Biomechanical Insights into the Variation of Maxillary Arch Dimension with Clear Aligners: A Finite Element Analysis-Based Scoping Review
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Type of Study
2.2. Review Question
2.3. Inclusion and Exclusion Criteria
2.4. Search Strategy and Study Selection
2.5. Study Selection and Data Collection
2.6. Risk of Bias
3. Results
4. Discussion
4.1. Geometric Model Construction
4.2. Dimensional Fidelity and Anatomical Assumptions
4.3. Software Platforms Used
4.4. Influence of Aligner Thickness on Expansion Forces
4.5. Role of Attachment Configuration in Movement Control
4.6. Movement Patterns and Sequencing Strategies
4.7. Integration and Implications
4.8. Limitations of Finite Element Models
4.9. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FEA | Finite Element Analysis |
CA | Clear Aligners |
References
- D’Antò, V.; De Simone, V.; Caruso, S.; Bucci, P.; Valletta, R.; Rongo, R.; Bucci, R. Effects of clear aligners treatment in growing patients: A systematic review. Front. Oral Health 2025, 5, 1512838. [Google Scholar] [CrossRef]
- Caccianiga, P.; Nota, A.; Tecco, S.; Ceraulo, S.; Caccianiga, G. Efficacy of Home Oral-Hygiene Protocols during Orthodontic Treatment with Multibrackets and Clear Aligners: Microbiological Analysis with Phase-Contrast Microscope. Healthcare 2022, 10, 2255. [Google Scholar] [CrossRef]
- Putrino, A.; Marinelli, E.; Raso, M.; Calace, V.; Zaami, S. Clear Aligners and Smart Eye Tracking Technology as a New Communication Strategy between Ethical and Legal Issues. Life 2023, 13, 297. [Google Scholar] [CrossRef]
- Jaber, S.T.; Hajeer, M.Y.; Sultan, K. Treatment Effectiveness of Clear Aligners in Correcting Complicated and Severe Malocclusion Cases Compared to Fixed Orthodontic Appliances: A Systematic Review. Cureus 2023, 15, e38311. [Google Scholar] [CrossRef] [PubMed]
- Castroflorio, T.; Sedran, A.; Parrini, S.; Garino, F.; Reverdito, M.; Capuozzo, R.; Mutinelli, S.; Grybauskas, S.; Vaitiekūnas, M.; Deregibus, A. Predictability of orthodontic tooth movement with aligners: Effect of treatment design. Prog. Orthod. 2023, 24, 2. [Google Scholar] [CrossRef] [PubMed]
- Lione, R.; Cretella Lombardo, E.; Paoloni, V.; Meuli, S.; Pavoni, C.; Cozza, P. Upper arch dimensional changes with clear aligners in the early mixed dentition: A prospective study. J. Orofac. Orthop. 2023, 84, 33–40. [Google Scholar] [CrossRef]
- Inchingolo, A.M.; Inchingolo, A.D.; Carpentiere, V.; Del Vecchio, G.; Ferrante, L.; Di Noia, A.; Palermo, A.; Di Venere, D.; Dipalma, G.; Inchingolo, F. Predictability of Dental Distalization with Clear Aligners: A Systematic Review. Bioengineering 2023, 10, 1390. [Google Scholar] [CrossRef] [PubMed]
- Aragon, M.L.S.C.; Mendes Ribeiro, S.M.; Fernandes Fagundes, N.C.; Normando, D. Effectiveness of dental arch expansion in the orthodontic treatment with clear aligners: A scoping review. Eur. J. Orthod. 2024, 46, cjae059. [Google Scholar] [CrossRef]
- Staderini, E.; Patini, R.; Meuli, S.; Camodeca, A.; Guglielmi, F.; Gallenzi, P. Indication of clear aligners in the early treatment of anterior crossbite: A case series. Dent. Press J. Orthod. 2020, 25, 33–43. [Google Scholar] [CrossRef]
- Shahabuddin, N.; Kang, J.; Jeon, H.H. Predictability of the deep overbite correction using clear aligners. Am. J. Orthod. Dentofac. Orthop. 2023, 163, 793–801. [Google Scholar] [CrossRef]
- Blundell, H.L.; Weir, T.; Byrne, G. Predictability of anterior open bite treatment with Invisalign. Am. J. Orthod. Dentofac. Orthop. 2023, 164, 674–681. [Google Scholar] [CrossRef]
- Meade, M.J.; Weir, T. Clinical efficacy of the Invisalign mandibular advancement appliance: A retrospective investigation. Am. J. Orthod. Dentofac. Orthop. 2024, 165, 503–512. [Google Scholar] [CrossRef]
- Loberto, S.; Pavoni, C.; Fanelli, S.; Lugli, L.; Cozza, P.; Lione, R. Predictability of expansion movements performed by clear aligners in mixed dentition in both arches: A retrospective study on digital casts. BMC Oral Health 2024, 24, 694. [Google Scholar] [CrossRef]
- Bahammam, M.; El-Bialy, T. Comparison of alveolar bone thickness and height after slow expansion using quad-helix or clear aligners. Saudi Dent. J. 2023, 35, 255–262. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, L.; Li, C.; Yi, F.; Lei, L.; Lu, Y. Treatment effects after maxillary expansion using invisalign first system vs. acrylic splint expander in mixed dentition: A prospective cohort study. BMC Oral Health 2023, 23, 598. [Google Scholar] [CrossRef]
- Magomedov, I.; Khaliev, M.; Elmurzaev, A. Application of Finite Element Analysis in medicine. J. Phys. Conf. Ser. 2020, 1679, 022057. [Google Scholar] [CrossRef]
- Romanyk, D.L.; Collins, C.R.; Lagravere, M.O.; Toogood, R.W.; Major, P.W.; Carey, J.P. Role of the midpalatal suture in FEA simulations of maxillary expansion treatment for adolescents: A review. Int. Orthod. 2013, 119, 38. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.R.; Kambalyal, P.; Jain, M.; Khandelwal, P. Revolution in Orthodontics: Finite element analysis. J. Int. Soc. Prev. Community Dent. 2016, 6, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Nazeri, A.; Castillo, J.A., Jr.; Ghaffari-Rafi, A. Impact of Molar Distalization with Clear Aligners on Periodontal Ligament Stress and Root Resorption Risk: A Systematic Review of 3D Finite Element Analysis Studies. Dent. J. 2025, 13, 65. [Google Scholar] [CrossRef]
- Ahmed, T.; Padmanabhan, S.; Pottipalli Sathyanarayana, H. Effects of varying attachment positions on palatal displacement of maxillary incisors with clear aligner therapy: A three-dimensional finite element analysis. J. Orofac. Orthop. 2023, 84, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Mao, B.; Tian, Y.; Li, J.; Zhou, Y. Expansion rebound deformation of clear aligners and its biomechanical influence: A three-dimensional morphologic analysis and finite element analysis study. Angle Orthod. 2023, 93, 572–579. [Google Scholar] [CrossRef]
- Putrino, A.; Abed, M.R.; Lilli, C. Clear aligners with differentiated thickness and without attachments—A case report. J. Clin. Exp. Dent. 2022, 14, e514–e519. [Google Scholar] [CrossRef]
- Elshazly, T.M.; Bourauel, C.; Ismail, A.; Ghoraba, O.; Aldesoki, M.; Salvatori, D.; Elattar, H.; Alhotan, A.; Alkabani, Y. Effect of material composition and thickness of orthodontic aligners on the transmission and distribution of forces: An in vitro study. Clin. Oral Investig. 2024, 28, 258. [Google Scholar] [CrossRef]
- Li, N.; Wang, C.; Yang, M.; Chen, D.; Tang, M.; Li, D.; Qiu, S.; Chen, Q.; Feng, Y. Effects of different tooth movement patterns and aligner thicknesses on maxillary arch expansion with clear aligners: A three-dimensional finite element study. Front. Bioeng. Biotechnol. 2024, 12, 1424319. [Google Scholar] [CrossRef]
- Baneshi, M.; O’Malley, L.; El-Angbawi, A.; Thiruvenkatachari, B. Effectiveness of clear orthodontic aligners in correcting malocclusions: A systematic review and meta-analysis. J. Evid. Based Dent. Pract. 2025, 25, 102081. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xu, B.; Fang, D.; Yang, K. Impacts of surface wear of attachments on maxillary canine distalization with clear aligners: A three-dimensional finite element study. Front. Bioeng. Biotechnol. 2025, 13, 1530133. [Google Scholar] [CrossRef]
- Burashed, H.; Sebai, R.E. Quantifying the efficacy of overbite reduction in patients treated with clear aligners using optimized versus conventional attachments. J. World Fed. Orthod. 2023, 12, 105–111. [Google Scholar] [CrossRef]
- Eliades, T.; Panayi, N.; Papageorgiou, S.N. From biomimetics to smart materials and 3D technology: Applications in orthodontic bonding, debonding, and appliance design or fabrication. Jpn. Dent. Sci. Rev. 2023, 59, 403–411. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Yao, S.; Jiang, W.; Wang, C.; He, Y.; Wang, C.; Huang, L. Improvements of tooth movement efficiency and torque control in expanding the arch with clear aligners: A finite element analysis. Front. Bioeng. Biotechnol. 2023, 11, 1120535. [Google Scholar] [CrossRef]
- Zhang, Y.; Hui, S.; Gui, L.; Jin, F. Effects of upper arch expansion using clear aligners on different stride and torque: A three-dimensional finite element analysis. BMC Oral Health 2023, 23, 891. [Google Scholar] [CrossRef]
- Karslı, N.; Ocak, I.; Akyıldız, M.; Gögen, H.; Dalci, O. Evaluation of the effect of different attachment configurations on molar teeth in maxillary expansion with clear aligners—A finite element analysis. BMC Oral Health 2024, 24, 921. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, L.; Wang, W.; Deng, W.W. Effects of different patterns of movement for correcting a deep curve of Spee with clear aligners on the anterior teeth: A finite element analysis. BMC Oral Health 2024, 24, 217. [Google Scholar] [CrossRef]
- Aromataris, E.; Lockwood, C.; Porritt, K.; Pilla, B.; Jordan, Z. (Eds.) JBI Manual for Evidence Synthesis; JBI: Adelaide, Australia, 2024; Available online: https://synthesismanual.jbi.global (accessed on 27 February 2024).
- Mathur, V.P.; Duggal, I.; Atif, M.; Tewari, N.; Rahul, M.; Duggal, R.; Chawla, A. Development and validation of risk of bias tool for the use of finite element analysis in dentistry (ROBFEAD). Comput. Methods Biomech. Biomed. Eng. 2023, 26, 1822–1833. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef] [PubMed]
- Alahmari, M.; Alahmari, M.; Almuaddi, A.; Abdelmagyd, H.; Rao, K.; Hamdoon, Z.; Alsaegh, M.; Chaitanya, N.C.S.K.; Shetty, S. Accuracy of artificial intelligence-based segmentation in maxillofacial structures: A systematic review. BMC Oral Health 2025, 25, 350. [Google Scholar] [CrossRef]
- Xiang, B.; Lu, J.; Yu, J. Evaluating tooth segmentation accuracy and time efficiency in CBCT images using artificial intelligence: A systematic review and Meta-analysis. J. Dent. 2024, 146, 105064. [Google Scholar] [CrossRef] [PubMed]
- Vurtur Badarinath, P.; Chierichetti, M.; Davoudi Kakhki, F. A Machine Learning Approach as a Surrogate for a Finite Element Analysis: Status of Research and Application to One Dimensional Systems. Sensors 2021, 21, 1654. [Google Scholar] [CrossRef]
- Walmsley, C.W.; McCurry, M.R.; Clausen, P.D.; McHenry, C.R. Beware the black box: Investigating the sensitivity of FEA simulations to modelling factors in comparative biomechanics. PeerJ 2013, 1, e204. [Google Scholar] [CrossRef]
- Ratzmann, A.; Weßling, M.; Krey, K.F. Design, numerical simulation, and in vitro examination of a CAD/CAM-fabricated active orthodontic treatment element. Int. J. Comput. Dent. 2023, 26, 125–136. [Google Scholar] [CrossRef]
- Kennedy, S.M.; Vasanthanathan, A.; Jeen Robert, R.B.; Vignesh Moorthi Pandian, A. Impact of mechanical engineering innovations in biomedical advancements. In Vitro Model 2024, 3, 5–18. [Google Scholar] [CrossRef]
- Shobha, E.S.; Raghuveer, H.P.; Nagesh, S.; Nainoor, N.; Shaju, N.; Punyakoti, N.S. Stress Propagation in the Craniofacial Skeleton on Frontal Impact-A Virtual Simulation Study. J. Maxillofac. Oral Surg. 2023, 22, 1027–1033. [Google Scholar] [CrossRef]
- Nimmawitt, P.; Aliyu, A.A.A.; Lohwongwatana, B.; Arunjaroensuk, S.; Puncreobutr, C.; Mattheos, N.; Pimkhaokham, A. Understanding the Stress Distribution on Anatomic Customized Root-Analog Dental Implant at Bone-Implant Interface for Different Bone Densities. Materials 2022, 15, 6379. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Hua, X.; Yang, L.; Aoki, K.; Shang, S.; Lin, D. A systematic review of biomechanics of clear aligners by finite element analysis. BMC Oral Health 2025, 25, 1026. [Google Scholar] [CrossRef] [PubMed]
- Pegg, E.C.; Gill, H.S. An open source software tool to assign the material properties of bone for ABAQUS finite element simulations. J. Biomech. 2016, 49, 3116–3121. [Google Scholar] [CrossRef] [PubMed]
- Elshazly, T.M.; Bourauel, C.; Aldesoki, M.; Ghoneima, A.; Abuzayda, M.; Talaat, W.; Talaat, S.; Keilig, L. Computer-aided finite element model for biomechanical analysis of orthodontic aligners. Clin. Oral Investig. 2023, 27, 115–124. [Google Scholar] [CrossRef]
- Tang, Z.; Long, H.; Liu, L.; Lai, W.; Jian, F. Influence of attachment position and torque overcorrection on arch expansion in clear aligner treatment: A three-dimensional finite element analysis. Angle Orthod. 2025, 95, 397–404. [Google Scholar] [CrossRef]
- Ma, S.; Wang, Y. Clinical outcomes of arch expansion with Invisalign: A systematic review. BMC Oral Health 2023, 23, 587. [Google Scholar] [CrossRef]
- Lin, T.W.; Zhang, J.L.; Chen, L.; Chen, Z.; Ai, H.; Mai, Z.H. Impact of Invisalign® first system on molar width and incisor torque in malocclusion during the mixed dentition period. Medicine 2024, 103, e38742. [Google Scholar] [CrossRef]
- Vandeloise, J.; Albert, A.; Herman, R.; Eldafrawy, M.; Sanchez, C.; Seidel, L.; Bruwier, A.; Mainjot, A. Influence of Operator, Tool, Dental Loupes, and Tooth Position on Enamel Loss and Composite Remnants After Removal of Composite Attachments for Orthodontic Clear Aligners: An Experimental Study Using 3D Profilometry. J. Adhes. Dent. 2024, 26, 275–282. [Google Scholar] [CrossRef]
- Nucera, R.; Dolci, C.; Bellocchio, A.M.; Costa, S.; Barbera, S.; Rustico, L.; Farronato, M.; Militi, A.; Portelli, M. Effects of Composite Attachments on Orthodontic Clear Aligners Therapy: A Systematic Review. Materials 2022, 15, 533. [Google Scholar] [CrossRef]
- Keilig, L.; Brieskorn, L.; Schwarze, J.; Schupp, W.; Bourauel, C.; Konermann, A. Treatment Efficiency of Maxillary and Mandibular Orovestibular Tooth Expansion and Compression Movements with the Invisalign® System in Adolescents and Adults. J. Clin. Med. 2024, 13, 1267. [Google Scholar] [CrossRef]
- Lin, E.; Julien, K.; Kesterke, M.; Buschang, P.H. Differences in finished case quality between Invisalign and traditional fixed appliances. Angle Orthod. 2022, 92, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Putrino, A.; Marinelli, E.; Zaami, S. The Power of Customized Clear Aligners in Closing Molar Edentulous Spaces: Clinical and Medico-Legal Considerations in a Scoping Review and Case Report. J. Pers. Med. 2023, 13, 1389. [Google Scholar] [CrossRef]
- Lione, R.; Paoloni, V.; Bartolommei, L.; Gazzani, F.; Meuli, S.; Pavoni, C.; Cozza, P. Maxillary arch development with Invisalign system. Angle Orthod. 2021, 91, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Bruni, A.; Ferrillo, M.; Gallo, V.; Parrini, S.; Garino, F.; Castroflorio, T.; Deregibus, A. Efficacy of clear aligners vs rapid palatal expanders on palatal volume and surface area in mixed dentition patients: A randomized controlled trial. Am. J. Orthod. Dentofac. Orthop. 2024, 166, 203–214. [Google Scholar] [CrossRef]
- Aldesoki, M.; Keilig, L.; Alhotan, A.; Diab, A.H.; Elshazly, T.M.; Bourauel, C. From model validation to biomechanical analysis: In silico study of multirooted root analogue implants using 3D finite element analysis. J. Mech. Behav. Biomed. Mater. 2025, 164, 106896. [Google Scholar] [CrossRef]
- Boonrueng, W.; Phuricharoenwong, P.; Kumma, P.; Kunarak, P.; Lekvijittada, K.; Sombuntham, N.; Sukjamsri, C. Evaluating Clear Aligner Performance by Bone Strain Measurement: A Novel Experimental Approach. Ann. Biomed. Eng. 2025, 53, 1615–1626. [Google Scholar] [CrossRef]
- Mathur, V.P.; Atif, M.; Duggal, I.; Tewari, N.; Duggal, R.; Chawla, A. Reporting guidelines for in-silico studies using finite element analysis in medicine (RIFEM). Comput. Methods Programs Biomed. 2022, 216, 106675. [Google Scholar] [CrossRef]
- Martinello, P.A.; Cartagena-Molina, A.F.; Capelletti, L.K.; Fernandes, B.V.; Franco, A.P.G.O.; Mercuri, E.G.F.; Bombarda, N.H.C. Adding mechanobiological cell features to finite element analysis of an immediately loaded dental implant. Eur. J. Oral Sci. 2024, 132, e12992. [Google Scholar] [CrossRef]
- Prado, F.B.; Rossi, A.C.; Freire, A.R.; Ferreira Caria, P.H. The application of finite element analysis in the skull biomechanics and dentistry. Indian J. Dent. Res. 2014, 25, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Meslier, Q.A.; Shefelbine, S.J. Using Finite Element Modeling in Bone Mechanoadaptation. Curr. Osteoporos. Rep. 2023, 21, 105–116. [Google Scholar] [CrossRef]
- Seo, J.H.; Kim, M.S.; Lee, J.H.; Eghan-Acquah, E.; Jeong, Y.H.; Hong, M.H.; Kim, B.; Lee, S.J. Biomechanical Efficacy and Effectiveness of Orthodontic Treatment with Transparent Aligners in Mild Crowding Dentition-A Finite Element Analysis. Materials 2022, 15, 3118. [Google Scholar] [CrossRef]
- Özcan, C.; Lestriez, P.; Özcan, M.; Josset, Y. Finite element analysis of dental structures: The role of mandibular kinematics and model complexity. Front. Dent. Med. 2024, 5, 1461909. [Google Scholar] [CrossRef]
- Seo, J.H.; Eghan-Acquah, E.; Kim, M.S.; Lee, J.H.; Jeong, Y.H.; Jung, T.G.; Hong, M.; Kim, W.H.; Kim, B.; Lee, S.J. Comparative Analysis of Stress in the Periodontal Ligament and Center of Rotation in the Tooth after Orthodontic Treatment Depending on Clear Aligner Thickness-Finite Element Analysis Study. Materials 2021, 14, 324. [Google Scholar] [CrossRef]
- Olawade, D.B.; Leena, N.; Egbon, E.; Rai, J.; Mohammed, A.P.E.K.; Oladapo, B.I.; Boussios, S. AI-Driven Advancements in Orthodontics for Precision and Patient Outcomes. Dent. J. 2025, 13, 198. [Google Scholar] [CrossRef]
- Kau, C.H.; Soh, J.; Christou, T.; Mangal, A. Orthodontic Aligners: Current Perspectives for the Modern Orthodontic Office. Medicina 2023, 59, 1773. [Google Scholar] [CrossRef] [PubMed]
- Homsi, K.; Snider, V.; Kusnoto, B.; Atsawasuwan, P.; Viana, G.; Allareddy, V.; Gajendrareddy, P.; Elnagar, M.H. In-vivo evaluation of Artificial Intelligence Driven Remote Monitoring technology for tracking tooth movement and reconstruction of 3-dimensional digital models during orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 2023, 164, 690–699. [Google Scholar] [CrossRef] [PubMed]
Authors, Year, Country | Study Objective | Study Protocol | Results | Conclusions |
---|---|---|---|---|
Li N. et al. (2024), China [24] | Assess biomechanical effects of movement strategies and aligner thickness | FEA with 7 patterns and 2 thicknesses (0.5–0.75 mm) | Alternating movement most efficient; thicker aligners increase PDL stress | Thicker aligners improve efficiency but stress tissues; alternating pattern recommended |
Yao S. et al. (2023), China [30] | Improve tooth movement efficiency and torque control in maxillary expansion | FEA with alternating movement, embossment shapes, torque 0–5° | Alternating movement more efficient; embossment improves crown movement only | Torque improves control but reduces efficiency; embossment helps crown displacement |
Zhang Y. et al. (2023), China [31] | Analyze upper arch expansion with aligners and optimize stride/torque | FEA models with 0.1–0.3 mm stride and 0–1.5° torque | Increasing torque reduces posterior tipping but also efficiency; 0.2 mm stride and ~2° torque result in bodily movement | Posterior buccal tipping is inevitable; torque must be personalized |
Karslı N. et al. (2024), Turkey/Australia [32] | Evaluate effect of different attachment types (with/without torque) on molar expansion | 8 models with 0.25 mm expansion and torque | TOHA (occlusal bevel + torque) = least tipping; GHA and NA = highest tipping | Occlusal beveled attachments with torque best reduce uncontrolled tipping |
Zhu L. et al. (2024), China [33] | Evaluate 5 movement strategies to correct Spee curve with aligners | FEA with distalization/extrusion of molars and premolars | Highest stress on incisors and labial tipping; less distalization efficiency | Expansion + extrusion requires caution to avoid negative anterior effects |
Article | R (Research of Question) | O (Outcome Measures) | B (Baseline) | F (Findings) | E (Effect Size/Significance) | A (Applicability/Limitations) | D (Domain) |
---|---|---|---|---|---|---|---|
Li et al., 2024 [24] | Clear aim: impact of aligner thickness and movement pattern on expansion | Displacement, PDL stress | 3D FE model, realistic anatomy | Alternating movement more effective; thicker aligner produced more force | 63% more expansion with alternating; no p-values | In silico study; clinical correlation unknown | Biomechanics; methods |
Yao et al., 2023 [30] | Focus on torque control and movement efficiency | Crown displacement, torque per mm | Validated FEA setup | Torque compensation reduced efficiency; embossments improved movement | 0.26°/mm torque change per 1°; 4.32% efficiency drop | Simulated data; no clinical validation | Biomechanics; methods |
Zhang et al., 2023 [31] | Stride and torque compensation in expansion | Displacement, inclination, stress | 12 FE setups, realistic model | Best movement with 0.1–0.2 mm stride and 1.2–2° torque | Stress values within physiological limits | FE simulation only, no in vivo data | Biomechanics; methods |
Karslı et al., 2024 [32] | Attachment effect on molar tipping | Molar tipping, torque | Attachments modeled on molars | Occlusal attachments + root torque improved tipping control | Qualitative only | Limited clinical translation | Biomechanics; applicability |
Zhu et al., 2024 [33] | Distalization pattern for deep curve of Spee | Tipping, displacement of incisors | Mandibular arch FEA model | Configuration E caused highest tipping; less effective distalization | Reported comparatively, no numerical values | Mandibular only; uncertain generalizability | Biomechanics; applicability |
A | Group 1: Development of Model | Li et al., 2024 [24] | Yao et al., 2023 [30] | Zhang et al., 2023 [31] | Karsli et., 2024 [32] | Zhu et al., 2024 [33] |
---|---|---|---|---|---|---|
1 | Was 3D model developed using DICOM images? | Yes | Yes | Yes | Yes | Yes |
2 | Were all the sub-structures as relevant to the study defined? (enamel, dentin, pulp, PDL, cancellous bone, cortical) | Yes | Yes | Yes | Yes | Yes |
3 | Were the realistic dimensions of relevant sub structures described? | Yes | Yes | Yes | Yes | Yes |
4 | Were appropriate boundary conditions/restraints/segmentation adequately explained? | Yes | Yes | Yes | Yes | Yes |
5 | Was convergence testing done during generation of model? (At least 3 different mesh sizes with variable number) | Yes | Yes | Yes | Yes | Yes |
6 | Were appropriate contact conditions between interfaces defined? (friction/frictionless/bonded) | Yes | Yes | Yes | Yes | Yes |
Group 2: Properties of material | ||||||
7 | Were appropriate properties given to all substructures of the model? (enamel–anisotropic; dentin, pulp, PDL-isotropic) | Yes | Yes | Yes | Yes | Yes |
8 | Was appropriate elastic behavior of each sub structure of the study defined? (linearly elastic/non-linearly elastic) | Yes | Yes | Yes | Yes | Yes |
9 | Were the values of Poisson ratio, Young’s modulus, and density of material mentioned with reference? | Yes | Yes | Yes | Yes | Yes |
10 | Were age-appropriate properties described for the biological structures as per the clinical context? | Yes | Yes | Yes | Yes | Yes |
Group 3: Impact load | ||||||
11 | Were dynamic loading conditions applied? (if applicable) | Yes | Yes | Yes | Yes | Yes |
12 | Was the range of force appropriate for the study purpose? | Yes | Yes | Yes | Yes | Yes |
13 | Was/Were the point/s of application of force appropriate for the study purpose? | Yes | Yes | Yes | Yes | Yes |
Group 4: Endpoints tested | ||||||
14 | Is the endpoint tested appropriate for the study purpose? (von Mises stress/max principle stress/ max shear) | Yes | Yes | Yes | Yes | Yes |
Group 5: Mechanical validation | ||||||
15 | Was the validation of test results carried out and using appropriate mechanical model? | Yes | Yes | Yes | Partially | Yes |
Group 6: Reporting error | ||||||
16 | Are points such as shape of elements, number of elements, and nodes described? | Yes | Yes | Yes | Qualitative | Yes |
17 | Is appropriate detailing of different types of models used in the study mentioned? | Yes | Yes | Yes | Yes | Yes |
18 | Are the software used for the model synthesis and mesh development mentioned with details of the version? | Yes | Yes | Yes | Yes | Yes |
19 | Are the software used for the finite element analysis mentioned with details of license and version? | Yes | Yes | Yes | Yes | Yes |
20 | Are study results described as per the objectives? | Yes | Yes | Yes | Yes | Yes |
21 | Is clinical replication of the results described? | Yes | Yes | Yes | Yes | Yes |
22 | Is limitation of the FEA model described? | Yes | Yes | Yes | Yes | Yes |
Risk of bias | Low | Low | Low | Moderate | Low |
Author, Year | Software | Region of Model | Source of Dimensions for Geometric Model | 2D/3D | Type of Analysis |
---|---|---|---|---|---|
Li et al., 2024 [24] | Ansys Workbench | Maxillary arch | CBCT-based geometry (standard arch with full dentition) | 3D | Static structural |
Yao et al., 2023 [30] | Abaqus | Maxillary arch (1st premolar focus) | Digital model based on standard dental arch, CBCT-based model | 3D | Static FEA |
Zhang et al., 2023 [31] | Ansys Workbench | Maxillary arch | Standardized CBCT-based digital dental model | 3D | Nonlinear structural (deformations and contacts) |
Karslı et al., 2024 [32] | Ansys Workbench combined to Ansys SpaceClaim | Maxillary molars | CAD-based model from average anatomical data obtained from CBCT | 3D | Static linear analysis |
Zhu et al., 2024 [33] | Ansys Workbench | Mandibular anterior region | CT-derived mandibular model | 3D | Structural FEA with movement simulations |
Author, Year | Loading Conditions | Stress Criteria | Mesh Convergence | Force Magnitude | Material Properties Included | Source of Material Data |
---|---|---|---|---|---|---|
Li et al., 2024 [24] | Expansion force via aligners with two thickness levels | Von Mises stress; maximum principal stress | Not reported | Not numerically specified; force implied by aligner strain | Teeth, PDL, cortical bone, cancellous bone, aligners | Manufacturer data and literature references |
Yao et al., 2023 [30] | Sequential movement with embossments and torque compensation | Von Mises stress; maximum principal stress | Not reported | Displacements applied; force not quantified | Teeth, PDL, aligner material, attachments | Prior FEA studies and published literature |
Zhang et al., 2023 [31] | Buccal expansion under different stride/torque angles | Von Mises; maximum principal stress | Not reported | Indirect force from displacement steps (0.1–0.3 mm) | Teeth, PDL, alveolar bone | Biomechanical literature and standard references |
Karslı et al., 2024 [32] | Aligners with different attachment designs and buccal root torque | Von Mises stress | Not reported | Directional forces from aligners; no numerical values | Teeth, PDL, cortical and cancellous bone | CAD data and previously validated FEA sources |
Zhu et al., 2024 [33] | Aligner-based anterior distalization (five protocols tested) | Von Mises; maximum principal stress | Not reported | No explicit force reported; defined by movement strategy | Teeth, PDL, aligners | Published literature on dental material properties |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putrino, A.; Bompiani, G.; Aristei, F.; Fornari, V.; Massafra, L.; Uomo, R.; Galeotti, A. Biomechanical Insights into the Variation of Maxillary Arch Dimension with Clear Aligners: A Finite Element Analysis-Based Scoping Review. Appl. Sci. 2025, 15, 9514. https://doi.org/10.3390/app15179514
Putrino A, Bompiani G, Aristei F, Fornari V, Massafra L, Uomo R, Galeotti A. Biomechanical Insights into the Variation of Maxillary Arch Dimension with Clear Aligners: A Finite Element Analysis-Based Scoping Review. Applied Sciences. 2025; 15(17):9514. https://doi.org/10.3390/app15179514
Chicago/Turabian StylePutrino, Alessandra, Gaia Bompiani, Francesco Aristei, Valerio Fornari, Ludovico Massafra, Roberto Uomo, and Angela Galeotti. 2025. "Biomechanical Insights into the Variation of Maxillary Arch Dimension with Clear Aligners: A Finite Element Analysis-Based Scoping Review" Applied Sciences 15, no. 17: 9514. https://doi.org/10.3390/app15179514
APA StylePutrino, A., Bompiani, G., Aristei, F., Fornari, V., Massafra, L., Uomo, R., & Galeotti, A. (2025). Biomechanical Insights into the Variation of Maxillary Arch Dimension with Clear Aligners: A Finite Element Analysis-Based Scoping Review. Applied Sciences, 15(17), 9514. https://doi.org/10.3390/app15179514