Evaluating the Effectiveness of Individual Cleaning Steps of a CIP Protocol in Membrane Biofilm Removal Under Dynamic Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Source and Propagation of Isolates
2.2. Biofilm Formation Under Dynamic Conditions Using the CDC Biofilm Reactor
2.3. Scanning Electron Micrographs of Membrane Biofilms Developed Under Dynamic Conditions
2.4. Effectiveness of CIP Chemicals Against Biofilms Under Dynamic Conditions
2.4.1. Application of Individual CIP Chemicals Against Biofilms Under Dynamic Conditions
2.4.2. Application of Sequential CIP Against Biofilms Under Dynamic Conditions
2.5. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of Individual CIP Chemicals Against Mixed-Species Biofilms Under Dynamic Conditions
CIP Steps and Chemicals | Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | Step 6 |
---|---|---|---|---|---|---|
Alkali | Surfactant 1 | Acid | Enzyme | Surfactant 2 | Sanitizer | |
Pretreatment Count (log10 cfu cm−2) | 5.63 ± 0.17 | 5.38 ± 0.40 | 5.62 ± 0.26 | 5.31 ± 0.02 | 5.27 ± 0.21 | 5.55 ± 0.24 |
Post-treatment Count (log10 cfu cm−2) | 4.61 ± 0.12 b | 4.48 ± 0.28 b | 4.10 ± 0.06 a | 4.40 ± 0.14 b | 4.42 ± 0.20 b | 4.92 ± 0.18 c |
Percent Reduction | 90.45 | 87.41 | 96.98 | 87.70 | 85.87 | 76.56 |
3.2. Evaluation of Sequential CIP Against Biofilms Under Dynamic Conditions
Chemicals | Mixed Biofilms (10 mo.-Old Consortium) | |
---|---|---|
Pretreatment Count | 5.67 ± 0.07 | |
CIP Steps (Sequential) (1 through 6 below) | Post-treatment counts (log10 cfu cm−2) after sequential treatment steps | Cumulative percent reduction |
Step 1 Alkali | 4.77 ± 0.18 D | 87.41 |
Step 2 Surfactant 1 | 4.18 ± 0.19 C | 96.76 |
Step 3 Acid | 3.23 ± 0.07 B | 99.64 |
Step 4 Enzyme | 2.53 ± 0.12 A | 99.93 |
Step 5 Surfactant 2 | 2.32 ± 0.07 A | 99.96 |
Step 6 Sanitizer | 2.24 ± 0.08 A | 99.96 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stewart, P.S.; Franklin, M.J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 2008, 6, 199–210. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881. [Google Scholar] [CrossRef]
- Stoodley, P.; Sauer, K.; Davies, D.G.; Costerton, J.W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 2002, 56, 187–209. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, R.A.N.; Frank, J.F. Biofilm formation and control in food processing facilities. Compr. Rev. Food Sci. Food Saf. 2003, 2, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Van Hullebusch, E.D.; Zandvoort, M.H.; Lens, P.N. Metal immobilisation by biofilms: Mechanisms and analytical tools. Rev. Environ. Sci. Biotechnol. 2003, 2, 9–33. [Google Scholar] [CrossRef]
- Kolter, R.; Greenberg, E.P. The superficial life of microbes. Nature 2006, 441, 300–302. [Google Scholar] [CrossRef] [PubMed]
- Agle, M.E. Biofilms in the food industry. Biofilms Food Environ. 2007, 490, 3–18. [Google Scholar]
- Romaní, A.M.; Fund, K.; Artigas, J.; Schwartz, T.; Sabater, S.; Obst, U. Relevance of polymeric matrix enzymes during biofilm formation. Microb. Ecol. 2008, 56, 427–436. [Google Scholar] [CrossRef]
- Da Silva, E.P.; De Martinis, E.C.P. Current knowledge and perspectives on biofilm formation: The case of Listeria monocytogenes. Appl. Microbiol. Biotechnol. 2013, 97, 957–968. [Google Scholar] [CrossRef]
- Flemming, H.C. EPS—Then and now. Microorganisms 2016, 4, 41. [Google Scholar] [CrossRef]
- Moldenhauer, J. Disinfection and Decontamination: A Practical Handbook; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Mikkelsen, M.D.; Petersen, B.L.; Olsen, C.E.; Halkier, B.A. Biosynthesis and metabolic engineering of glucosinolates. Amino Acids 2002, 22, 279–295. [Google Scholar] [CrossRef]
- Branda, S.S.; Chu, F.; Kearns, D.B.; Losick, R.; Kolter, R. A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol. 2006, 59, 1229–1238. [Google Scholar] [CrossRef]
- Flemming, H.C.; Neu, T.R.; Wozniak, D.J. The EPS matrix: The “house of biofilm cells”. J. Bacteriol. 2007, 189, 7945–7947. [Google Scholar] [CrossRef] [PubMed]
- Stoodley, P.; Lewandowski, Z.; Boyle, J.D.; Lappin-Scott, H.M. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: An in situ investigation of biofilm rheology. Biotechnol. Bioeng. 1999, 65, 83–92. [Google Scholar] [CrossRef]
- Johnston, N. Debaffling biofilms: Studies follow transformations and detail a major signal. Scientist 2004, 18, 34–36. [Google Scholar]
- Stewart, P.S.; McFeters, G.A.; Huang, C.T. Biofilm control by antimicrobial agents. In Biofilms II: Process Analysis and Applications; Bryers, J.D., Ed.; Wiley-LIss: New York, NY, USA, 2000; pp. 373–405. [Google Scholar]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef]
- Matthews, K.R.; Kniel, K.E.; Montville, T.J. Food Microbiology: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 223–242. [Google Scholar]
- Herzberg, M.; Elimelech, M. Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure. J. Membr. Sci. 2007, 295, 11–20. [Google Scholar] [CrossRef]
- Tang, X.; Flint, S.H.; Bennett, R.J.; Brooks, J.D.; Morton, R.H. Biofilm growth of individual and dual strains of Klebsiella oxytoca from the dairy industry on ultrafiltration membranes. J. Ind. Microbiol. Biotechnol. 2009, 36, 1491. [Google Scholar] [CrossRef] [PubMed]
- Seale, R.B.; Bremer, P.J.; Flint, S.H.; McQuillan, A.J. Characterization of spore surfaces from a Geobacillus sp. isolate by pH dependence of surface charge and infrared spectra. J. Appl. Microbiol. 2010, 109, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Bremer, P.; Flint, S.; Brooks, J.; Palmer, J. Introduction to biofilms: Definition and basic concepts. In Biofilms in the Dairy Industry; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1–16. [Google Scholar]
- Franklin, M.J.; Chang, C.; Akiyama, T.; Bothner, B. New technologies for studying biofilms. In Microbial Biofilms; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1–32. [Google Scholar]
- Bereschenko, L.A.; Stams, A.J.M.; Euverink, G.J.W.; Van Loosdrecht, M.C.M. Biofilm formation on reverse osmosis membranes is initiated and dominated by Sphingomonas spp. Appl. Environ. Microbiol. 2010, 76, 2623–2632. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.A.; Lindsay, D.; Flint, S.H. Thermophilic bacilli and their importance in dairy processing. Int. J. Food Microbiol. 2010, 144, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Stadhouders, J.; Hup, G.; Hassing, F. The conceptions index and indicator organisms discussed on the basis of the bacteriology of spray-dried milk powder. Netherlands Milk and Dairy J. 1982, 36, 231–260. [Google Scholar]
- Flint, S.H.; Bremer, P.J.; Brooks, J.D. Biofilms in dairy manufacturing plant-description, current concerns and methods of control. Biofouling 1997, 11, 81–97. [Google Scholar] [CrossRef]
- Murphy, P.M.; Lynch, D.; Kelly, P.M. Growth of thermophilic spore forming bacilli in milk during the manufacture of low heat powders. Int. J. Dairy Technol. 1999, 52, 45–50. [Google Scholar] [CrossRef]
- Warnecke, F. The Ecology of Thermophilic Bacilli of MILK powder Processing Plants. Ph.D. Thesis, University of Waikato, Hamilton, New Zealand, 2001. [Google Scholar]
- Lewis, S. Optimal Separation Temperature. Master’s Thesis, Massey University, Palmerston North, New Zealand, 2003. [Google Scholar]
- Scott, S.A.; Brooks, J.D.; Rakonjac, J.; Walker, K.M.; Flint, S.H. The formation of thermophilic spores during the manufacture of whole milk powder. Int. J. Dairy Technol. 2007, 60, 109–117. [Google Scholar] [CrossRef]
- Bottone, E.J. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 2010, 23, 382–398. [Google Scholar] [CrossRef] [PubMed]
- Avadhanula, M. Formation of Bacterial Biofilms on Spiral Wound Reverse Osmosis Whey Concentration Membranes. Master’s Thesis, South Dakota State University, Brookings, SD, USA, 2011. [Google Scholar]
- Biswas, A.C.; Avadhanula, M.; Anand, S.; Hassan, A.N. Characterization of microorganisms isolated from biofilms formed on whey reverse osmosis membranes. J. Dairy Sci. 2010, 93 (Suppl. 1), 602. [Google Scholar]
- Jones, H.C.; Roth, I.L.; Sanders III, W.M. Electron microscopic study of a slime layer. J. Bacteriol. 1969, 99, 316–325. [Google Scholar] [CrossRef]
- Notermans, S.; Dormans, J.A.M.A.; Mead, G.C. Contribution of surface attachment to the establishment of micro-organisms in food processing plants: A review. Biofouling 1991, 5, 21–36. [Google Scholar] [CrossRef]
- Hassan, A.N.; Anand, S.; Avadhanula, M. Microscopic observation of multispecies biofilm of various structures on whey concentration membranes. J. Dairy Sci. 2010, 93, 2321–2329. [Google Scholar] [CrossRef]
- Flemming, H.C.; Geesey, G.G. Biofouling and Biocorrosion in Industrial Water Systems; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1991; pp. 47–80. [Google Scholar]
- Kumar, C.G.; Anand, S.K. Significance of microbial biofilms in food industry: A review. Int. J. Food Microbiol. 1998, 42, 9–27. [Google Scholar] [CrossRef]
- Flint, S.; Palmer, J.; Bloemen, K.; Brooks, J.; Crawford, R. The growth of Bacillus stearothermophilus on stainless steel. J. Appl. Microbiol. 2001, 90, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.L.; Woodbury, K.L.; Haymond, B.S.; Parker, A.E.; Bloebaum, R.D. A modified CDC biofilm reactor to produce mature biofilms on the surface of PEEK membranes for an in vivo animal model application. Curr. Microbiol. 2011, 62, 1657–1663. [Google Scholar] [CrossRef]
- Thurman, E.M. Organic Geochemistry of Natural Waters; Springer Science & Business Media: Boston, MA, USA, 2012; Volume 2, p. 497. [Google Scholar]
- Rosen, M.J. Surfactant and Interfacial Phenomena, 2nd ed.; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Tragardh, G. Membrane cleaning. Desalination 1989, 71, 325–335. [Google Scholar] [CrossRef]
- Hong, S.; Elimelech, M. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J. Membr. Sci. 1997, 132, 159–181. [Google Scholar] [CrossRef]
- Liikanen, R.; Yli-Kuivila, J.; Laukkanen, R. Efficiency of various chemical cleanings for nanofiltration membrane fouled by conventionally-treated surface water. J. Membr. Sci. 2002, 195, 265–276. [Google Scholar] [CrossRef]
- Mohammadi, T.; Madaeni, S.S.; Moghadam, M.K. Investigation of membrane fouling. Desalination 2003, 153, 155–160. [Google Scholar] [CrossRef]
- Meyer, B. Approaches to prevention, removal and killing of biofilms. Int. Biodeterior. Biodegrad. 2003, 51, 249–253. [Google Scholar] [CrossRef]
- Ang, W.S.; Lee, S.; Elimelech, M. Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes. J. Membr. Sci. 2006, 272, 198–210. [Google Scholar] [CrossRef]
- Anand, S.; Singh, D.; Avadhanula, M.; Marka, S. Development and control of bacterial biofilms on dairy processing membranes. Compr. Rev. Food Sci. Food Saf. 2014, 13, 18–33. [Google Scholar] [CrossRef]
- Tamime, A. Cleaning-in-Place: Dairy, Food and Beverage Operations; Blackwell Publishing: Hoboken, NJ, USA, 2008. [Google Scholar]
- Thomas, A.; Sathian, C.T. Cleaning-in-place (CIP) system in dairy plant-review. IOSR J. Environ. Sci. Toxicol. Food Technol. 2014, 8, 41–44. [Google Scholar] [CrossRef]
- Knight, G.C.; Weeks, M.G. Conditions for inactivation of thermophilic spores in NaOH solutions for reuse applications. Aust. J. Dairy Technol. 2008, 63, 82. [Google Scholar]
- Seale, R.B. The Surface Characteristics of Spores from Thermophilic Bacilli Isolated from a Milk Powder Production Line and Their Influence on Adhesion to Surfaces. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2009. [Google Scholar]
- Sutherland, I.W. Polysaccharide lyases. FEMS Microbiol. Rev. 1995, 16, 323–347. [Google Scholar] [CrossRef]
- Furukawa, S.; Akiyoshi, Y.; Komoriya, M.; Ogihara, H.; Morinaga, Y. Removing Staphylococcus aureus and Escherichia coli biofilms on stainless steel by cleaning-in-place (CIP) cleaning agents. Food Control. 2010, 21, 669–672. [Google Scholar] [CrossRef]
- Fernandez García, L.; Alvarez Blanco, S.; Riera Rodriguez, F.A. Microfiltration applied to dairy streams: Removal of bacteria. J. Sci. Food Agric. 2013, 93, 187–196. [Google Scholar] [CrossRef]
- Pena, W.E.L.; de Andrade, N.J.; Soares, N.F.; Alvarenga, V.O.; Junior, S.R.; Granato, D.; Zuniga, A.D.G.; de Souza Sant’Ana, A. Modelling Bacillus cereus adhesion on stainless steel surface as affected by temperature, pH and time. Int. Dairy J. 2014, 34, 153–158. [Google Scholar] [CrossRef]
- Watkinson, W.J. Chemistry of detergents and disinfectants. In Cleaning-in-Place: Dairy, Food and Beverage Operations; Blackwell Publishing: Hoboken, NJ, USA, 2008; pp. 56–80. [Google Scholar]
- Anand, S.; Hassan, A.; Avadhanula, M. The effects of biofilms formed on whey reverse osmosis membranes on the microbial quality of the concentrated product. Int. J. Dairy Technol. 2012, 65, 451–455. [Google Scholar] [CrossRef]
- Wehr, H.M.; Frank, J.F. (Eds.) Standard Methods for the Examination of Dairy Products; American Public Health Association: New York, NY, USA, 2004; pp. 153–186. [Google Scholar]
- Anand, S.; Singh, D. Resistance of the constitutive microflora of biofilms formed on whey reverse-osmosis membranes to individual cleaning steps of a typical clean-in-place protocol. J. Dairy Sci. 2013, 96, 6213–6222. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Anand, S. Efficacy of a typical clean-in-place protocol against in vitro membrane biofilms. J. Dairy Sci. 2022, 105, 9417–9425. [Google Scholar] [CrossRef]
- Williams, D.L.; Bloebaum, R.D. Observing the biofilm matrix of Staphylococcus epidermidis ATCC 35984 grown using the CDC biofilm reactor. Microsc. Microanal. 2010, 16, 143–152. [Google Scholar] [CrossRef]
- Mendez Sosa, E.A. Development of Listeria Monocytogenes Biofilms in a CDC Biofilm Reactor and Investigation of Effective Strategies for Biofilm Control in Food Processing Environments. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2020. [Google Scholar]
- SAS Institute. SAS User’s Guide: Statistics; SAS Institute Inc.: Cary, NC, USA, 1999. [Google Scholar]
- Wicaksono, W.A.; Erschen, S.; Krause, R.; Müller, H.; Cernava, T.; Berg, G. Enhanced survival of multi-species biofilms under stress is promoted by low-abundant but antimicrobial-resistant keystone species. J. Hazard. Mater. 2022, 422, 126836. [Google Scholar] [CrossRef]
- Tang, X. Controlling Biofilm Development on Ultrafiltration and Reverse Osmosis Membranes Used in Dairy Plants. Ph.D. Thesis, Massey University, Manawatu, New Zealand, 2011. [Google Scholar]
- Whittaker, C.; Ridgway, H.; Olson, B.H. Evaluation of cleaning strategies for removal of biofilms from reverse-osmosis membranes. Appl. Environ. Microbiol. 1984, 48, 395–403. [Google Scholar] [CrossRef]
- Whittington-Jones, K.J. Sulphide-Enhanced Hydrolysis of Primary Sewage Sludge: Implications for the Bioremediation of Sulphate-Enriched Wastewaters. Ph.D. Thesis, Rhodes University, Grahamstown, South Africa, 2000. [Google Scholar]
- Goller, C.C.; Romeo, T. Environmental influences on biofilm development. In Bacterial Biofilms; Springer: Berlin/Heidelberg, Germany, 2008; pp. 37–66. [Google Scholar]
- Hood, S.K.; Zottola, E.A. Biofilms in food processing. Food Control. 1995, 6, 9–18. [Google Scholar] [CrossRef]
- Midelet, G.; Carpentier, B. Impact of cleaning and disinfection agents on biofilm structure and on microbial transfer to a solid model food. J. Appl. Microbiol. 2004, 97, 262–270. [Google Scholar] [CrossRef]
- Marshall, K. Microbial adhesion in biotechnological processes. Curr. Opin. Biotechnol. 1994, 5, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Parkar, S.G.; Flint, S.H.; Brooks, J.D. Evaluation of the effect of cleaning regimes on biofilms of thermophilic bacilli on stainless steel. J. Appl. Microbiol. 2004, 96, 110–116. [Google Scholar] [CrossRef]
- Gandhi, G. Study of High Protein Dairy Powder (MPC80) Susceptibility to Fouling and Efficacy of Micro-Nano-Bubble Aqueous Ozone in Removal of Bacillus spp. Biofilms on Stainless Steel Surfaces. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2018. [Google Scholar]
- Frank, J.F.; Chmielewski, R. Influence of surface finish on the cleanability of stainless steel. J. Food Prot. 2001, 64, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Ang, W.S.; Yip, N.Y.; Tiraferri, A.; Elimelech, M. Chemical cleaning of RO membranes fouled by wastewater effluent: Achieving higher efficiency with dual-step cleaning. J. Membr. Sci. 2011, 382, 100–106. [Google Scholar] [CrossRef]
- Liu, C.; Caothien, S.; Hayes, J.; Caothuy, T.; Otoyo, T.; Ogawa, T. Membrane Chemical Cleaning: From Art to Science; Pall Corporation: Port Washington, NY, USA, 2001; p. 11050. [Google Scholar]
- Drenkard, E. Antimicrobial Resistance of Pseudomonas aeruginosa Biofilms. Microbes Infect. 2003, 5, 1213–1219. [Google Scholar] [CrossRef]
- Peng, J.S.; Tsai, W.C.; Chou, C.C. Inactivation and removal of Bacillus cereus by sanitizer and detergent. Int. J. Food Microbiol. 2002, 77, 11–18. [Google Scholar] [CrossRef]
- Mosteller, T.M.; Bishop, J.R. Sanitizer efficiency against attached bacteria in milk biofilm. J. Food Prot. 1993, 56, 34–41. [Google Scholar] [CrossRef]
- Khani, M.; Hansen, M.F.; Knøchel, S.; Rasekh, B.; Ghasemipanah, K.; Zamir, S.M.; Nosrati, M.; Burmølle, M. Antifouling potential of enzymes applied to reverse osmosis membranes. Biofilm 2023, 5, 100119. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, Y.; Ren, F.; Li, Z.; Dong, Q. Applying enzyme treatments in Bacillus cereus biofilm removal. LWT 2023, 180, 114667. [Google Scholar] [CrossRef]
- Al-Balushi, M.A.; Kyaw, H.H.; Myint, M.T.Z.; Al-Abri, M.; Dobretsov, S. Chemical cleaning techniques for fouled RO membranes: Enhancing fouling removal and assessing microbial composition. Membranes 2024, 14, 204. [Google Scholar] [CrossRef] [PubMed]
- Gul, A.; Hruza, J.; Yalcinkaya, F. Fouling and chemical cleaning of microfiltration membranes: A mini review. Polymers 2021, 13, 846. [Google Scholar] [CrossRef] [PubMed]
- Al-Madboly, L.A.; Aboulmagd, A.; El-Salam, M.A.; Kushkevych, I.; El-Morsi, R.M. Microbial enzymes as powerful natural anti-biofilm candidates. Microb. Cell Factories 2024, 23, 343. [Google Scholar] [CrossRef]
- Møllebjerg, A.; Zarebska, A.; Nielsen, H.B.; Hansen, L.B.S.; Sørensen, S.R.; Seredynska-Sobecka, B.; Villacorte, L.O.; Gori, K.; Palmén, L.G.; Meyer, R.L. Novel high-throughput screening platform identifies enzymes to tackle biofouling on reverse osmosis membranes. Desalination 2023, 554, 116485. [Google Scholar] [CrossRef]
- Khani, M.; Kiesewalter, H.T.; Hansen, M.F.; Ronin, D.; Nesme, J.; Rasekh, B.; Nosrati, M.; Burmølle, M. Enzymatic exposure impacts microbial diversity and reduces biovolume of reverse osmosis membrane-associated biofilms. Chem. Eng. J. 2025, 507, 160186. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Mahmoud, S.A.; Amin, S.; Mohamed, A.A. The Persistent Challenge of Biofouling in Reverse Osmosis Desalination: A Review of Characterization, Control, and Future Directions. Water Air Soil Pollut. 2025, 236, 599. [Google Scholar] [CrossRef]
- Jin, G.; Jiang, Z.; Sun, Y.; Liu, Z.; Liu, S.; Wu, F. Intelligent clean-in-place (CIP) system in beverage (healthy water) cleaner production. Food Control. 2025, 168, 110877. [Google Scholar] [CrossRef]
Step Nos. | CIP Steps in Sequence | Temp. | Target pH Range * | Time (min) |
---|---|---|---|---|
Step 1 | Alkali rinse | 50 °C | 11.0–11.4 | 12 |
Step 2 | Surfactant 1 | 50 °C | 11.0–11.4 | 30 |
Step 3 | Acid | 50 °C | 1.9–2.3 | 30 |
Step 4 | Enzyme | 50 °C | 10.5–11.0 | 45 |
Step 5 | Surfactant 2 | 50 °C | 11.0–11.4 | 10 |
Step 6 | Sanitizer | 21.1 °C | 3.0–4.0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, D.; Anand, S. Evaluating the Effectiveness of Individual Cleaning Steps of a CIP Protocol in Membrane Biofilm Removal Under Dynamic Conditions. Appl. Sci. 2025, 15, 9477. https://doi.org/10.3390/app15179477
Singh D, Anand S. Evaluating the Effectiveness of Individual Cleaning Steps of a CIP Protocol in Membrane Biofilm Removal Under Dynamic Conditions. Applied Sciences. 2025; 15(17):9477. https://doi.org/10.3390/app15179477
Chicago/Turabian StyleSingh, Diwakar, and Sanjeev Anand. 2025. "Evaluating the Effectiveness of Individual Cleaning Steps of a CIP Protocol in Membrane Biofilm Removal Under Dynamic Conditions" Applied Sciences 15, no. 17: 9477. https://doi.org/10.3390/app15179477
APA StyleSingh, D., & Anand, S. (2025). Evaluating the Effectiveness of Individual Cleaning Steps of a CIP Protocol in Membrane Biofilm Removal Under Dynamic Conditions. Applied Sciences, 15(17), 9477. https://doi.org/10.3390/app15179477