Functional Genomic and Phenotypic Analysis of Lactiplantibacillus pentosus P7 Isolated from Pickled Mustard Greens Reveals Capacity for Exopolysaccharide, B-Vitamin, and Lactic Acid Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Screening of Lactic Acid-, EPS-, and Riboflavin-Producing Isolates
2.2. Whole-Genome Sequencing and Genome Annotation
2.3. Taxonomic Identification and Comparative Genomes
2.4. In Silico Identification of Genes Related to the Production of EPS, Folate, Riboflavin, and Pyridoxine Phosphate
2.5. EPS Production and Extraction
2.6. Antioxidant and Protective Potential of EPS
2.7. Determination of Riboflavin, Folic Acid, and Pyridoxine Phosphate Contents
2.7.1. Sample Preparation
2.7.2. HPLC Analysis
2.8. Lactic Acid Production
3. Results
3.1. Screening of Lactic Acid-, EPS-, and Riboflavin-Producing Isolates
3.2. Whole-Genome Sequence and Identification of P7
3.3. Comparative Genome Analysis
3.4. Assessment of Protective Effect Against Oxidative Stress
3.5. Molecular Mechanisms Involved in Vitamin B Production
3.6. Assessment of Lactic Acid Production
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COGs | Clusters of orthologous genes |
EPS | Exopolysaccharide |
DHPPP | 6-hydroxymethyl-7,8-dihydropterin pyrophosphate |
HPLC | High-performance liquid chromatography |
References
- Surve, S.; Shinde, D.B.; Kulkarni, R. Isolation, characterization and comparative genomics of potentially probiotic Lactiplantibacillus plantarum strains from Indian foods. Sci. Rep. 2022, 12, 1940. [Google Scholar] [CrossRef]
- Stergiou, O.S.; Tegopoulos, K.; Kiousi, D.E.; Tsifintaris, M.; Papageorgiou, A.C.; Tassou, C.C.; Chorianopoulos, N.; Kolovos, P.; Galanis, A. Whole-genome sequencing, phylogenetic and genomic analysis of Lactiplantibacillus pentosus L33, a potential probiotic strain isolated from fermented sausages. Front. Microbiol. 2021, 12, 746659. [Google Scholar] [CrossRef]
- Zhao, X.; Liang, Q.; Song, X.; Zhang, Y. Whole genome sequence of Lactiplantibacillus plantarum MC5 and comparative analysis of eps gene clusters. Front. Microbiol. 2023, 14, 1146566. [Google Scholar] [CrossRef]
- Wei, Y.; Li, F.; Li, L.; Huang, L.; Li, Q. Genetic and biochemical characterization of an exopolysaccharide with in vitro antitumoral activity produced by Lactobacillus fermentum YL-11. Front. Microbiol. 2019, 10, 2019. [Google Scholar] [CrossRef]
- Bonavina, L.; Ariani, A.; Ficano, L.; Iannuzziello, D.; Pasquale, L.; Aragona, S.E.; Drago, L.; Ciprandi, G.; On Digestive Disorders, I.S.G. Lactobacillus plantarum LP01, Lactobacillus lactis subspecies cremoris LLC02, and Lactobacillus delbrueckii LDD01) in patients undergoing bowel preparation. Acta Bio-Medica Atenei Parm. 2019, 90, 13–17. [Google Scholar] [CrossRef]
- Odumosu, B.T.; Bamidele, T.A.; Ofem, D.W.; Agbozo, F.; Olasehinde, G.I. Screening, isolation and biotechnological potentials of foodborne Lactobacillus fermentum strains MT903311 and MT903312. Heliyon 2023, 9, e14959. [Google Scholar] [CrossRef]
- Huang, M.-L.; Huang, J.-Y.; Kao, C.-Y.; Fang, T.J. Complete genome sequence of Lactobacillus pentosus SLC13, isolated from mustard pickles, a potential probiotic strain with antimicrobial activity against foodborne pathogenic microorganisms. Gut Pathog. 2018, 10, 1. [Google Scholar] [CrossRef]
- Jiang, G.; Li, R.; He, J.; Yang, L.; Chen, J.; Xu, Z.; Zheng, B.; Yang, Y.; Xia, Z.; Tian, Y. Extraction, structural analysis, and biofunctional properties of exopolysaccharide from Lactiplantibacillus pentosus B8 isolated from Sichuan Pickle. Foods 2022, 11, 2327. [Google Scholar] [CrossRef]
- Abriouel, H.; Manetsberger, J.; Caballero Gómez, N.; Benomar, N. In silico genomic analysis of the potential probiotic Lactiplantibacillus pentosus CF2-10N reveals promising beneficial effects with health promoting properties. Front. Microbiol. 2022, 13, 2022. [Google Scholar] [CrossRef]
- López-García, E.; Benítez-Cabello, A.; Arenas-de Larriva, A.P.; Gutierrez-Mariscal, F.M.; Pérez-Martínez, P.; Yubero-Serrano, E.M.; Garrido-Fernández, A.; Arroyo-López, F.N. Oral intake of Lactiplantibacillus pentosus LPG1 produces a beneficial regulation of gut microbiota in healthy persons: A randomised, placebo-controlled, single-blind trial. Nutrients 2023, 15, 1931. [Google Scholar] [CrossRef]
- Hati, S.; Patel, M.; Mishra, B.K.; Das, S. Short-chain fatty acid and vitamin production potentials of Lactobacillus isolated from fermented foods of Khasi Tribes, Meghalaya, India. Ann. Microbiol. 2019, 69, 1191–1199. [Google Scholar] [CrossRef]
- Page, C.A.; Pérez-Díaz, I.M.; Pan, M.; Barrangou, R. Genome-wide comparative analysis of Lactiplantibacillus pentosus isolates autochthonous to cucumber fermentation reveals subclades of divergent ancestry. Foods 2023, 12, 2455. [Google Scholar] [CrossRef]
- Yongsawas, R.; Inta, A.; Kampuansai, J.; Pandith, H.; Suwannarach, N.; Lamyong, S.; Chantawannakul, P.; Chitov, T.; Disayathanoowat, T. Bacterial communities in Lanna Phak-Gard-Dong (pickled mustard green) from three different ethnolinguistic groups in Northern Thailand. Biology 2022, 11, 150. [Google Scholar] [CrossRef]
- Gavrilova, E.; Anisimova, E.; Gabdelkhadieva, A.; Nikitina, E.; Vafina, A.; Yarullina, D.; Bogachev, M.; Kayumov, A. Newly isolated lactic acid bacteria from silage targeting biofilms of foodborne pathogens during milk fermentation. BMC Microbiol. 2019, 19, 248. [Google Scholar] [CrossRef] [PubMed]
- Quach, N.T.; Nguyen, T.T.A.; Vu, T.H.N.; Nguyen, T.T.N.; Tran, X.K.; Chu, N.H.; Ta, T.T.T.; Chu, H.H.; Phi, Q.T. New insight into protective effect against oxidative stress and biosynthesis of exopolysaccharides produced by Lacticaseibacillus paracasei NC4 from fermented eggplant. Curr. Genet. 2024, 70, 7. [Google Scholar] [CrossRef]
- Mohedano, M.L.; Hernández-Recio, S.; Yépez, A.; Requena, T.; Martínez-Cuesta, M.C.; Peláez, C.; Russo, P.; LeBlanc, J.G.; Spano, G.; Aznar, R.; et al. Real-time detection of riboflavin production by Lactobacillus plantarum strains and tracking of their gastrointestinal survival and functionality in vitro and in vivo using mCherry labeling. Front. Microbiol. 2019, 10, 1748. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Wang, Y.; Coleman-Derr, D.; Chen, G.; Gu, Y.Q. OrthoVenn: A web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 2015, 43, W78–W84. [Google Scholar] [CrossRef]
- Kadaikunnan, S.; Rejiniemon, T.; Khaled, J.M.; Alharbi, N.S.; Mothana, R. In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Kavitake, D.; Veerabhadrappa, B.; Sudharshan, S.J.; Kandasamy, S.; Devi, P.B.; Dyavaiah, M.; Shetty, P.H. Oxidative stress alleviating potential of galactan exopolysaccharide from Weissella confusa KR780676 in yeast model system. Sci. Rep. 2022, 12, 1089. [Google Scholar] [CrossRef]
- Tung, Q.N.; Busche, T.; Van Loi, V.; Kalinowski, J.; Antelmann, H. The redox-sensing MarR-type repressor HypS controls hypochlorite and antimicrobial resistance in Mycobacterium smegmatis. Free Radic. Biol. Med. 2020, 147, 252–261. [Google Scholar] [CrossRef]
- Juarez del Valle, M.; Laiño, J.E.; Savoy de Giori, G.; LeBlanc, J.G. Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bio-enriched soymilk. Food Res. Int. 2014, 62, 1015–1019. [Google Scholar] [CrossRef]
- Hossain, M.F.; Rashid, M.; Sidhu, R.; Mullins, R.; Mayhew, S.L. A simplified, specific HPLC method of assaying thiamine and riboflavin in mushrooms. Int. J. Food Sci. 2019, 2019, 8716986. [Google Scholar] [CrossRef]
- Póo-Prieto, R.; Haytowitz, D.B.; Holden, J.M.; Rogers, G.; Choumenkovitch, S.F.; Jacques, P.F.; Selhub, J. Use of the affinity/HPLC method for quantitative estimation of folic acid in enriched cereal-grain products. J. Nutr. 2006, 136, 3079–3083. [Google Scholar] [CrossRef]
- Musafili, N.Y.; Samsodien, H.; Aucamp, M.E. A validated RP-HPLC method for the simultaneous detection and quantification of pyridoxine and terizidone in pharmaceutical formulations. Analytica 2021, 2, 206–216. [Google Scholar] [CrossRef]
- Pereira, V.; Câmara, J.S.; Cacho, J.; Marques, J.C. HPLC-DAD methodology for the quantification of organic acids, furans and polyphenols by direct injection of wine samples. J. Sep. Sci. 2010, 33, 1204–1215. [Google Scholar] [CrossRef] [PubMed]
- Damodharan, K.; Palaniyandi, S.A.; Yang, S.H.; Balaji, S. Cholesterol-lowering activity of Lactiplantibacillus pentosus KS6I1 in high-cholesterol diet-induced hypercholesterolemic mice. J. Microbiol. Biotechnol. 2025, 35, e2404029. [Google Scholar] [CrossRef] [PubMed]
- Duar, R.M.; Lin, X.B.; Zheng, J.; Martino, M.E.; Grenier, T.; Pérez-Muñoz, M.E.; Leulier, F.; Gänzle, M.; Walter, J. Lifestyles in transition: Evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 2017, 41, S27–S48. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carvajal, M.A.; Ignacio Sánchez, J.; Campelo, A.B.; Martínez, B.; Rodríguez, A.; Gil-Serrano, A.M. Structure of the high-molecular weight exopolysaccharide isolated from Lactobacillus pentosus LPS26. Carbohydr. Res. 2008, 343, 3066–3070. [Google Scholar] [CrossRef]
- Quach, N.T.; Vu, T.H.N.; Nguyen, T.T.A.; Ha, H.; Ho, P.H.; Chu-Ky, S.; Nguyen, L.H.; Van Nguyen, H.; Thanh, T.T.T.; Nguyen, N.A.; et al. Structural and genetic insights into a poly-γ-glutamic acid with in vitro antioxidant activity of Bacillus velezensis VCN56. World J. Microbiol. Biotechnol. 2022, 38, 173. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Y.; Zhang, L.; Zhang, X.; Huang, L.; Li, D.; Niu, C.; Yang, Z.; Wang, Q. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 2012, 135, 1914–1919. [Google Scholar] [CrossRef] [PubMed]
- Averianova, L.A.; Balabanova, L.A.; Son, O.M.; Podvolotskaya, A.B.; Tekutyeva, L.A. Production of vitamin B2 (Riboflavin) by microorganisms: An overview. Front. Bioeng. Biotechnol. 2020, 8, 570828. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Choi, E.-J.; Lee, J.-H.; Yoo, M.-S.; Heo, K.; Shim, J.-J.; Lee, J.-L. Probiotic potential of a novel vitamin B2-overproducing Lactobacillus plantarum strain, HY7715, isolated from Kimchi. Appl. Sci. 2021, 11, 5765. [Google Scholar] [CrossRef]
- Khedr, M.; Youssef, F.S.; El-kattan, N.; Abozahra, M.S.; Selim, M.N.; Yousef, A.; Khalil, K.M.A.; Mekky, A.E. FolE gene expression for folic acid productivity from optimized and characterized probiotic Lactobacillus delbrueckii. J. Genet. Eng. Biotechnol. 2023, 21, 169. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wu, J.; Cao, P.; Jin, Y.; Pan, D.; Zeng, X.; Guo, Y. Characterization of probiotic bacteria involved in fermented milk processing enriched with folic acid. J. Dairy Sci. 2017, 100, 4223–4229. [Google Scholar] [CrossRef]
- Hamzehlou, P.; Akhavan Sepahy, A.; Mehrabian, S.; Hosseini, F. Production of vitamins B3, B6 and B9 by Lactobacillus isolated from traditional yogurt samples from 3 cities in Iran, Winter 2016. Appl. Food Biotechnol. 2018, 5, 107–120. [Google Scholar] [CrossRef]
- Khromova, N.Y.; Epishkina, J.M.; Karetkin, B.A.; Khabibulina, N.V.; Beloded, A.V.; Shakir, I.V.; Panfilov, V.I. The combination of in vitro assessment of stress tolerance ability, autoaggregation, and vitamin B-producing ability for new probiotic strain introduction. Microorganisms 2022, 10, 470. [Google Scholar] [CrossRef]
- Masuda, M.; Ide, M.; Utsumi, H.; Niiro, T.; Shimamura, Y.; Murata, M. Production potency of folate, vitamin B12, and thiamine by lactic acid bacteria isolated from Japanese pickles. Biosci. Biotechnol. Biochem. 2012, 76, 2061–2067. [Google Scholar] [CrossRef]
- Mahara, F.A.; Nuraida, L.; Lioe, H.N.; Nurjanah, S. The occurrence of folate biosynthesis genes in lactic acid bacteria from different sources. Food Technol. Biotechnol. 2023, 61, 226–237. [Google Scholar] [CrossRef]
- Lee, Y.; Jaikwang, N.; Kim, S.K.; Jeong, J.; Sukhoom, A.; Kim, J.H.; Kim, W. Characterization of a potential probiotic Lactiplantibacillus plantarum LRCC5310 by comparative genomic analysis and its vitamin B(6) production ability. J. Microbiol. Biotechnol. 2023, 33, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Swetha, T.A.; Ananthi, V.; Bora, A.; Sengottuvelan, N.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A review on biodegradable polylactic acid (PLA) production from fermentative food waste—Its applications and degradation. Int. J. Biol. Macromol. 2023, 234, 123703. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.-K.; Wee, Y.-J.; Choi, G.-W. A novel lactic acid bacterium for the production of high purity l-lactic acid, Lactobacillus paracasei subsp. paracasei CHB2121. J. Biosci. Bioeng. 2012, 114, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Bai, D.-M.; Wei, Q.; Yan, Z.-H.; Zhao, X.-M.; Li, X.-G.; Xu, S.-M. Fed-batch fermentation of Lactobacillus lactis for hyper-production of l-lactic acid. Biotechnol. Lett. 2003, 25, 1833–1835. [Google Scholar] [CrossRef]
- Costa, S.; Summa, D.; Radice, M.; Vertuani, S.; Manfredini, S.; Tamburini, E. Lactic acid production by Lactobacillus casei using a sequence of seasonally available fruit wastes as sustainable carbon sources. Front. Bioeng. Biotechnol. 2024, 12, 1447278. [Google Scholar] [CrossRef] [PubMed]
Isolates | Lactic Acid Production | EPS Production (mg/L) | Growth on Riboflavin-Free Medium |
---|---|---|---|
P1 | + | 133.0 ± 10.6 | − |
P2 | + | 82.2 ± 15.8 | + |
P3 | + | 219.5 ± 16.8 | − |
P4 | + | 73.9 ± 16.6 | − |
P5 | + | 381.8 ± 12.2 | + |
P6 | + | 23.5 ± 12.0 | − |
P7 | + | 781.9 ± 14.7 | + |
P8 | + | 688.4 ± 11.6 | − |
P9 | + | 452.2 ± 16.2 | − |
P10 | + | 69.2 ± 23.4 | − |
P11 | + | 345.5 ± 11.6 | − |
P12 | + | 7.3 ± 2.0 | + |
Bacterial Strain | Vitamin Concentrations (µg/mL) | References | ||
---|---|---|---|---|
Riboflavin (B2) | Folic Acid (B9) | Pyridoxine (B6) | ||
L. pentosus P7 | 23.8 ± 0.4 | 36.6 ± 0.6 | 0.42 ± 0.02 | This study |
L. plantarum HY7715 | 34.5 ± 2.4 | - | - | [35] |
L. delbrueckii KH1 | - | 100 ± 2.4 | - | [36] |
L. casei | - | 45.4 | - | [37] |
L. paracasei JCM 1171T | 1566.17 | [38] | ||
L. rhamnosus VKPMB-8238 | - | 2.09 ± 0.01 | - | [39] |
L. acidophilus VKPMB-2105 | 0.917 ± 0.010 | - | 4.09 ± 0.02 | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quach, N.T.; Le, H.D.; Ho, N.A.; Nguyen, V.K.; Le, M.V.; Nguyen, T.H.H.; Tran, X.K.; Truong, N.M.; Pham, L.T.K.; Pham, B.N.; et al. Functional Genomic and Phenotypic Analysis of Lactiplantibacillus pentosus P7 Isolated from Pickled Mustard Greens Reveals Capacity for Exopolysaccharide, B-Vitamin, and Lactic Acid Production. Appl. Sci. 2025, 15, 9486. https://doi.org/10.3390/app15179486
Quach NT, Le HD, Ho NA, Nguyen VK, Le MV, Nguyen THH, Tran XK, Truong NM, Pham LTK, Pham BN, et al. Functional Genomic and Phenotypic Analysis of Lactiplantibacillus pentosus P7 Isolated from Pickled Mustard Greens Reveals Capacity for Exopolysaccharide, B-Vitamin, and Lactic Acid Production. Applied Sciences. 2025; 15(17):9486. https://doi.org/10.3390/app15179486
Chicago/Turabian StyleQuach, Ngoc Tung, Hoang Duc Le, Ngoc Anh Ho, Van Khanh Nguyen, Manh Van Le, Thi Hong Ha Nguyen, Xuan Khoi Tran, Ngoc Minh Truong, Linh Thi Khanh Pham, Bich Ngoc Pham, and et al. 2025. "Functional Genomic and Phenotypic Analysis of Lactiplantibacillus pentosus P7 Isolated from Pickled Mustard Greens Reveals Capacity for Exopolysaccharide, B-Vitamin, and Lactic Acid Production" Applied Sciences 15, no. 17: 9486. https://doi.org/10.3390/app15179486
APA StyleQuach, N. T., Le, H. D., Ho, N. A., Nguyen, V. K., Le, M. V., Nguyen, T. H. H., Tran, X. K., Truong, N. M., Pham, L. T. K., Pham, B. N., Chu, H. H., & Chu, N. H. (2025). Functional Genomic and Phenotypic Analysis of Lactiplantibacillus pentosus P7 Isolated from Pickled Mustard Greens Reveals Capacity for Exopolysaccharide, B-Vitamin, and Lactic Acid Production. Applied Sciences, 15(17), 9486. https://doi.org/10.3390/app15179486