The Impact of Continuous Heavy Metal Emissions from Road Traffic on the Effectiveness of the Phytoremediation Process of Contaminated Soils
Abstract
1. Introduction
- Phytostabilization—a method that stabilizes contaminants within and around the plant’s root zone, preventing or significantly limiting further migration. Certain plant species produce enzymes in the rhizosphere that are capable of stabilizing contaminant particles, including heavy metal ions. This method is typically used in areas where removing contaminants could create additional complications, especially when such areas pose no immediate threat to local organisms or are not intended for further land use [60,61].
- Phytodegradation and Phytoevaporation—techniques similar to phytoextraction but differing in that the contaminants are not directly accumulated within the plant’s tissues. Instead, certain plant species can uptake pollutants from the soil and subsequently break them down or transform them into other compounds within their cells. In phytodegradation, the resulting compounds usually exhibit minimal or no harmful effects on the plant. In phytoevaporation, these newly formed compounds are also released into the atmosphere. These methods are used for specific contaminant groups (e.g., selenium (Se) compounds) [62,63,64].
2. Materials and Methods
2.1. Analysis of Contaminated Soil
2.2. Phytoremediation Process
- Group 1 (G1)—Reference substrate, compost-based, dedicated to horticultural cultivation.
- Group 2 (G2)—Contaminated substrate collected from the vicinity of the zinc and lead smelter.
- Group 3 (G3)—Contaminated substrate from the same smelter area, with added diatomite.
2.3. Detection of the Source of Pollutant Emissions
3. Results
3.1. Soil Quality Analyssis
3.2. Phytoremediation Process Observations
3.3. Analysis of the Source of Metal Emissions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khatoon, Z.; Orozco-Mosqueda, M.d.C.; Santoyo, G. Microbial Contributions to Heavy Metal Phytoremediation in Agricultural Soils: A Review. Microorganisms 2024, 12, 1945. [Google Scholar] [CrossRef]
- Arik, F.; Yaldiz, T. Heavy metal determination and pollution of the soil and plants of southeast Tavsanli (Kutahya, Turkey). Clean Soil Air Water 2010, 38, 1017–1030. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, H. Heavy metal pollution in sediments from aquatic ecosystems in China. Clean Soil Air Water 2013, 41, 878–882. [Google Scholar] [CrossRef]
- Fijałkowski, K.; Kacprzak, M. Fitoremediacja. Potencjał Roślin do Oczyszczania Środowiska; PWN: Warsaw, Poland, 2020; pp. 6–21. (In Polish) [Google Scholar]
- Li, H.H.; Chen, L.J.; Yu, L.; Guo, Z.B.; Shan, C.Q.; Lin, J.Q.; Gu, Y.G.; Yang, Z.B.; Yang, Y.X.; Shao, J.R.; et al. Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci. Total Environ. 2017, 586, 1076–1084. [Google Scholar] [CrossRef]
- Dobrzańska, B.; Dobrzański, G.; Kiełczewskii, K. Ochrona Środowiska Przyrodniczego; PWN: Warsaw, Poland, 2008; p. 165. (In Polish) [Google Scholar]
- Chabukdhara, M.; Nema, A.K.J.E.; Safety, E. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach. Ecotoxicol. Environ. Saf. 2013, 87, 57–64. [Google Scholar] [CrossRef]
- Borggaard, O.; Hansen, H.; Holm, P.E.; Jensen, J.K.; Rasmussen, S.B.; Sabiene, N.; Steponkaite, L.; Strobel, B. Experimental assessment of using soluble humic substances for remediation of heavy metal polluted soils. Soil Sediment Contam. 2009, 18, 369–382. [Google Scholar] [CrossRef]
- Tariq, J.; Ashraf, M.; Jaffar, M.; Afzal, M.J. Pollution status of the Indus River, Pakistan, through heavy metal and macronutrient contents of fish, sediment and water. Water Res. 1996, 30, 1337–1344. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Z.; Zheng, C. Simulation of heavy metals migration in soil of rare earth mining area. J. Environ. Inf. Let. 2022, 8, 115–124. [Google Scholar] [CrossRef]
- DalCorso, G.; Manara, A.; Furini, A. An overview of heavy metal challenge in plants: From roots to shoots. Metallomics 2013, 5, 1117–1132. [Google Scholar] [CrossRef]
- Kacprzak, M. Fitoremediacja Gleb Skażonych Metalami Ciężkimi; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 2013; pp. 15–41. (In Polish) [Google Scholar]
- Jiang, H.H.; Cai, L.M.; Wen, H.H.; Hu, G.C.; Chen, L.G.; Luo, J. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci. Total Environ. 2020, 701, 134466. [Google Scholar] [CrossRef] [PubMed]
- Ljung, K.; Otabbong, E.; Selinus, O. Natural and anthropogenic metal inputs to soils in urban Uppsala, Sweden. Environ. Geochem. Health 2006, 28, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Muhammad, H.; Lv, X.; Wei, T.; Ren, X.; Jia, H.; Atif, S.; Hua, L. Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review. Chemosphere 2020, 246, 125823. [Google Scholar] [CrossRef]
- Witkowska, D.; Słowik, J.; Chilicka, K. Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules 2021, 26, 6060. [Google Scholar] [CrossRef]
- Csuros, M.; Csuros, C. Environmental Sampling and Analysis for Metals; Lewis Publishers: Boca Raton, FL, USA, 2002. [Google Scholar]
- Piontek, M.; Fedyczak, Z.; Łuszczyńska, K.; Lechów, H. Toxicity of some trace metal, Zeszyty Naukowe. Inżynieria Sr. 2014, 155, 70–83. (In Polish) [Google Scholar]
- Plum, L.M.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef]
- Moniczewski, A.; Starek, M.; Rutkowska, A. Toxicological aspects of metal impurities in cosmetics. Med. Int. Rev. 2016, 27, 81–90. [Google Scholar]
- Monib, A.W.; Niazi, P.; Azizi, A.; Sediqi, S.; Baseer, A.Q. Heavy Metal Contamination in Urban Soils: Health Impacts on Humans and Plants: A Review. Eur. J. Theor. App. Sci. 2024, 2, 546–565. [Google Scholar] [CrossRef]
- Cocârţă, D.M.; Neamţu, S.; Reşetar Deac, A.M. Carcinogenic risk evaluation for human health risk assessment from soils contaminated with heavy metals. Int. J. Environ. Sci. Technol. 2016, 13, 2025–2036. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Razi, S.; Keshavarz-Fathi, M.; Khalili, N.; Rezaei, N. Effects of lead and cadmium on the immune system and cancer progression. J. Environ. Health Sci. Eng. 2020, 18, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Bharti, R.; Sharma, R. Effect of heavy metals: An overview. Mater. Today Proc. 2022, 51, 880–885. [Google Scholar]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, L.; Abuduwaili, J.; Ge, Y.; Issanova, G.; Saparov, G. Distribution characteristics and assessment of heavy metals in the surface water of the syr darya river, kazakhstan. Pol. J. Environ. Stud. 2020, 29, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Ahmed, M.; Matsumoto, M.; Ozaki, A.; Thinh, N.V.; Kurosawa, K. Heavy metal Contamination of Irrigation Water, Soil, and Vegetables and the Difference between Dry and Wet Seasons Near a Multi-Industry Zone in Bangladesh. Water 2019, 11, 583. [Google Scholar] [CrossRef]
- Ortega-Ramírez, A.T.; García Moreno, D.; Reyes Tovar, M. Composting as a Cleaner Production Strategy for the Soil Resource of Potato Crops in Choconta, Colombia. Resources 2024, 13, 137. [Google Scholar] [CrossRef]
- Mangwane, M.; Madakadze, I.C.; Nherera-Chokuda, F.V.; Dube, S.; Mndela, M.; Letsoalo, N.; Tjelele, T.J. Evaluation of Germination and Early Seedling Growth of Different Grasses Irrigated with Treated Mine Water. Grasses 2024, 3, 240–252. [Google Scholar] [CrossRef]
- Vig, K.; Megharaj, M.; Sethunathan, N.; Naidu, R. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Adv. Environ. Res. 2003, 8, 121–135. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Not. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Nagajyoti, P.; Lee, K.; Sreekanth, T. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Lindqvist, O. Environmental impact of mercury and other heavy metals. J. Power Sources 1995, 57, 3–7. [Google Scholar] [CrossRef]
- Pilat, M.J.; Pegnam, R.C. Particle Emissions from Chrome Plating. Aerosol Sci. Technol. 2006, 40, 639–648. [Google Scholar] [CrossRef]
- Cervantes, C.; Campos-García, J.; Devars, S.; Gutiérrez-Corona, F.; Loza-Tavera, H.; Torres-Guzmán, J.C.; Moreno-Sánchez, R. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 2001, 25, 335–347. [Google Scholar] [CrossRef]
- Chmielewski, J.; Gworek, B.; Florek-Łuszczki, M.; Nowak-Starz, G.; Wójtowicz, B.; Wójcik, T.; Żeber-Dzikowska, I.; Strzelecka, A.; Szpringer, M. Heavy metals in the environment and their impact on human health. Przem. Chem. 2020, 99, 50–57. [Google Scholar] [CrossRef]
- Fashola, M.; Ngole-Jeme, V.; Babalola, O. Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. Int. J. Environ. Res. Public Health 2016, 13, 1047. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef]
- Adler, R.A.; Claassen, M.; Godfrey, L.; Turton, A.R. Water, mining and waste: An historical and economic perspective on conflict management in South Africa. Econom. Peace Secur. J. 2007, 2, 32–41. [Google Scholar] [CrossRef]
- Zhang, F.; Yan, X.; Zeng, C.; Zhang, M.; Shrestha, S.; Devkota, L.P.; Yao, T. Influence of Traffic Activity on Heavy Metal Concentrations of Roadside Farmland Soil in Mountainous Areas. Int. J. Environ. Res. Public Health 2012, 9, 1715–1731. [Google Scholar] [CrossRef]
- Markus, J.A.; McBratney, A.B. An urban soil study: Heavy metals in Glebe, Australia. Aust. J. Soil Res. 1996, 34, 453–465. [Google Scholar] [CrossRef]
- Winther, M.; Slentø, E. Heavy Metal Emissions for Danish Road Transport; NERI Technical Report No. 780; Aarhus Universitet: Roskilde, Denmark, 2010. [Google Scholar]
- Wu, S.; Wen, Z.; Wu, X.; Jiang, B.; Liu, Y. Emission inventory of heavy metals from on-road vehicles in Xiamen, China, from 2015 to 2060. Atmos. Pollut. Res. 2024, 15, 102093. [Google Scholar] [CrossRef]
- Lahiri, D.; Ray, I.; Ray, R.; Chanakya, I.; Tarique, M.; Misra, S.; Rahaman, W.; Tiwari, M.; Wang, X.; Das, R. Source apportionment and emission projections of heavy metals from traffic sources in India: Insights from elemental and Pb isotopic compositions. J. Hazard. Mater. 2024, 480, 135810. [Google Scholar] [CrossRef]
- Pham, C.; Hamedmoghadam, H.; Shorten, R. Vehicle Dynamics Control for Simultaneous Optimization of Tire Emissions and Performance in EVs. arXiv 2025, arXiv:2504.10709. [Google Scholar]
- Baert, R.; Van Amelsfort, P. Assessment of Electric and Diesel Urban Bus Tire Wear in Fleet Operation. In Proceedings of the FISITA World Congress 2021—Technical Programme, Prague, Czech Republic, 13–16 September 2021. [Google Scholar] [CrossRef]
- Lim, K.; Hong, S.; Lee, H.; Jung, J.; Kim, K.; Park, J.; Bang, J. Open-structured silica network based on silane-terminated telechelic polybutadiene for electric vehicle tires. Sustain. Mater. Technol. 2024, 42, e01156. [Google Scholar] [CrossRef]
- Stojić, N.; Štrbac, S.; Ćurčić, L.; Pucarević, M.; Prokić, D.; Stepanov, J.; Stojić, G. Exploring the impact of transportation on heavy metal pollution: A comparative study of trains and cars. Transp. Res. Part D Transp. Environ. 2023, 125, 103966. [Google Scholar] [CrossRef]
- Wang, J.; Jeong, C.; Hilker, N.; Healy, R.; Sofowote, U.; Debosz, J.; Su, Y.; Munoz, A.; Evans, G. Quantifying metal emissions from vehicular traffic using real world emission factors. Environ. Pollut. 2020, 268 Pt A, 115805. [Google Scholar] [CrossRef] [PubMed]
- Sternbeck, J.; Sjödin, Å.; Andréasson, K. Metal emissions from road traffic and the influence of resuspension: Results from two tunnel studies. Atmos. Environ. 2002, 36, 4735–4744. [Google Scholar] [CrossRef]
- Pal, S.; Roy, R. Evaluating heavy metals emission’ pattern on road influenced by urban road layout. Transp. Res. Interdiscip. Perspect. 2021, 10, 100362. [Google Scholar] [CrossRef]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Erakhrumen, A.; Agbontalor, A. Review Phytoremediation: An environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ. Res. Rev. 2007, 2, 151–156. [Google Scholar]
- Angelova, V.; Ivanova, R.; Delibaltova, V.; Ivanov, K. Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind. Crops Prod. 2004, 19, 197–205. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Song, Y.; Sui, J.; Hua, X. Advances in the Involvement of Metals and Metalloids in Plant Defense Response to External Stress. Plants 2024, 13, 313. [Google Scholar] [CrossRef]
- Salt, D.E.; Blaylock, M.; Kumar, N.P.B.A.; Dushenkov, V.; Ensley, B.D.; Chet, I.; Raskin, I. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Nat. Biotechnol. 1995, 13, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.P.G.C.; Rangel, A.O.S.S.; Castro, P.M.L. Remediation of Heavy Metal Contaminated Soils: Phytoremediation as a Potentially Promising Clean-Up Technology. Crit. Rev. Environ. Sci. Technol. 2009, 39, 622–654. [Google Scholar] [CrossRef]
- Ginn, B.R.; Szymanowski, J.S.; Fein, J.B. Metal and Proton Binding onto the Roots of Fescue Rubra. Chem. Geol. 2008, 253, 130–135. [Google Scholar] [CrossRef]
- Duckart, E.C.; Waldron, L.J.; Donner, H.E. Selenium uptake and volatiLization from plants growing in soil. Soil Sci. 1992, 153, 94–99. [Google Scholar] [CrossRef]
- Marecik, R.; Króliczak, P.; Cyplik, P. Phytoremediation—An alternative method for environmental cleanup. Biotechnologia 2006, 3, 88–97. [Google Scholar]
- El Mehdawi, A.F.; Pilon-Smits, E.A.H. Ecological Aspects of Plant Selenium Hyperaccumulation: Ecology of Selenium Hyperaccumulation. Plant Biol. 2012, 14, 1–10. [Google Scholar] [CrossRef]
- Todde, G.; Carboni, G.; Marras, S.; Caria, M.; Sirca, C. Industrial Hemp (Cannabis sativa L.) for Phytoremediation: Energy and Environmental Life Cycle Assessment of Using Contaminated Biomass as an Energy Resource. Sustain. Energy Technol. Assess. 2022, 52, 102081. [Google Scholar] [CrossRef]
- Witters, N.; Mendelsohn, R.O.; Van Slycken, S.; Weyens, N.; Schreurs, E.; Meers, E.; Tack, F.; Carleer, R.; Vangronsveld, J. Phytoremediation, a Sustainable Remediation Technology? Conclusions from a Case Study. I: Energy Production and Carbon Dioxide Abatement. Biomass Bioenergy 2012, 39, 454–469. [Google Scholar] [CrossRef]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Brooks, R.R.; Lee, J.; Reeves, R.D.; Jaffre, T. Detection of nickeliferous rocks by analysis of herbarium specimens of in-dicator plants. J. Geochem. Explor. 1977, 7, 49–57. [Google Scholar] [CrossRef]
- Hossner, L.R.; Loeppert, R.H.; Newton, R.J.; Szaniszlo, P.J. Literature Review: Phytoaccumulation of Chromium, Uranium, and Plutonium in Plant Systems; Technical Report; Amarillo National Resource Center for Plutonium: Amarillo, TX, USA, 1998. [Google Scholar]
- Liu, W.-X.; Liu, J.-W.; Wu, M.-Z.; Li, Y.; Zhao, Y.; Li, S.-R. Accumulation and Translocation of Toxic Heavy Metals in Winter Wheat (Triticum aestivum L.) Growing in Agricultural Soil of Zhengzhou, China. Bull. Environ. Contam. Toxicol. 2009, 82, 343–347. [Google Scholar] [CrossRef]
- Eapen, S.; Suseelan, K.N.; Tivarekar, S.; Kotwal, S.A.; Mitra, R. Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ. Res. 2003, 91, 127–133. [Google Scholar] [CrossRef]
- Nikolić, M.; Stevović, S. Family Asteraceae as a sustainable planning tool in phytoremediation and its relevance in urban areas. Urban For. Urban Green. 2015, 14, 782–789. [Google Scholar] [CrossRef]
- Lee, M.; Yang, M. Rhizofiltration Using Sunflower (Helianthus annuus L.) and Bean (Phaseolus vulgaris L. var. vulgaris) to Remediate Uranium Contaminated Groundwater. J. Hazard. Mater. 2010, 173, 589–596. [Google Scholar] [CrossRef]
- Doty, S.L.; James, C.A.; Moore, A.L.; Vajzovic, A.; Singleton, G.L.; Ma, C.; Khan, Z.; Xin, G.; Kang, J.W.; Park, J.Y.; et al. Enhanced Phytoremediation of Volatile Environmental Pollutants with Transgenic Trees. Proc. Natl. Acad. Sci. USA 2007, 104, 16816–16821. [Google Scholar] [CrossRef]
- Yeşilyurt, S. Phytoremediation method and Brassica family: Removal of chromium, cadmium and lead accumulation with broccoli (Brassica oleracea var. italica). Results Chem. 2023, 6, 101005. [Google Scholar] [CrossRef]
- Ahmad, R.; Tehsin, Z.; Malik, S.; Asad, S.; Shahzad, M.; Bilal, M.; Shah, M.; Khan, S. Phytoremediation potential of hemp (Cannabis sativa L.): Identification and characterization of heavy metals responsive genes. Clean Soil Air Water 2016, 44, 195–201. [Google Scholar] [CrossRef]
- Ćaćić, M.; Perčin, A.; Zgorelec, Ž.; Kisić, I. Evaluation of Heavy Metals Accumulation Potential of Hemp (Cannabis sativa L.). J. Cent. Eur. Agric. 2019, 20, 700–711. [Google Scholar] [CrossRef]
- Raimondi, G.; Rodrigues, J.; Maucieri, C.; Borin, M.; Bona, S. Phytomanagement of Chromium-Contaminated Soils Using Cannabis sativa (L.). Agronomy 2020, 10, 1223. [Google Scholar] [CrossRef]
- Gabriele, I.; Bianco, F.; Race, M.; Papirio, S.; Esposito, G. Phytoremediation of PAH- and Cu-Contaminated Soil by Cannabis sativa L.: Preliminary Experiments on a Laboratory Scale. Sustainability 2023, 15, 1852. [Google Scholar] [CrossRef]
- Tlustoš, P.; Száková, J.; Hrubý, J.; Hartman, I.; Najmanová, J.; Nedělník, J.; Pavlíková, D.; Batysta, M. Removal of As, Cd, Pb, and Zn from Contaminated Soil by High Biomass Producing Plants. Plant Soil Environ. 2011, 52, 413–423. [Google Scholar] [CrossRef]
- Herzig, R.; Nehnevajova, E.; Pfistner, C.; Schwitzguebel, J.-P.; Ricci, A.; Keller, C. Feasibility of Labile Zn Phytoextraction Using Enhanced Tobacco and Sunflower: Results of Five- and One-Year Field-Scale Experiments in Switzerland. Int. J. Phytoremediat. 2014, 16, 735–754. [Google Scholar] [CrossRef]
- Liu, S.; Ali, S.; Yang, R.; Tao, J.; Ren, B. A newly discovered Cd-hyperaccumulator Lantana camara L. J. Hazard. Mater. 2019, 371, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Epelde, L.; Becerril, J.M.; Mijangos, I.; Garbisu, C. Evaluation of the Efficiency of a Phytostabilization Process with Biological Indicators of Soil Health. J. Environ. Qual. 2009, 38, 2041–2049. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, P.; Gonçalves, A.P.; Fernandes, R.M.; de Varennes, A.; Vallini, G.; Duarte, E.; Cunha-Queda, A.C. Organic Residues as Immobilizing Agents in Aided Phytostabilization: (I) Effects on Soil Chemical Characteristics. Chemosphere 2009, 74, 1292–1300. [Google Scholar] [CrossRef]
- Saladin, G.; Soubrand, M.; Joussein, E.; Benjelloun, I. Efficiency of metal(loid) phytostabilization by white lupin (Lupinus albus L.), common vetch (Vicia sativa L.), and buckwheat (Fagopyrum esculentum Moench). Environ. Sci. Pollut. Res. 2024, 31, 55822–55835. [Google Scholar] [CrossRef]
- Roccotiello, E.; Manfredi, A.; Drava, G.; Minganti, V.; Giorgio Mariotti, M.; Berta, G.; Cornara, L. Zinc Tolerance and Accumulation in the Ferns Polypodium cambricum L. and Pteris vittata L. Ecotoxicol. Environ. Saf. 2010, 73, 1264–1271. [Google Scholar] [CrossRef]
- Fernández-Braña, A.; Salgado, L.; Gallego, J.L.R.; Afif, E.; Boente, C.; Forján, R. Phytoremediation potential depends on the degree of soil pollution: A case study in an urban brownfield. Environ. Sci. Pollut. Res. 2023, 30, 67708–67719. [Google Scholar] [CrossRef]
- Mleczek, M.; Goliński, P.; Krzesłowska, M.; Gąsecka, M.; Magdziak, Z.; Rutkowski, P.; Budzyńska, S.; Waliszewska, B.; Kozubik, T.; Karolewski, Z.; et al. Phytoextraction of potentially toxic elements by six tree species growing on hazardous mining sludge. Environ. Sci. Pollut. Res. 2017, 24, 22183–22195. [Google Scholar] [CrossRef] [PubMed]
- Olajiire-Ajayi, B.L.; Akintola, O.O.; Thomas, E. Assessment of selected tree species as phytoremediation agents in polluted soils. Int. J. Phytoremediat. 2024, 27, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Quiroz, I.A.; Espinoza, S.E.; Yáñez, M.A.; Martínez, E.E.; Magni, C.R.; Faúndez, Á.F. Potential of Pinus radiata, Eucalyptus globulus and Acacia dealbata for the long-term phytostabilization of copper mine tailings. Int. J. Phytoremediat. 2024, 26, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
- Mwanasomwe, J.K.; Langunu, S.; Shutcha, M.N.; Colinet, G. Effects of 15-Year-Old Plantation on Soil Conditions, Spontaneous Vegetation, and the Trace Metal Content in Wood Products at Kipushi Tailings Dam. Front. Soil Sci. 2022, 2, 934491. [Google Scholar] [CrossRef]
- Gworek, B.; Antonkiewicz, J. Remediation of Contaminated Soils and Land (Remediacja Zanieczyszczonych Gleb i Ziem); Wydawnictwo Naukowe PWN: Warsaw, Poland, 2023. (In Polish) [Google Scholar]
Sample | Element Share [ppm] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu | Cr | Co | Pb | Ni | Zn | Cd | Mn | Fe | Hg | |
Garden soil | 30 | 0 | 0 | 6 | 0 | 114 | 0 | 93 | 3875 | 0.47 |
Smelter soil | 31 | 4 | 4 | 510 | 10 | 367 | 6 | 53 | 4997 | 0.22 |
Heap soil | 3411 | 18 | 14 | 570 | 46 | 3786 | 15 | 423 | 27,051 | 0.88 |
Dark aglomerate | 16,612 | 27 | 10 | 1254 | 35 | 4290 | 5 | 140 | 31,591 | 1.71 |
Sample | Element Share [ppm] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu | Cr | Co | Pb | Ni | Zn | Cd | Mn | Fe | Hg | |
Diatomite | 12 | 140 | 5 | 0 | 16 | 102 | 0 | 20 | 9022 | 0.01 |
Sample | Element Share [ppm] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu | Cr | Co | Pb | Ni | Zn | Cd | Mn | Fe | Hg | |
G1—biomass | 13 | 7 | 2 | 23 | 22 | 54 | 8 | 81 | 714 | 0.12 |
G2—biomass | 19 | 10 | 3 | 50 | 37 | 551 | 25 | 118 | 587 | 0.11 |
G3—biomass | 14 | 9 | 3 | 58 | 12 | 541 | 27 | 178 | 650 | 0.14 |
Sample | Element Share [ppm] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu | Cr | Co | Pb | Ni | Zn | Cd | Mn | Fe | Hg | |
G1—soil | 19 | 21 | 10 | 113 | 7 | 90 | 6 | 116 | 3383 | 0.24 |
G2—soil | 3 | 11 | 3 | 546 | 4 | 355 | 8 | 32 | 5133 | 0.22 |
G3—soil | 7 | 16 | 3 | 653 | 4 | 333 | 8 | 52 | 5092 | 0.16 |
Sample | Element Share [ppm] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu | Cr | Co | Pb | Ni | Zn | Cd | Mn | Fe | Hg | |
Dust | 136 | 46 | 22 | 606 | 62 | 5282 | 18 | 1170 | 25,956 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewandowski, M.; Landrat, M.; Kowalczyk, A. The Impact of Continuous Heavy Metal Emissions from Road Traffic on the Effectiveness of the Phytoremediation Process of Contaminated Soils. Appl. Sci. 2025, 15, 9748. https://doi.org/10.3390/app15179748
Lewandowski M, Landrat M, Kowalczyk A. The Impact of Continuous Heavy Metal Emissions from Road Traffic on the Effectiveness of the Phytoremediation Process of Contaminated Soils. Applied Sciences. 2025; 15(17):9748. https://doi.org/10.3390/app15179748
Chicago/Turabian StyleLewandowski, Max, Marcin Landrat, and Aleksandra Kowalczyk. 2025. "The Impact of Continuous Heavy Metal Emissions from Road Traffic on the Effectiveness of the Phytoremediation Process of Contaminated Soils" Applied Sciences 15, no. 17: 9748. https://doi.org/10.3390/app15179748
APA StyleLewandowski, M., Landrat, M., & Kowalczyk, A. (2025). The Impact of Continuous Heavy Metal Emissions from Road Traffic on the Effectiveness of the Phytoremediation Process of Contaminated Soils. Applied Sciences, 15(17), 9748. https://doi.org/10.3390/app15179748