Numerical Investigation of the Reinforcement Effect of Fully Grouted Bolts on Layered Rock Masses Under Triaxial Loading with One Free Surface
Abstract
1. Introduction
2. Experiment and Calibration
2.1. Calibration of Microstructural Parameters
2.2. Numerical Test Scheme
3. Simulation Results and Analysis
3.1. Load-Bearing Behavior and Crack Development
3.2. Internal Vertical Displacement
3.3. Load Transfer Evolution in Fully Grouted Bolts
3.4. Fracture Evolution
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tien, Y.M.; Kuo, M.C.; Juang, C.H. An experimental investigation of the failure mechanism of simulated transversely isotropic rocks. Int. J. Rock Mech. Min. Sci. 2006, 43, 1163–1181. [Google Scholar] [CrossRef]
- Zhang, J.C. Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes. Int. J. Rock Mech. Min. Sci. 2013, 60, 160–170. [Google Scholar] [CrossRef]
- Li, J.G.; Yu, Z.Q.; Zhou, Z.Y.; Wang, Y.C.; Li, J.W. Mechanical analysis and failure modes prediction of composite rock under uniaxial compression. Sci. Rep. 2021, 11, 22826. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chen, Q.Z.; Zhang, J.Z.; Zhou, X.P. Influences of Mechanical Contrast on Failure Characteristics of Layered Composite Rocks Under True–Triaxial Stresses. Rock Mech. Rock Eng. 2023, 56, 5363–5381. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Wang, W.M.; Wang, L.H.; Dai, C.Q. Compression–shear strength criterion of coal–rock combination model considering interface effect. Tunn. Undergr. Space Technol. 2015, 47, 193–199. [Google Scholar] [CrossRef]
- Chen, Y.L.; Zuo, J.P.; Liu, D.J.; Wang, Z.B. Deformation failure characteristics of coal–rock combined body under uniaxial compression: Experimental and numerical investigations. Bull. Eng. Geol. Environ. 2019, 78, 3449–3464. [Google Scholar] [CrossRef]
- He, Z.; Xie, Z.Z.; Zhang, N.; Han, C.L.; Xiang, Z.; Yan, G.J.; Qiao, H.X.; Shao, C.Y. Research on Spatiotemporal Evolution Law of Surrounding Rock Fractures and Hierarchical Collaborative Control Technology in High–stress Soft Rock Roadway: A Case Study. Eng. Fail. Anal. 2023, 150, 107366. [Google Scholar] [CrossRef]
- Jiang, L.S.; Ma, N.J.; Bai, L.; Li, Y.J.; Zhang, L. Deformation and failure characteristics and roof caving hidden danger classification of roadways compound roof. J. China Coal Soc. 2014, 39, 1205–1211. [Google Scholar] [CrossRef]
- Hu, S.C. Characteristics and mechanism of deformation and failure of layered surrounding rock mass in deep roadway. Chin. J. Rock Mech. Eng. 2015, 34, 2376. [Google Scholar] [CrossRef]
- Xie, Z.Z.; Zhang, N.; Feng, X.W.; Liang, D.Y.; Wei, Q.; Weng, M.Y. Investigation on the evolution and control of surrounding rock fracture under different supporting conditions in deep roadway during excavation period. Int. J. Rock Mech. Min. Sci. 2019, 123, 104122. [Google Scholar] [CrossRef]
- Ma, Q.; Tan, Y.L.; Liu, X.S.; Gu, Q.H.; Li, X.B. Effect of coal thicknesses on energy evolution characteristics of roof rock–coal–floor rock sandwich composite structure and its damage constitutive model. Compos. Part B Eng. 2020, 198, 108086. [Google Scholar] [CrossRef]
- Liu, X.S.; Tan, Y.L.; Ning, J.G.; Lu, Y.W.; Gu, Q.H. Mechanical properties and damage constitutive model of coal in coal–rock combined body. Int. J. Rock Mech. Min. Sci. 2018, 110, 140–150. [Google Scholar] [CrossRef]
- Guo, L.W.; Latham, J.P.; Xiang, J.S. A numerical study of fracture spacing and through–going fracture formation in layered rocks. Int. J. Solids Struct. 2017, 110, 44–57. [Google Scholar] [CrossRef]
- Lin, Q.B.; Cao, P.; Wen, G.P.; Meng, J.J.; Cao, R.H.; Zhao, Z.Y. Crack coalescence in rock–like specimens with two dissimilar layers and pre–existing double parallel joints under uniaxial compression. Int. J. Rock Mech. Min. Sci. 2021, 139, 104621. [Google Scholar] [CrossRef]
- Zhang, H.W.; Elsworth, D.; Wan, Z.J. Failure response of composite rock–coal samples. Geomech. Geophys. Geo-Energy Geo-Resour. 2018, 4, 175–192. [Google Scholar] [CrossRef]
- Li, W.F.; Bai, J.B.; Cheng, J.Y.; Peng, S.D.; Liu, H.L. Determination of coal–rock interface strength by laboratory direct shear tests under constant normal load. Int. J. Rock Mech. Min. Sci. 2015, 77, 60–67. [Google Scholar] [CrossRef]
- Sun, Y.T.; Bi, R.Y.; Sun, J.B.; Zhang, J.F.; Taherdangkoo, R.; Huang, J.D.; Li, G.C. Stability of roadway along hard roof goaf by stress relief technique in deep mines: A theoretical, numerical and field study. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 45. [Google Scholar] [CrossRef]
- Wu, Y.Z. Application research of full-length prestressed anchorage strong support system. Coal Sci. Technol. 2011, 39, 27–30+35. [Google Scholar]
- Sun, Y.T.; Wang, S.; Li, G.C.; Han, C.L.; Hao, H.R.; Li, J.H.; Zhao, H.S. Research and application of spatial distribution law of additional compressive stress field in surrounding rock of bolt support. J. China Coal Soc. 2025, 50, 2940–2960. [Google Scholar] [CrossRef]
- Wang, H.T.; Wang, Q.; Jiang, J.P.; Li, S.C.; Liu, P.; Yang, Y.; Zhang, X.; Yang, S.B. Research on mechanism and application of full-length prestressed grouting anchor support in deep roadway. J. Min. Saf. Eng. 2019, 36, 670–677+684. [Google Scholar] [CrossRef]
- Kang, H.P. Support technologies for deep and complex roadways in underground coal mines: A review. Int. J. Coal Sci. Technol. 2014, 1, 261–277. [Google Scholar] [CrossRef]
- Lu, T.K.; Dai, Y.H. Working characteristics of full-length bonded anchor bolt in layered roof of mining gateway. Chin. J. Rock Mech. Eng. 2010, 29, 3329–3335. [Google Scholar]
- Wang, P.; Zhang, N.; Kan, J.G.; Wei, Q.; Xie, Z.Z.; Li, A.R.; He, Z.; Qi, J.H.; Xu, X.L.; Duan, C.R. Accumulated damage failure mechanism of anchoring structures under cyclic impact disturbance. Int. J. Min. Sci. Technol. 2024, 34, 1693–1709. [Google Scholar] [CrossRef]
- Wu, X.Z.; Jiang, Y.J.; Gong, B.; Guan, Z.C.; Deng, T. Shear Performance of Rock Joint Reinforced by Fully Encapsulated Rock Bolt Under Cyclic Loading Condition. Rock Mech. Rock Eng. 2019, 52, 2681–2690. [Google Scholar] [CrossRef]
- Li, D.Q.; Masoumi, H.; Hagan, P.C.; Saydam, S. Experimental and analytical study on the mechanical behaviour of cable bolts subjected to axial loading and constant normal stiffness. Int. J. Rock Mech. Min. Sci. 2019, 113, 83–91. [Google Scholar] [CrossRef]
- Sun, Y.; Bi, R.; Chang, Q.; Taherdangkoo, R.; Zhang, J.; Sun, J.; Huang, J.; Li, G. Stability Analysis of Roadway Groups under Multi-Mining Disturbances. Appl. Sci. 2021, 11, 7953. [Google Scholar] [CrossRef]
- Zhou, X.P.; Zhang, J.Z.; Wong, L. Experimental study on the growth, coalescence and wrapping behaviors of 3Dcrossembedded flaws under uniaxial compression. Rock Mech. Rock Eng. 2018, 51, 1379–1400. [Google Scholar] [CrossRef]
- Zhao, Y.; Bi, J.; Wang, C.L.; Liu, P.L. Effect of unloading rate on the mechanical behavior and fracture characteristics of sandstones under complex triaxial stress conditions. Rock Mech Rock Eng. 2021, 54, 4851–4866. [Google Scholar] [CrossRef]
- Wu, G.S.; Yu, W.J.; Zuo, J.P.; Li, C.Y.; Du, S.H. Experimental investigation on rock–burst behavior of the rock–coal–bolt specimen under different stress conditions. Sci. Rep. 2020, 10, 7556. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Q.; Wang, S.N. Numerical Simulation Technology and Application with Particle Flow Code(PFC5.0). Rock Soil Mech 2018, 39, 43. [Google Scholar]
- Duan, K.; Kwok, C.Y.; Tham, L.G. Micromechanical analysis of the failure process of brittle rock. Int. J. Numer. Anal. Methods Geomech. 2015, 39, 618–634. [Google Scholar] [CrossRef]
- Valdez, A.V.; Morel, S.; Marache, A.; Hinojosa, M.; Riss, J. Influence of fracture roughness and micro-fracturing on the mechanical response of rock joints: A discrete element approach. Int. J. Fract. 2018, 213, 87–105. [Google Scholar] [CrossRef]
- Yang, S.Q.; Tian, W.L.; Jing, H.W.; Huang, Y.H.; Yang, X.X.; Meng, B. Deformation and Damage Failure Behavior of Mudstone Specimens Under Single-Stage and Multi-stage Triaxial Compression. Rock Mech. Rock Eng. 2019, 52, 673–689. [Google Scholar] [CrossRef]
- Yin, P.F.; Yang, S.Q. Discrete Element Modeling of Strength and Failure Behavior of Transversely Isotropic Rock under Uniaxial Compression. J. Geol. Soc. India 2019, 93, 235–246. [Google Scholar] [CrossRef]
- Chen, X.; Liao, Z.H.; Peng, X. Deformability characteristics of jointed rock masses under uniaxial compression. Int. J. Min. Sci. Technol. 2012, 22, 213–221. [Google Scholar] [CrossRef]
- Yang, X.X.; Jing, H.W.; Tang, C.A.; Yang, S.Q. Effect of parallel joint interaction on mechanical behavior of jointed rock mass models. Int. J. Rock Mech. Min. Sci. 2017, 92, 40–53. [Google Scholar] [CrossRef]
Proportion (Cement/Sand/Water) | UCS/MPa | Elastic Modulus/GPa | Tensile Strength/MPa | |
---|---|---|---|---|
Soft rock | 1.2:5.6:1 | 11.40 | 1.60 | 2.52 |
Hard rock | 2:5:1 | 38.52 | 3.83 | 9.41 |
LCR samples | - | 30.16 | 3.25 | - |
- | 31.00 | 3.35 | - | |
- | 30.40 | 3.23 | - | |
AVG | 30.52 | 3.28 | - |
UCS/MPa | Elastic Modulus/GPa | |
---|---|---|
Laboratory test | 30.40 | 3.23 |
Numerical test | 30.57 | 3.07 |
Error | 0.56% | 4.9% |
Description | Soft Rock | Hard Rock | Interface | Bolt | |
---|---|---|---|---|---|
/(kg/m3) | Density | 2000 | 2500 | ||
/GPa | Effective modulus | 1.0 | 2.1 | – | 100 |
Normal–shear stiffness ratio | 1.4 | 1.3 | – | 1.4 | |
/GPa | Bond effective modulus | 1.0 | 2.1 | 1.6 | 100 |
Bond normal–shear stiffness ratio | 1.4 | 1.3 | 1.2 | 1.3 | |
/MPa | Normal bond strength | 2.0 ± 1.0 | 8.3 ± 2.5 | 0.8 ± 0.5 | 520 |
/MPa | Normal shear strength | 4.3 ± 1.5 | 14.6 ± 4.5 | 1.5 ± 0.5 | 1000 |
Particle friction coefficient | 0.5 | 0.5 | 0.5 | 0.5 |
Free Surface Lithology | Support Intensity (MPa) | Confining Pressure (MPa) |
---|---|---|
Soft rock | 0 | 10, 15, 20 |
0.2 | 10, 15, 20 | |
0.4 | 10, 15, 20 | |
Hard rock | 0 | 10, 15, 20 |
0.2 | 10, 15, 20 | |
0.4 | 10, 15, 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, S.; Zhao, Y.; Xie, Z.; Xiang, Z.; An, Y. Numerical Investigation of the Reinforcement Effect of Fully Grouted Bolts on Layered Rock Masses Under Triaxial Loading with One Free Surface. Appl. Sci. 2025, 15, 9689. https://doi.org/10.3390/app15179689
Jia S, Zhao Y, Xie Z, Xiang Z, An Y. Numerical Investigation of the Reinforcement Effect of Fully Grouted Bolts on Layered Rock Masses Under Triaxial Loading with One Free Surface. Applied Sciences. 2025; 15(17):9689. https://doi.org/10.3390/app15179689
Chicago/Turabian StyleJia, Shiming, Yiming Zhao, Zhengzheng Xie, Zhe Xiang, and Yanpei An. 2025. "Numerical Investigation of the Reinforcement Effect of Fully Grouted Bolts on Layered Rock Masses Under Triaxial Loading with One Free Surface" Applied Sciences 15, no. 17: 9689. https://doi.org/10.3390/app15179689
APA StyleJia, S., Zhao, Y., Xie, Z., Xiang, Z., & An, Y. (2025). Numerical Investigation of the Reinforcement Effect of Fully Grouted Bolts on Layered Rock Masses Under Triaxial Loading with One Free Surface. Applied Sciences, 15(17), 9689. https://doi.org/10.3390/app15179689