Start-Up Strategies of MBBR and Effects on Nitrification and Microbial Communities in Low-Temperature Marine RAS
Abstract
1. Introduction
2. Materials and Methods
2.1. MBBR System and Experimental Design
2.2. Chemical Parameters and Analytical Methods
2.3. Microbial High-Throughput Sequencing and Analytical Methods
3. Results and Discussion
3.1. Effect of Inoculation Strategy on Reactor Start-Up in Cold Seawater
3.1.1. Effect of Nitrifying Bacteria Addition on MBBR Start-Up Performance
3.1.2. Effect of Mature Biofilm Inoculation on MBBR Start-Up Performance
3.1.3. Effect of Carrier-Attached Biofilm on MBBR Start-Up Performance
3.2. Effect of Operational Parameters on Reactor Start-Up in Cold Marine Wastewater
3.2.1. Effect of Salinity Gradient on MBBR Start-Up Performance
3.2.2. Effect of Hydraulic Retention Time on MBBR Start-Up Performance
3.3. Analysis of Microbial Community Structure and Diversity Under Different MBBR Start-Up Methods
3.3.1. Analysis of Microbial Community Abundance and Diversity
3.3.2. Analysis of Dominant Microbial Community Distribution
Dominant Microbes Distribution at Phylum Level
Dominant Microbial Distribution at Genus Level
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, P.; Ji, J.; Zhang, Y. Aquaculture extension system in China: Development, challenges, and prospects. Aquac. Rep. 2020, 17, 100339. [Google Scholar] [CrossRef]
- Chen, W.; Gao, S. Current status of industrialized aquaculture in China: A review. Environ. Sci. Pollut. Res. 2023, 30, 32278–32287. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.; Liu, H.; Zhang, Y.; Zhou, Q.; Wen, X.; Guo, W.; Zhang, Z. A systematic review on aquaculture wastewater: Pollutants, impacts, and treatment technology. Environ. Res. 2024, 262, 119793. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Turchini, G.M. Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. J. Clean. Prod. 2021, 297, 126604. [Google Scholar] [CrossRef]
- Young, B.; Delatolla, R.; Kennedy, K.; Laflamme, E.; Stintzi, A. Low temperature MBBR nitrification: Microbiome analysis. Water Res. 2017, 111, 224–233. [Google Scholar] [CrossRef]
- Zhu, X.; Chang, W.; Kong, Y.; Cai, Y.; Huang, Z.; Wu, T.; Zhang, M.; Nie, H.; Wang, Y. Effects of low temperature on the microbial community of MBBR filler biofilm. Water Sci. Technol. 2024, 90, 3166–3179. [Google Scholar] [CrossRef]
- Nengzi, L.; Li, H.; Ke, D.; Wu, X.; Meng, L.; Fang, Y.; Hu, Q. Influence of Temperature on the Removal Efficiency of Organic Matter and Ammonia from Micro-Polluted Source Water. Water 2023, 15, 2695. [Google Scholar] [CrossRef]
- Wu, Z.-C.; Lai, C.-Y.; Zhao, H.-P. Salinity acclimation of nitrifying microorganisms: Nitrification performance, microbial community, osmotic adaptation strategies. J. Hazard. Mater. Adv. 2024, 15, 100448. [Google Scholar] [CrossRef]
- Juliet, J.; Du, Z.; Sebastian, B. Ammonia-Oxidizing Bacteria Maintain Abundance but Lower amoA-Gene Expression during Cold Temperature Nitrification Failure in a Full-Scale Municipal Wastewater Treatment Plant. Microbiol. Spectr. 2023, 11, e2522–e2571. [Google Scholar]
- Bassin, J.P.; Kleerebezem, R.; Rosado, A.S.; van Loosdrecht, M.M.; Dezotti, M. Effect of Different Operational Conditions on Biofilm Development, Nitrification, and Nitrifying Microbial Population in Moving-Bed Biofilm Reactors. Environ. Sci. Technol. 2012, 46, 1546–1555. [Google Scholar] [CrossRef]
- Dauda, A.B.; Ajadi, A.; Tola-Fabunmi, A.S.; Akinwole, A.O. Waste production in aquaculture: Sources, components and managements in different culture systems. Aquac. Fish. 2019, 4, 81–88. [Google Scholar] [CrossRef]
- Li, C.; Liang, J.; Lin, X.; Xu, H.; Tadda, M.A.; Lan, L.; Liu, D. Fast start-up strategies of MBBR for mariculture wastewater treatment. J. Environ. Manag. 2019, 248, 109267. [Google Scholar] [CrossRef]
- Eshamuddin, M.; Zuccaro, G.; Nourrit, G.; Albasi, C. The influence of process operating conditions on the microbial community structure in the moving bed biofilm reactor at phylum and class level: A review. J. Environ. Chem. Eng. 2024, 12, 113266. [Google Scholar] [CrossRef]
- Gichana, Z.M.; Liti, D.; Waidbacher, H.; Zollitsch, W.; Drexler, S.; Waikibia, J. Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation. Aquac. Int. 2018, 26, 1541–1572. [Google Scholar] [CrossRef]
- Crab, R.; Avnimelech, Y.; Defoirdt, T.; Bossier, P.; Verstraete, W. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 2007, 270, 1–14. [Google Scholar] [CrossRef]
- Navada, S.; Vadstein, O. Salinity Acclimation Strategies in Nitrifying Bioreactors. Front. Mar. Sci. 2022, 9, 867592. [Google Scholar] [CrossRef]
- Duan, L.; Jiang, W.; Song, Y.; Xia, S.; Hermanowicz, S.W. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor. Bioresour. Technol. 2013, 148, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Chen, S. An experimental study on nitrification biofilm performances using a series reactor system. Aquac. Eng. 1999, 20, 245–259. [Google Scholar] [CrossRef]
- Lin, K.; Zhu, Y.; Zhang, Y.; Lin, H. Determination of ammonia nitrogen in natural waters: Recent advances and applications. Trends Environ. Anal. Chem. 2019, 24, e73. [Google Scholar] [CrossRef]
- Norwitz, G.; Keliher, P.N. Spectrophotometric determination of nitrite with composite reagents containing sulphanilamide, sulphanilic acid or 4-nitroaniline as the diazotisable aromatic amine and N-(1-naphthyl)ethylenediamine as the coupling agent. Analyst 1984, 109, 1281–1286. [Google Scholar] [CrossRef]
- Sánchez Rojas, F.; Cano Pavón, J.M. Spectrophotometry|Biochemical Applications; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 366–372. [Google Scholar]
- Qiu, H.; Zhao, W.; Zhao, Z.; Bai, M.; Bi, X.; Zhou, X.; Wang, Y.; Su, S.; Qin, Y.; Wang, C. Nitrogen removal activity and functional microbial community structure in IFAS, activated sludge, and MBBR systems under different salinity conditions. J. Water Process. Eng. 2025, 76, 108285. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Zhang, Z.; Luo, W.; Wu, H.; Zhang, L.; Zhang, X.; Zhao, T. Performance and microbial ecology of a novel moving bed biofilm reactor process inoculated with heterotrophic nitrification-aerobic denitrification bacteria for high ammonia nitrogen wastewater treatment. Bioresour. Technol. 2020, 315, 123813. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Q.; Song, Z.-Y.; Hu, P.; Jing, S.-Y.; Li, W.-P. Analysis of Microbial Community Characteristics and Function Prediction of MBBR with Magnetic Biocarriers at Low Temperature. Huan Jing Ke Xue = Huanjing Kexue 2023, 44, 889–899. [Google Scholar]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 (vol 37, pg 852, 2019). Nat. Biotechnol. 2019, 37, 1091. [Google Scholar]
- Tadda, M.A.; Li, C.; Gouda, M.; Abomohra, A.E.-F.; Shitu, A.; Ahsan, A.; Zhu, S.; Liu, D. Enhancement of nitrite/ammonia removal from saline recirculating aquaculture wastewater system using moving bed bioreactor. J. Environ. Chem. Eng. 2021, 9, 105947. [Google Scholar] [CrossRef]
- Hoang, V.; Delatolla, R.; Laflamme, E.; Gadbois, A. An investigation of moving bed biofilm reactor nitrification during long-term exposure to cold temperatures. Water Environ. Res. 2014, 86, 36–42. [Google Scholar] [CrossRef]
- Knapp, C.W.; Graham, D.W. Nitrite-oxidizing bacteria guild ecology associated with nitrification failure in a continuous-flow reactor. FEMS Microbiol. Ecol. 2007, 62, 195–201. [Google Scholar] [CrossRef]
- Hou, Z.; Dong, W.; Wang, H.; Zhao, Z.; Li, Y.; Liu, H.; Shi, K.; Liang, Q.; Peng, Y. Rapid start-up of mainstream partial denitrification /anammox and enhanced nitrogen removal through inoculation of precultured biofilm for treating low-strength municipal sewage. Bioresour. Technol. 2024, 411, 131320. [Google Scholar] [CrossRef]
- Zhu, S.; Shen, J.; Ruan, Y.; Guo, X.; Ye, Z.; Deng, Y.; Shi, M. The effects of different seeding ratios on nitrification performance and biofilm formation in marine recirculating aquaculture system biofilter. Environ. Sci. Pollut. Res. 2016, 23, 14540–14548. [Google Scholar] [CrossRef]
- Aslam, Z.; Alam, P.; Islam, R.; Khan, A.H.; Samaraweera, H.; Hussain, A.; Zargar, T.I. Recent developments in moving bed biofilm reactor (MBBR) for the treatment of phenolic wastewater—A review. J. Taiwan Inst. Chem. Eng. 2025, 166, 105517. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, Q.; Zeng, H.; Hu, X. Lake microbiome composition determines community adaptability to warming perturbations. Ecol. Process. 2024, 13, 33. [Google Scholar] [CrossRef]
- Song, Y.; Wang, P.; Li, G.; Zhou, D. Relationships between functional diversity and ecosystem functioning: A review. Ecol. Front. 2014, 34, 85–91. [Google Scholar] [CrossRef]
- Fouts, D.E.; Szpakowski, S.; Purushe, J.; Torralba, M.; Waterman, R.C.; MacNeil, M.D.; Alexander, L.J.; Nelson, K.E.; Kolokotronis, S.-O. Next Generation Sequencing to Define Prokaryotic and Fungal Diversity in the Bovine Rumen. PLoS ONE 2012, 7, e48289. [Google Scholar] [CrossRef]
- Amato, K.R.; Yeoman, C.J.; Kent, A.; Righini, N.; Carbonero, F.; Estrada, A.; Gaskins, H.R.; Stumpf, R.M.; Yildirim, S.; Torralba, M.; et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 2013, 7, 1344–1353. [Google Scholar] [CrossRef]
- Rurangwa, E.; Verdegem, M.C.J. Microorganisms in recirculating aquaculture systems and their management. Rev. Aquac. 2015, 7, 117–130. [Google Scholar] [CrossRef]
- Colombo, S.; Arioli, S.; Guglielmetti, S.; Lunelli, F.; Mora, D.; Simonet, P. Virome-associated antibiotic-resistance genes in an experimental aquaculture facility. FEMS Microbiol. Ecol. 2016, 92, fiw003. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Hoffman, N.G.; Morgan, M.T.; Matsen, F.A.; Fiedler, T.L.; Hall, R.W.; Ross, F.J.; McCoy, C.O.; Bumgarner, R.; Marrazzo, J.M.; et al. Bacterial communities in women with bacterial vaginosis: High resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS ONE 2012, 7, e37818. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.; Xu, X.; Zhang, C.; Wang, D.; Yang, F. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor. Chemosphere 2018, 203, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-D.; Noguera, D.R. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res. 2004, 38, 3275–3286. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Schlaeppi, K.; Van Der Heijden, M.G.A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 2018, 16, 567–576. [Google Scholar] [CrossRef]
- Kikuchi, S.; Fujitani, H.; Ishii, K.; Isshiki, R.; Sekiguchi, Y.; Tsuneda, S. Characterisation of bacteria representing a novel Nitrosomonas clade: Physiology, genomics and distribution of missing ammonia oxidizer. Environ. Microbiol. Rep. 2023, 15, 404–416. [Google Scholar] [CrossRef] [PubMed]
No. | Parameter | Detection Method | Instrument |
---|---|---|---|
1 | Ammonia Nitrogen (TAN) | Nessler’s Reagent Colorimetry [19] | UV-Vis Spectrophotometer (Carry 60 UV-Vis) |
2 | Nitrite Nitrogen (NO2−-N) | Nitrite-Naphthylethylenediamine Spectrophotometry [20] | UV-Vis Spectrophotometer (Carry 60 UV-Vis) |
3 | Nitrate Nitrogen (NO3−-N) | UV-Vis Spectrophotometry [21] | UV-Vis Spectrophotometer (Carry 60 UV-Vis) |
4 | DO | Dissolved Oxygen Meter Method | ortable Dissolved Oxygen Meter (JPB-607A) |
5 | pH and Temperature | pH Meter Method | pH Meter (ST100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Lu, S.; Du, J.; You, K.; Li, Q.; Liu, Y.; Liu, G.; Guo, J.; Liu, D. Start-Up Strategies of MBBR and Effects on Nitrification and Microbial Communities in Low-Temperature Marine RAS. Appl. Sci. 2025, 15, 9610. https://doi.org/10.3390/app15179610
Yuan J, Lu S, Du J, You K, Li Q, Liu Y, Liu G, Guo J, Liu D. Start-Up Strategies of MBBR and Effects on Nitrification and Microbial Communities in Low-Temperature Marine RAS. Applied Sciences. 2025; 15(17):9610. https://doi.org/10.3390/app15179610
Chicago/Turabian StyleYuan, Jixin, Shuaiyu Lu, Jianghui Du, Kun You, Qian Li, Ying Liu, Gaige Liu, Jianlin Guo, and Dezhao Liu. 2025. "Start-Up Strategies of MBBR and Effects on Nitrification and Microbial Communities in Low-Temperature Marine RAS" Applied Sciences 15, no. 17: 9610. https://doi.org/10.3390/app15179610
APA StyleYuan, J., Lu, S., Du, J., You, K., Li, Q., Liu, Y., Liu, G., Guo, J., & Liu, D. (2025). Start-Up Strategies of MBBR and Effects on Nitrification and Microbial Communities in Low-Temperature Marine RAS. Applied Sciences, 15(17), 9610. https://doi.org/10.3390/app15179610