SEM-Based Approaches for the Identification and Quantification of Anhydrite
Abstract
1. Introduction
- -
- clay swelling, preceding sulfate swelling, disintegrates the rock and creates water pathways to anhydrite;
- -
- clay minerals deliver water to anhydrite thanks to osmosis processes and because of their higher porosity with respect to pure anhydrite;
- -
- adsorption and absorption of water in clay minerals helps to increase the concentration of calcium sulfates in water, respectively, by hindering water circulation and by subtracting water molecules;
- -
- clay minerals act as chemical catalysts.
2. Materials and Methods
2.1. Tested Material
2.2. Experimental Methodology
2.2.1. Preliminary Mineralogical Characterization
2.2.2. SEM-Based Image Analysis Procedure for the Quantification of the Anhydrite
2.2.3. Use of O/S Atomic Ratio for the Discrimination of Anhydrite from Gypsum
2.2.4. Thermogravimetric Analysis
3. Results
3.1. Preliminary Mineralogical Characterization
3.2. SEM-Based Image Analysis Procedure for the Quantification of the Anhydrite
3.3. Use of O/S Atomic Ratio for the Discrimination of Anhydrite from Gypsum
3.4. Thermogravimetry
4. Discussion
4.1. Interpretation of the Results of SEM-Based Image Analysis Procedure
4.2. Interpretation of the Results of the Use of O/S Atomic Ratio
4.3. Critical Evaluation of the Proposed Methodologies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Sample Name | Rock Type | Weight (g) | Height (mm) | Diameter (mm) | Volume (mm3) | Bulk Density (g/cm3) | Modal Content of Anhydrite | Average Size of Anhydrite Crystals (μm) |
---|---|---|---|---|---|---|---|---|
1 | anhydrite | 3.33 | 16.12 | 9.72 | 1196.4 | 2.78 | ||
2 | anhydrite | 3.44 | 15.58 | 9.91 | 1202.79 | 2.86 | ||
3 | anhydrite | 2.56 | 16.06 | 9.82 | 1215.78 | 2.11 | ||
4 | anhydrite | 3.33 | 16.06 | 9.82 | 1215.78 | 2.74 | ||
5 | anhydrite | 3.57 | 16.83 | 9.89 | 1292.03 | 2.76 | ||
6 | anhydrite | 3.41 | 15.47 | 9.91 | 1193.78 | 2.86 | ||
7 | anhydrite | 3.47 | 16.35 | 9.83 | 1240 | 2.8 | ||
8 | anhydrite | 3.53 | 16.2 | 9.89 | 1245.35 | 2.83 | ||
9 | anhydrite | 3.18 | 14.72 | 9.91 | 1135.65 | 2.8 | ||
10 | anhydrite | 2.98 | 13.66 | 9.89 | 1050.34 | 2.83 | ||
11 | anhydrite | 3.04 | 13.81 | 9.91 | 1065.66 | 2.86 | ||
12 | anhydrite | 3.34 | 15.42 | 9.87 | 1180.85 | 2.82 | ||
13 | anhydrite | 2.94 | 13.46 | 9.88 | 1030.98 | 2.85 | 0.73 | 185 |
14 | anhydrite | 2.46 | 11.5 | 9.86 | 877.8 | 2.8 | 0.64 | 222 |
15 | anhydrite | 2.7 | 12.64 | 9.84 | 961.88 | 2.81 | 0.60 | 195 |
16 | anhydrite | 2.66 | 12.33 | 9.86 | 941.09 | 2.83 | 0.50 | 192 |
17 | anhydrite | 3.07 | 14.51 | 9.84 | 1103.32 | 2.79 | 0.64 | 220 |
18 | anhydrite | 3.09 | 14.36 | 9.88 | 1100.44 | 2.81 | 0.64 | 233 |
19 | anhydrite | 2.91 | 13.5 | 9.87 | 1032.9 | 2.81 | 0.63 | 232 |
20 | anhydrite | 2.86 | 13.34 | 9.85 | 1016.18 | 2.82 | 0.57 | 228 |
21 | anhydrite | 2.94 | 13.84 | 9.82 | 1049.18 | 2.8 | 0.50 | 230 |
22 | anhydrite | 2.7 | 12.43 | 9.84 | 944.3 | 2.86 | 0.54 | 223 |
23 | anhydrite | 2.7 | 12.32 | 9.85 | 938.86 | 2.87 | 0.67 | 222 |
24 | anhydrite | 2.41 | 11.75 | 9.81 | 888.06 | 2.71 | 0.31 | 204 |
25 | anhydrite | 2.32 | 10.76 | 9.87 | 822.45 | 2.82 | 0.68 | 205 |
26 | anhydrite | 2.77 | 13 | 9.84 | 988.19 | 2.81 | 0.53 | 233 |
27 | anhydrite | 2.9 | 13.63 | 9.86 | 1041.34 | 2.78 | 0.54 | 213 |
28 | anhydrite | 2.71 | 12.47 | 9.86 | 952.55 | 2.84 | 0.61 | 227 |
29 | anhydrite | 2.44 | 11.71 | 9.84 | 890.86 | 2.74 | 0.52 | 227 |
30 | anhydrite | 2.56 | 11.88 | 9.84 | 903.38 | 2.83 | 0.59 | 190 |
31 | anhydrite | 2.73 | 12.73 | 9.83 | 965.53 | 2.82 | 0.66 | 211 |
32 | anhydrite | 2.23 | 10.36 | 9.83 | 786.51 | 2.84 | 0.69 | 217 |
33 | anhydrite | missing data | ||||||
34 | gypsum | 2.22 | 12.73 | 9.8 | 960.29 | 2.31 | ||
35 | gypsum | 2.45 | 14.26 | 9.81 | 1077.34 | 2.28 | ||
36 | gypsum | 2.53 | 14.43 | 9.84 | 1097.72 | 2.31 | ||
37 | gypsum | 2.24 | 13.12 | 9.81 | 991.91 | 2.26 | ||
38 | gypsum | 2.41 | 13.63 | 9.84 | 1036.87 | 2.33 | ||
39 | gypsum | 2.3 | 13.14 | 9.82 | 994.27 | 2.31 | ||
40 | gypsum | 2.14 | 12.42 | 9.81 | 938.68 | 2.28 | ||
41 | gypsum | 1.84 | 10.78 | 9.7 | 796.59 | 2.3 | ||
42 | gypsum | 1.47 | 8.5 | 9.61 | 616.75 | 2.39 | ||
43 | gypsum | 1.58 | 9.09 | 9.81 | 686.61 | 2.3 | ||
44 | gypsum | 1.35 | 7.9 | 9.7 | 583.19 | 2.31 | ||
45 | gypsum | 1.51 | 9.26 | 9.64 | 675.39 | 2.24 | ||
46 | gypsum | missing data | ||||||
47 | anhydrite | 2.97 | 13.6 | 9.87 | 1039.59 | 2.86 | 0.52 | 169 |
48 | anhydrite | 2.57 | 12.24 | 9.86 | 934.03 | 2.75 | 0.62 | 169 |
49 | anhydrite | 2.75 | 12.68 | 9.84 | 964.92 | 2.85 | 0.64 | 164 |
50 | anhydrite | 2.57 | 11.86 | 9.84 | 902.52 | 2.85 | 0.67 | 170 |
51 | anhydrite | 2.64 | 13.37 | 9.8 | 1009.09 | 2.62 | 0.39 | 165 |
52 | anhydrite | 2.57 | 12.55 | 9.86 | 957.55 | 2.69 | 0.53 | 166 |
53 | anhydrite | 2.61 | 13.7 | 9.84 | 1041.59 | 2.51 | 0.38 | 151 |
54 | anhydrite | 2.54 | 13.38 | 9.83 | 1016.13 | 2.5 | 0.45 | 165 |
55 | anhydrite | 2.77 | 13.53 | 9.84 | 1029.26 | 2.69 | 0.53 | 172 |
56 | anhydrite | 2.5 | 13.4 | 9.85 | 1020.75 | 2.45 | 0.23 | 145 |
57 | anhydrite | 2.71 | 13.43 | 9.83 | 1018.45 | 2.66 | 0.41 | 165 |
58 | anhydrite | 2.55 | 13.6 | 9.84 | 1033.79 | 2.47 | 0.26 | 153 |
59 | anhydrite | 2.64 | 13.6 | 9.84 | 1034.14 | 2.55 | 0.20 | 155 |
60 | anhydrite | 2.8 | 12.91 | 9.85 | 984.68 | 2.84 | 0.70 | 184 |
61 | anhydrite | 2.77 | 13.37 | 9.78 | 1003.79 | 2.75 | 0.57 | 159 |
62 | anhydrite | 2.72 | 13.88 | 9.7 | 1025 | 2.65 | 0.39 | 150 |
63 | anhydrite | 2.79 | 13.6 | 9.85 | 1035.89 | 2.7 | 0.51 | 155 |
64 | anhydrite | 2.4 | 12.52 | 9.65 | 916.08 | 2.62 | 0.21 | 127 |
65 | anhydrite | 2.71 | 12.45 | 9.84 | 946.39 | 2.87 | 0.65 | 178 |
66 | anhydrite | 2.93 | 14.4 | 9.82 | 1090.51 | 2.69 | 0.59 | 142 |
67 | anhydrite | 3.27 | 15.39 | 9.84 | 1171.15 | 2.79 | 0.65 | 173 |
68 | anhydrite | 3.02 | 14.61 | 9.81 | 1103.4 | 2.74 | 0.57 | 166 |
69 | anhydrite | 2.31 | 12.75 | 9.8 | 961.73 | 2.41 | 0.28 | 144 |
70 | anhydrite | 2.86 | 14.51 | 9.83 | 1101.45 | 2.59 | 0.61 | 140 |
71 | anhydrite | 2.8 | 12.7 | 9.83 | 963.58 | 2.91 | 0.67 | 168 |
72 | anhydrite | 2.03 | 11.23 | 9.81 | 848.77 | 2.39 | 0.32 | 129 |
73 | anhydrite | 2.12 | 11.69 | 9.81 | 883.27 | 2.4 | 0.19 | 133 |
74 | anhydrite | 2.49 | 11.54 | 9.83 | 876.64 | 2.84 | 0.54 | 152 |
75 | anhydrite | 1.99 | 10.49 | 9.78 | 787.23 | 2.52 | 0.33 | 140 |
76 | anhydrite | 2.54 | 11.71 | 9.85 | 892.57 | 2.84 | 0.58 | 153 |
77 | anhydrite | 2.52 | 11.66 | 9.8 | 879.51 | 2.86 | 0.71 | 155 |
78 | anhydrite | 3.15 | 16.74 | 9.82 | 1266.99 | 2.48 | 0.22 | 128 |
79 | anhydrite | 2.63 | 14.51 | 9.8 | 1095.48 | 2.4 | 0.30 | 122 |
80 | anhydrite | 2.79 | 13.13 | 9.8 | 989.97 | 2.81 | 0.69 | 152 |
81 | anhydrite | 2.82 | 13.26 | 9.82 | 1004.62 | 2.81 | 0.66 | 137 |
82 | anhydrite | 2.7 | 12.85 | 9.82 | 972.24 | 2.77 | 0.66 | 135 |
83 | anhydrite | 2.54 | 12.02 | 9.85 | 916.19 | 2.77 | 0.57 | 138 |
84 | anhydrite | 2.69 | 12.76 | 9.83 | 968.31 | 2.78 | 0.61 | 140 |
85 | anhydrite | 2.34 | 10.87 | 9.81 | 820.78 | 2.85 | 0.69 | 135 |
86 | anhydrite | 2.56 | 11.88 | 9.86 | 906.19 | 2.83 | 0.65 | 133 |
87 | anhydrite | 2.8 | 13.01 | 9.69 | 960.09 | 2.91 | 0.59 | 145 |
88 | anhydrite | 2.97 | 14.04 | 9.81 | 1060.58 | 2.8 | 0.63 | 148 |
89 | anhydrite | 2.55 | 12.19 | 9.89 | 936.45 | 2.72 | 0.64 | 132 |
90 | anhydrite | 3.15 | 14.67 | 9.79 | 1104.92 | 2.85 | 0.59 | 142 |
References
- Steiner, W. Sulphate-Bearing Rocks in Tunnels—Lessons from Field Observations and in-Situ Swelling Pressures. Geomech. Tunn. 2020, 13, 286–301. [Google Scholar] [CrossRef]
- Ramon, A.; Alonso, E.E. Heave of a Building Induced by Swelling of an Anhydritic Triassic Claystone. Rock Mech. Rock Eng. 2018, 51, 2881–2894. [Google Scholar] [CrossRef]
- Taherdangkoo, R.; Abdallah, N.M.; Butscher, C. Comparative Evaluation of Hydro-Mechanical Models in Swelling of Clay-Sulfate Rocks: Case Study of Staufen, Germany. Comput. Geotech. 2024, 170, 106286. [Google Scholar] [CrossRef]
- Ramon, A.; Alonso, E.E. Heave of a Railway Bridge: Modelling Gypsum Crystal Growth. Geotechnique 2013, 63, 720–732. [Google Scholar] [CrossRef]
- Alonso, E.E.; Berdugo, I.R.; Ramon, A. Extreme Expansive Phenomena in Anhydritic-Gypsiferous Claystone: The Case of Lilla Tunnel. Geotechnique 2013, 63, 584–612. [Google Scholar] [CrossRef]
- Chiaverio, F.; Püschner, U.R. 16 Years of Operation of a Road Tunnel in Swelling Rock—Results of Special Measures. Geomech. Tunn. 2024, 17, 112–125. [Google Scholar] [CrossRef]
- Butscher, C.; Mutschler, T.; Blum, P. Swelling of Clay-Sulfate Rocks: A Review of Processes and Controls. Rock Mech. Rock Eng. 2016, 49, 1533–1549. [Google Scholar] [CrossRef]
- Ramon, A.; Alonso, E.E.; Olivella, S. Hydro-Chemo-Mechanical Modelling of Tunnels in Sulfated Rocks. Geotechnique 2017, 67, 968–982. [Google Scholar] [CrossRef]
- Butscher, C.; Breuer, S.; Blum, P. Swelling Laws for Clay-Sulfate Rocks Revisited. Bull. Eng. Geol. Environ. 2018, 77, 399–408. [Google Scholar] [CrossRef]
- Taherdangkoo, R.; Nagel, T.; Tang, A.M.; Pereira, J.-M.; Butscher, C. Coupled Hydro-Mechanical Modeling of Swelling Processes in Clay–Sulfate Rocks. Rock Mech. Rock Eng. 2022, 55, 7489–7501. [Google Scholar] [CrossRef]
- Nousiou, A.; Anagnostou, G. A Chemo-Mechanical Model of the Swelling of Anhydritic Claystones. Acta Geotech. 2025, 20, 823–841. [Google Scholar] [CrossRef]
- Caselle, C.; Bonetto, S.M.R.; Paschetto, A.; Costa, E.; Vianello, D.; Mosca, P.; Frasca, G.; Tarragona, A.R.; Alonso, E.; Baud, P. SALT Project: Preliminary Physical and Mineralogical Characterization of Alpine Sulphates for Geological and Geotechnical Modeling. In New Challenges in Rock Mechanics and Rock Engineering; CRC Press: Boca Raton, FL, USA, 2024; ISBN 978-1-003-42923-4. [Google Scholar]
- Steiner, W. Swelling Rock in Tunnels: Rock Characterization, Effect of Horizontal Stresses and Construction Procedures. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30, 361–380. [Google Scholar] [CrossRef]
- Rauh, F.; Thuro, K. Investigations on the Swelling Behavior of Pure Anhydrites. In Proceedings of the 1st Canada-US Rock Mechanics Symposium—Rock Mechanics Meeting Society’s Challenges and Demands, Vancouver, BC, Canada, 27–31 May 2007; Volume 1, pp. 755–761. [Google Scholar]
- Nousiou, A.; Pimentel, E.; Anagnostou, G. Experimental Investigation into the Effect of Porosity on the Strains Developing during Anhydrite to Gypsum Transformation. Geomech. Energy Environ. 2024, 40, 100601. [Google Scholar] [CrossRef]
- Butscher, C.; Huggenberger, P.; Zechner, E. Impact of Tunneling on Regional Groundwater Flow and Implications for Swelling of Clay–Sulfate Rocks. Eng. Geol. 2011, 117, 198–206. [Google Scholar] [CrossRef]
- Butscher, C.; Huggenberger, P.; Zechner, E.; Einstein, H.H. Relation between Hydrogeological Setting and Swelling Potential of Clay-Sulfate Rocks in Tunneling. Eng. Geol. 2011, 122, 204–214. [Google Scholar] [CrossRef]
- Pimentel, E.; Wanninger, T.; Anagnostou, G. Thermal Control of the Swelling of Anhydritic Claystones in Tunnelling. In Proceedings of the Eurock 2020—Hard Rock Engineering, Virtual, 14–19 June 2020. [Google Scholar]
- Pimentel, E. Innovative Swelling Testing Techniques. In Proceedings of the ISRM European Rock Mechanics Symposium (EUROCK 2024), Alicante, Spain, 15–19 July 2024; pp. 822–827. [Google Scholar]
- Barré, G.; Strzerzynski, P.; Michels, R.; Guillot, S.; Cartigny, P.; Thomassot, E.; Lorgeoux, C.; Assayag, N.; Truche, L. Tectono-Metamorphic Evolution of an Evaporitic Décollement as Recorded by Mineral and Fluid Geochemistry: The “Nappe Des Gypses” (Western Alps) Case Study. Lithos 2020, 358–359, 105419. [Google Scholar] [CrossRef]
- Dela Pierre, F.; Polino, R.; Gattiglio, M.; Carraro, F.; Fioraso, G.; Giardino, M. Foglio 132-152–153 Bardonecchia della Carta Geologica d’Italia alla Scala 1:50.000; Litografia Geda: Turin, Italy, 2002. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Caselle, C.; Bonetto, S.; Vagnon, F.; Costanzo, D. Dependence of Macro Mechanical Behaviour of Gypsum on Micro-Scale Grain-Size Distribution. Geotech. Lett. 2019, 9, 290–298. [Google Scholar] [CrossRef]
- Umili, G.; Taboni, B.; Ferrero, A.M. Influence of Uncertainties: A Focus on Block Volume and Shape Assessment for Rockfall Analysis. J. Rock Mech. Geotech. Eng. 2023, 15, 2250–2263. [Google Scholar] [CrossRef]
- Lamas, L.; Estaire, J.; Harrison, J.P.; Maca, N.; Pinto, P.; Walter, H. Eurocode 7—Second Generation: Rock Engineering. In Geotechnical Engineering Challenges to Meet Current and Emerging Needs of Society; CRC Press: Boca Raton, FL, USA, 2024; ISBN 978-1-003-43174-9. [Google Scholar]
Sample Name | Gypsum (%) | Calcium Sulfate Hemihydrate (%) | Anhydrite (%) | Insoluble Phases (%) | Anhydrite—Estimated from SEM-Based Image Analysis (%) |
---|---|---|---|---|---|
56 | 28.21 | 28.35 | 24.98 | 18.47 | 22.50 |
86 | 5.51 | 4.41 | 74.56 | 15.53 | 64.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordano, E.; Paschetto, A.; Costa, E.; Bonetto, S.M.R.; Mosca, P.; Frasca, G.; Caselle, C. SEM-Based Approaches for the Identification and Quantification of Anhydrite. Appl. Sci. 2025, 15, 9584. https://doi.org/10.3390/app15179584
Giordano E, Paschetto A, Costa E, Bonetto SMR, Mosca P, Frasca G, Caselle C. SEM-Based Approaches for the Identification and Quantification of Anhydrite. Applied Sciences. 2025; 15(17):9584. https://doi.org/10.3390/app15179584
Chicago/Turabian StyleGiordano, Emmanuele, Arianna Paschetto, Emanuele Costa, Sabrina M. R. Bonetto, Pietro Mosca, Gianluca Frasca, and Chiara Caselle. 2025. "SEM-Based Approaches for the Identification and Quantification of Anhydrite" Applied Sciences 15, no. 17: 9584. https://doi.org/10.3390/app15179584
APA StyleGiordano, E., Paschetto, A., Costa, E., Bonetto, S. M. R., Mosca, P., Frasca, G., & Caselle, C. (2025). SEM-Based Approaches for the Identification and Quantification of Anhydrite. Applied Sciences, 15(17), 9584. https://doi.org/10.3390/app15179584