.7%) | |
Marital status | |||||||||||
Single | 4 (4.6%) | 8 (9.2%) | 6 (6.9%) | 6 (6.9%) | 4 (4.6%) | 8 (9.2%) | 12 (13.8%) | ||||
Married | 15 (17.2%) | 23 (26.4%) | 16 (18.4%) | 22 (25.3%) | 9 (10.3%) | 29 (%) | 38 (43.7%) | ||||
Free union | 17 (19.5%) | 20 (23.0%) | 0.88 | 25 (%) | 12 (13.8%) | 0.08 | 8 (9.2%) | 29 (%) | 0.71 | 37 (42.5%) | |
Pre-eclampsia | |||||||||||
Yes | 4 (4.6%) | 6 (6.9%) | 6 (6.9%) | 4 (4.6%) | 1 (1.1%) | 9 (10.3%) | 10 (11.5%) | ||||
No | 32 (36.7%) | 45 (51.72%) | 0.8 | 41 (47.2%) | 36 (41.4%) | 0.94 | 57 (65.5%) | 20 (23%) | 0.47 | 77 (88.5%) | |
Gestational diabetes | |||||||||||
Yes | 4 (4.6%) | 4 (4.6%) | 2 (2.3%) | 6 (6.9%) | 1 (1.1%) | 7 (%) | 8 (9.2%) | ||||
No | 32 (36.7%) | 47 (54%) | 0.9 | 45 (51.7%) | 34 (39.1%) | 0.175 | 59 (67.8%) | 20 (23%) | 0.71 | 79 (90.8%) | |
Gestational growth restriction | |||||||||||
0 (0%) | 5 (5.7%) | 3 (3.4%) | 2 (2.3%) | 2 (2.3%) | 3 (3.4%) | 5 (5.7%) | |||||
36 (41.4%) | 46 (52.9%) | 0.85 | 44 (50.6%) | 38 (43.7%) | 0.99 | 63 (72.4%) | 19 (21.8%) | 0.94 | 82 (94.3%) | ||
Infants | |||||||||||
Gestational age at birth (weeks) | 38.71 ± 1.57 | 38.47 ± 1.64 | 0.45 | 38.72 ± 1.54 | 38.52 ± 1.77 | 0.79 | 38.52 ± 1.64 | 38.72 ± 1.54 | 0.99 | 38.57 ± 1.61 | |
Sex | |||||||||||
Female | 16 (18.4%) | 26 (29.8%) | 19 (21.8%) | 23 (26.4%) | 9 (10.3%) | 33 (37.9%) | 42 (48.3%) | ||||
Male | 20 (23.0%) | 25 (28.7%) | 0.5 | 21 (24.1%) | 24 (27.6%) | 0.65 | 12 (13.8%) | 33 (37.9%) | 0.46 | 45 (51.7%) | |
Born from cesarean section | 16 (18.4%) | 27 (31.0%) | 0.28 | 17 (19.5%) | 26 (29.8%) | 0.32 | 34 (39.1%) | 9 (10.3%) | 0.79 | 43 (49.4%) | |
Apgar 1 min | 7.82 ± 0.55 | 7.62 ± 1.61 | 0.49 | 7.33 ± 1.48 | 7.68 ± 1.53 | 0.66 | 7.83 ± 1.49 | 7.33 ± 1.83 | 0.4 | 7.7 ± 1.58 | |
Apgar 5 min | 9 ± 0.001 | 8.96 ± 0.28 | 0.06 | 8.98 ± 0.26 | 8.97 ± 0.16 | 0.09 | 8.98 ± 0.22 | 8.95 ± 0.22 | 0.08 | 8.98 ± 0.22 |
Pollutant | Receptive Language | Expressive Language | Socioemotional | ||||||
---|---|---|---|---|---|---|---|---|---|
Altered | Normal | p Value | Altered | Normal | p Value | Altered | Normal | p Value | |
First trimester | |||||||||
PM10 (µg/m3) | 35.47 ± 12.75 | 31.13 ± 11.8 | 0.37 | 35.04 ± 12.62 | 32.52 ± 12.39 | 0.8 | 34.47 ± 15.68 | 33.42 ± 11.42 | 0.57 |
PM2.5 (µg/m3) | 15.87 ± 7.82 | 13.15 ± 8.5 | 0.25 | 16.17 ± 6.95 | 13.54 ± 8.98 | 0.22 | 16.24 ± 8.87 | 14.27 ± 7.95 | 0.55 |
CO (ppb) | 0.48 ± 0.18 | 0.46 ± 0.18 | 0.88 | 0.47 ± 0.17 | 0.48 ± 0.19 | 0.9 | 0.46 ± 0.191 | 0.48 ± 0.18 | 0.3 |
SO2 (ppb) | 3.97 ± 2.02 | 3.67 ± 1.39 | 0.57 | 4.01 ± 1.99 | 3.72 ± 1.59 | 0.77 | 3.84 ± 2.1 | 3.85 ± 1.69 | 0.73 |
O3 (ppb) | 25.26 ± 8.29 | 27.1 ± 6.7 | 0.13 | 26.86 ± 9.08 | 25.31 ± 6.27 | 0.79 | 23.58 ± 7.98 | 26.8 ± 7.48 | 0.02 |
Second trimester | |||||||||
PM10 (µg/m3) | 31.79 ± 10.96 | 27.61 ± 10.98 | 0.04 | 31.16 ± 12.08 | 29.13 ± 10.23 | 0.62 | 32.52 ± 12.05 | 29.28 ± 10.76 | 0.28 |
PM2.5 (µg/m3) | 14.83 ± 7.8 | 11.83 ± 7.72 | 0.12 | 15.32 ± 7.05 | 12.12 ± 8.28 | 0.05 | 14.19 ± 8.51 | 13.41 ± 7.7 | 0.64 |
CO (ppb) | 0.42 ± 0.14 | 0.44 ± 0.13 | 0.5 | 0.44 ± 0.15 | 0.43 ± 0.13 | 0.77 | 0.43 ± 0.14 | 0.43 ± 0.13 | 0.9 |
SO2 (ppb) | 3.47 ± 2 | 3.28 ± 1.58 | 0.71 | 3.62 ± 2.23 | 3.21 ± 1.41 | 0.7 | 3.87 ± 2.56 | 3.24 ± 1.52 | 0.47 |
O3 (ppb) | 26.85 ± 7.73 | 27.35 ± 7.49 | 0.79 | 27.95 ± 8.68 | 26.31 ± 6.54 | 0.48 | 26.68 ± 8 | 27.18 ± 7.53 | 0.9 |
Third trimester | |||||||||
PM10 (µg/m3) | 27.6 ± 9.9 | 24.84 ± 9.24 | 0.17 | 26.86 ± 9.95 | 26.12 ± 9.53 | 0.55 | 30.41 ± 9.74 | 25.2 ± 9.39 | 0.01 |
PM2.5 (µg/m3) | 12.29 ± 7.43 | 11.06 ± 7.57 | 0.47 | 12.58 ± 6.82 | 11.1 ± 7.99 | 0.43 | 10.41 ± 6.96 | 12.22 ± 7.63 | 0.22 |
CO (ppb) | 0.43 ± 0.11 | 0.38 ± 0.11 | 0.05 | 0.39 ± 0.1 | 0.41 ± 0.12 | 0.38 | 0.39 ± 0.1 | 0.4 ± 0.12 | 0.6 |
SO2 (ppb) | 3.22 ± 1.59 | 3.53 ± 2.07 | 0.9 | 3.39 ± 1.72 | 3.3 ± 1.89 | 0.77 | 3.6 ± 2.18 | 3.27 ± 1.67 | 0.78 |
O3 (ppb) | 25.29 ± 6.05 | 24.75 ± 6.04 | 0.41 | 26.46 ± 6.56 | 23.89 ± 5.3 | 0.06 | 25.96 ± 4.96 | 24.78 ± 6.32 | 0.3 |
Receptive Language | Expressive Language | Socioemotional | |||||||
---|---|---|---|---|---|---|---|---|---|
Molecule | Altered | Normal | p Value | Altered | Normal | p Value | Altered | Normal | p Value |
First trimester | |||||||||
IL-1β (pg/mL) | 91.13 ± 272.6 | 42.96 ± 156.6 | 0.1 | 104.6 ± 305.7 | 42.72 ± 139.6 | 0.13 | 122.9 ± 404.7 | 54.75 ± 140.0 | 0.6 |
IL-6 (pg/mL) | 153.2 ± 361.6 | 134.7 ± 367.31 | 0.45 | 120.5 ± 218.1 | 166.9 ± 451.2 | 0.44 | 97.16 ± 184.9 | 160.9 ± 402.2 | 0.83 |
TNFα (pg/mL) | 216.6 ± 372.5 | 194.0 ± 693.3 | 0.33 | 223.8 ± 395.8 | 193.3 ± 619.3 | 0.54 | 204.1 ± 373.5 | 208.3 ± 568.2 | 0.79 |
MDA (nmol MDA/mg dry weight) | 0.04 ± 0.04 | 0.04 ± 0.02 | 0.99 | 0.05 ± 0.05 | 0.04 ± 0.02 | 0.64 | 0.04 ± 0.02 | 0.04 ± 0.04 | 0.83 |
PC (nmol PC/mg of protein) | 6.97 ± 2.77 | 7.63 ± 4.17 | 0.86 | 6.83 ± 2.81 | 7.59 ± 3.84 | 0.38 | 5.98 ± 2.05 | 7.64 ± 3.66 | 0.08 |
TAC (nmol trolox equivalent) | 0.08 ± 0.02 | 0.09 ± 0.01 | 0.09 | 0.08 ± 0.02 | 0.08 ± 0.01 | 0.62 | 0.09 ± 0.02 | 0.08 ± 0.02 | 0.23 |
Third trimester | |||||||||
IL-1β (pg/mL) | 109.3 ± 297.6 | 51.87 ± 155.1 | 0.28 | 117.5 ± 328.2 | 58.3 ± 152.2 | 0.23 | 127.8 ± 357.7 | 72.1 ± 204.9 | 0.64 |
IL-6 (pg/mL) | 168.8 ± 346.8 | 176.2 ± 486.5 | 0.3 | 125.0 ± 220.9 | 211.7 ± 515.7 | 0.55 | 132.6 ± 259.4 | 184.3 ± 445.7 | 0.99 |
TNFα (pg/mL) | 229.5 ± 404.6 | 182.8 ± 588.3 | 0.6 | 228 ± 428.9 | 195.0 ± 534.6 | 0.68 | 237.2 ± 410.5 | 201.6 ± 510.7 | 0.68 |
MDA (nmol MDA/mg dry weight) | 0.05 ± 0.06 | 0.06 ± 0.07 | 0.99 | 0.05 ± 0.06 | 0.06 ± 0.06 | 0.67 | 0.05 ± 0.05 | 0.05 ± 0.07 | 0.58 |
PC (nmol PC/mg of protein) | 9.21 ± 6.46 | 9.04 ± 8.26 | 0.52 | 10.14 ± 8.93 | 8.28 ± 5.3 | 0.61 | 9.57 ± 6.1 | 9 ± 7.57 | 0.36 |
TAC (nmol trolox equivalent) | 0.07 ± 0.02 | 0.08 ± 0.03 | 0.54 | 0.07 ± 0.02 | 0.07 ± 0.02 | 0.56 | 0.07 ± 0.02 | 0.08 ± 0.02 | 0.29 |
Difference Third–First trimester | |||||||||
Δ IL-1β | 18.18 ± 139.3 | 8.91 ± 47.75 | 0.89 | 12.88 ± 142.6 | 15.59 ± 7.22 | 0.80 | 4.85 ± 91.13 | 17.36 ± 116.6 | 0.89 |
Δ IL-6 | 15.63 ± 249.1 | 41.41 ± 176.5 | 0.44 | 4.56 ± 65.7 | 44.8 ± 295.06 | 0.69 | 35.5 ± 224.4 | 23.37 ± 221.8 | 0.57 |
Δ TNFα | 12.85 ± 215.7 | −11.19 ± 138.3 | 0.92 | 4.22 ± 127.3 | 1.78 ± 227.3 | 0.8 | 33.07 ± 234.7 | −6.7 ± 170.16 | 0.62 |
Δ MDA | 0.01 ± 0.05 | 0.02 ± 0.06 | 0.25 | 0 ± 0.04 | 0.02 ± 0.06 | 0.44 | 0.01 ± 0.05 | 0.01 ± 0.05 | 0.5 |
Δ PC | 2.24 ± 5.97 | 1.41 ± 8.13 | 0.39 | 3.32 ± 8.09 | 0.69 ± 5.53 | 0.16 | 3.6 ± 5.33 | 1.36 ± 7.3 | 0.3 |
Δ TAC | −0.01 ± 0.03 | −0.01 ± 0.03 | 0.86 | −0.01 ± 0.03 | −0.01 ± 0.03 | 0.51 | −0.02 ± 0.03 | −0.01 ± 0.03 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-Ortega, J.A.; Canul-Euan, A.; Perichart-Perera, O.; Solis-Paredes, J.M.; Martínez-Medina, S.; Torres-Calapiz, M.; Suárez-Rico, B.V.; Espejel-Núñez, A.; Montoya-Estrada, A.; Reyes-Muñoz, E.; et al. Trimester-Specific Air Pollutant Exposure During Pregnancy and Infant Neurodevelopment at One Year: Insights into the Role of Inflammation and Oxidative Stress. Appl. Sci. 2025, 15, 9753. https://doi.org/10.3390/app15179753
Mendoza-Ortega JA, Canul-Euan A, Perichart-Perera O, Solis-Paredes JM, Martínez-Medina S, Torres-Calapiz M, Suárez-Rico BV, Espejel-Núñez A, Montoya-Estrada A, Reyes-Muñoz E, et al. Trimester-Specific Air Pollutant Exposure During Pregnancy and Infant Neurodevelopment at One Year: Insights into the Role of Inflammation and Oxidative Stress. Applied Sciences. 2025; 15(17):9753. https://doi.org/10.3390/app15179753
Chicago/Turabian StyleMendoza-Ortega, Jonatan A., Arturo Canul-Euan, Otilia Perichart-Perera, Juan Mario Solis-Paredes, Sandra Martínez-Medina, Mariana Torres-Calapiz, Blanca Vianey Suárez-Rico, Aurora Espejel-Núñez, Araceli Montoya-Estrada, Enrique Reyes-Muñoz, and et al. 2025. "Trimester-Specific Air Pollutant Exposure During Pregnancy and Infant Neurodevelopment at One Year: Insights into the Role of Inflammation and Oxidative Stress" Applied Sciences 15, no. 17: 9753. https://doi.org/10.3390/app15179753
APA StyleMendoza-Ortega, J. A., Canul-Euan, A., Perichart-Perera, O., Solis-Paredes, J. M., Martínez-Medina, S., Torres-Calapiz, M., Suárez-Rico, B. V., Espejel-Núñez, A., Montoya-Estrada, A., Reyes-Muñoz, E., Rodríguez-Martínez, S., Camacho-Arroyo, I., & Estrada-Gutierrez, G. (2025). Trimester-Specific Air Pollutant Exposure During Pregnancy and Infant Neurodevelopment at One Year: Insights into the Role of Inflammation and Oxidative Stress. Applied Sciences, 15(17), 9753. https://doi.org/10.3390/app15179753