Boron-Modified Anodization of Preferentially Oriented TiO2 Nanotubes for Photoelectrochemical Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. NTO Synthesis
2.2. Phase and Chemical Characterization
2.3. Optical Properties Research
2.4. Photoelectrochemical Properties Studies
3. Results
3.1. Synthesis and Surface Morphology of NTO Arrays
3.2. Phase and Chemical Composition
3.3. UV-Vis Spectrometry and Photoluminescence
3.4. Photoelectrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NTO | Nanotubular titania |
BA | Boric acid |
PEC | Photoelectrochemical |
SEM | Scanning electron microscopy |
XRD | X-ray diffraction analysis |
XPS | X-ray photoelectron spectroscopy |
IPCE | Incident photon-to-current conversion efficiency |
References
- Fadlallah, M.M.; Eckern, U. Cation Mono- and Co-Doped Anatase TiO2 Nanotubes: An Ab Initio Investigation of Electronic and Optical Properties. Phys. Status Solidi 2020, 257, 1900217. [Google Scholar] [CrossRef]
- Zatsepin, D.A.; Boukhvalov, D.W.; Kurmaev, E.Z.; Gavrilov, N.V.; Kim, S.S.; Zhidkov, I.S. Pleomorphic Structural Imperfections Caused by Pulsed Bi-Implantation in the Bulk and Thin-Film Morphologies of TiO2. Appl. Surf. Sci. 2016, 379, 223–229. [Google Scholar] [CrossRef]
- Basavarajappa, P.S.; Patil, S.B.; Ganganagappa, N.; Reddy, K.R.; Raghu, A.V.; Reddy, C.V. Recent Progress in Metal-Doped TiO2, Non-Metal Doped/Codoped TiO2 and TiO2 Nanostructured Hybrids for Enhanced Photocatalysis. Int. J. Hydrog. Energy 2020, 45, 7764–7778. [Google Scholar] [CrossRef]
- Zykov, F.; Selyanin, I.; Shishkin, R.; Kartashov, V.; Borodianskiy, K.; Yuferov, Y. Study of the Photocatalytic Properties of Ni-Doped Nanotubular Titanium Oxide. Coatings 2023, 13, 144. [Google Scholar] [CrossRef]
- Jyothi, M.S.; Nayak, V.; Reddy, K.R.; Naveen, S.; Raghu, A.V. Non-Metal (Oxygen, Sulphur, Nitrogen, Boron and Phosphorus)-Doped Metal Oxide Hybrid Nanostructures as Highly Efficient Photocatalysts for Water Treatment and Hydrogen Generation. In Nanophotocatalysis and Environmental Applications: Materials and Technology; Springer: Cham, Switzerland, 2019; pp. 83–105. [Google Scholar]
- Zatsepin, D.A.; Boukhvalov, D.W.; Kurmaev, E.Z.; Zhidkov, I.S.; Gavrilov, N.V.; Korotin, M.A.; Kim, S.S. Structural Defects and Electronic Structure of N-Ion Implanted TiO2: Bulk versus Thin Film. Appl. Surf. Sci. 2015, 355, 984–988. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Xiao, P.; Zhang, X.; Lu, L.; Li, L. Preparation of Ni Nanoparticle–TiO2 Nanotube Composite by Pulse Electrodeposition. Mater. Lett. 2009, 63, 2429–2431. [Google Scholar] [CrossRef]
- Sun, L.; Li, J.; Wang, C.; Li, S.; Lai, Y.; Chen, H.; Lin, C. Ultrasound Aided Photochemical Synthesis of Ag Loaded TiO2 Nanotube Arrays to Enhance Photocatalytic Activity. J. Hazard. Mater. 2009, 171, 1045–1050. [Google Scholar] [CrossRef]
- Macak, J.M.; Schmidt-Stein, F.; Schmuki, P. Efficient Oxygen Reduction on Layers of Ordered TiO2 Nanotubes Loaded with Au Nanoparticles. Electrochem. Commun. 2007, 9, 1783–1787. [Google Scholar] [CrossRef]
- Paramasivam, I.; Macak, J.M.; Schmuki, P. Photocatalytic Activity of TiO2 Nanotube Layers Loaded with Ag and Au Nanoparticles. Electrochem. Commun. 2008, 10, 71–75. [Google Scholar] [CrossRef]
- Zaleska, A. Doped-TiO2: A Review. Recent Pat. Eng. 2008, 2, 157–164. [Google Scholar] [CrossRef]
- Akhter, P.; Arshad, A.; Saleem, A.; Hussain, M. Recent Development in Non-Metal-Doped Titanium Dioxide Photocatalysts for Different Dyes Degradation and the Study of Their Strategic Factors: A Review. Catalysts 2022, 12, 1331. [Google Scholar] [CrossRef]
- Xia, J.; Dong, L.; Song, H.; Yang, J.; Zhu, X. Preparation of Doped TiO2 Nanomaterials and Their Applications in Photocatalysis. Bull. Mater. Sci. 2023, 46, 13. [Google Scholar] [CrossRef]
- Zykov, F.; Yuferov, Y.; Kartashov, V. Photocatalytic Activity Boron-Doped TiO2 Nanotubes. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2022; p. 060017. [Google Scholar]
- Barkul, R.P.; Sutar, R.S.; Patil, M.K.; Delekar, S.D. Photocatalytic Degradation of Organic Pollutants by Using Nanocrystalline Boron-doped TiO2 Catalysts. ChemistrySelect 2021, 6, 3360–3369. [Google Scholar] [CrossRef]
- Lu, N.; Quan, X.; Li, J.; Chen, S.; Yu, H.; Chen, G. Fabrication of Boron-Doped TiO2 Nanotube Array Electrode and Investigation of Its Photoelectrochemical Capability. J. Phys. Chem. C 2007, 111, 11836–11842. [Google Scholar] [CrossRef]
- Shi, Y.; Hu, X.; Chen, L.; Lu, Y.; Zhu, B.; Zhang, S.; Huang, W. Boron Modified TiO2 Nanotubes Supported Rh-Nanoparticle Catalysts for Highly Efficient Hydroformylation of Styrene. New J. Chem. 2017, 41, 6120–6126. [Google Scholar] [CrossRef]
- Georgieva, J.; Valova, E.; Armyanov, S.; Tatchev, D.; Sotiropoulos, S.; Avramova, I.; Dimitrova, N.; Hubin, A.; Steenhaut, O. A Simple Preparation Method and Characterization of B and N Co-Doped TiO2 Nanotube Arrays with Enhanced Photoelectrochemical Performance. Appl. Surf. Sci. 2017, 413, 284–291. [Google Scholar] [CrossRef]
- Siuzdak, K.; Szkoda, M.; Lisowska-Oleksiak, A.; Grochowska, K.; Karczewski, J.; Ryl, J. Thin Layer of Ordered Boron-Doped TiO2 Nanotubes Fabricated in a Novel Type of Electrolyte and Characterized by Remarkably Improved Photoactivity. Appl. Surf. Sci. 2015, 357, 942–950. [Google Scholar] [CrossRef]
- Subramanian, A.; Wang, H.-W. Effects of Boron Doping in TiO2 Nanotubes and the Performance of Dye-Sensitized Solar Cells. Appl. Surf. Sci. 2012, 258, 6479–6484. [Google Scholar] [CrossRef]
- Di Valentin, C.; Pacchioni, G. Trends in Non-Metal Doping of Anatase TiO2: B, C, N and F. Catal. Today 2013, 206, 12–18. [Google Scholar] [CrossRef]
- Finazzi, E.; Di Valentin, C.; Pacchioni, G. Boron-Doped Anatase TiO2: Pure and Hybrid DFT Calculations. J. Phys. Chem. C 2009, 113, 220–228. [Google Scholar] [CrossRef]
- Mowbray, D.J.; Martinez, J.I.; García Lastra, J.M.; Thygesen, K.S.; Jacobsen, K.W. Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping. J. Phys. Chem. C 2009, 113, 12301–12308. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Assadi, M.H.N.; Li, S.; Yu, A.; Sorrell, C.C. Ab Initio Study of Phase Stability in Doped TiO2. Comput. Mech. 2012, 50, 185–194. [Google Scholar] [CrossRef]
- Zhukov, V.P.; Shein, I.R. Ab Initio Thermodynamic Characteristics of the Formation of Oxygen Vacancies, and Boron, Carbon, and Nitrogen Impurity Centers in Anatase. Phys. Solid State 2018, 60, 37–48. [Google Scholar] [CrossRef]
- Czoska, A.M.; Livraghi, S.; Paganini, M.C.; Giamello, E.; Di Valentin, C.; Pacchioni, G. The Nitrogen–Boron Paramagnetic Center in Visible Light Sensitized N–B Co-Doped TiO2. Experimental and Theoretical Characterization. Phys. Chem. Chem. Phys. 2011, 13, 136–143. [Google Scholar] [CrossRef]
- Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S.C. Visible-Light Activation of TiO2 Photocatalysts: Advances in Theory and Experiments. J. Photochem. Photobiol. C Photochem. Rev. 2015, 25, 1–29. [Google Scholar] [CrossRef]
- Li, L.; Meng, F.; Hu, X.; Qiao, L.; Sun, C.Q.; Tian, H.; Zheng, W. TiO2 Band Restructuring by B and P Dopants. PLoS ONE 2016, 11, e0152726. [Google Scholar] [CrossRef]
- Feng, N.; Liu, F.; Huang, M.; Zheng, A.; Wang, Q.; Chen, T.; Cao, G.; Xu, J.; Fan, J.; Deng, F. Unravelling the Efficient Photocatalytic Activity of Boron-Induced Ti3+ Species in the Surface Layer of TiO2. Sci. Rep. 2016, 6, 34765. [Google Scholar] [CrossRef]
- Yang, K.; Dai, Y.; Huang, B. Origin of the Photoactivity in Boron-Doped Anatase and Rutile TiO2 Calculated from First Principles. Phys. Rev. B 2007, 76, 195201. [Google Scholar] [CrossRef]
- Quesada-Gonzalez, M.; Williamson, B.A.D.D.; Sotelo-Vazquez, C.; Kafizas, A.; Boscher, N.D.; Quesada-Cabrera, R.; Scanlon, D.O.; Carmalt, C.J.; Parkin, I.P. Deeper Understanding of Interstitial Boron-Doped Anatase Thin Films as A Multifunctional Layer Through Theory and Experiment. J. Phys. Chem. C 2018, 122, 714–726. [Google Scholar] [CrossRef]
- Liu, R.; Yang, F.; Xie, Y.; Yu, Y. Visible-Light Responsive Boron and Nitrogen Codoped Anatase TiO2 with Exposed {0 0 1} Facet: Calculation and Experiment. Appl. Surf. Sci. 2019, 466, 568–577. [Google Scholar] [CrossRef]
- Szkoda, M.; Lisowska-Oleksiak, A.; Siuzdak, K. Optimization of Boron-Doping Process of Titania Nanotubes via Electrochemical Method toward Enhanced Photoactivity. J. Solid State Electrochem. 2016, 20, 1765–1774. [Google Scholar] [CrossRef]
- Habibi, R.; Gilani, N.; Pasikhani, J.V.; Pirbazari, A.E. Improved Photoelectrocatalytic Activity of Anodic TiO2 Nanotubes by Boron in Situ Doping Coupled with Geometrical Optimization: Application of a Potent Photoanode in the Purification of Dye Wastewater. J. Solid State Electrochem. 2021, 25, 545–560. [Google Scholar] [CrossRef]
- Su, Y.; Han, S.; Zhang, X.; Chen, X.; Lei, L. Preparation and Visible-Light-Driven Photoelectrocatalytic Properties of Boron-Doped TiO2 Nanotubes. Mater. Chem. Phys. 2008, 110, 239–246. [Google Scholar] [CrossRef]
- Bessegato, G.G.; Cardoso, J.C.; Zanoni, M.V.B. Enhanced Photoelectrocatalytic Degradation of an Acid Dye with Boron-Doped TiO2 Nanotube Anodes. Catal. Today 2015, 240, 100–106. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Yu, B.; Zhou, F.; Liu, W. TiO2 Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance. Chem. Mater. 2009, 21, 1198–1206. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, K.; Wang, G.; Guo, W.; Ma, T. Effect of Annealing Temperature on the Hydrogen Production of TiO2 Nanotube Arrays in a Two-Compartment Photoelectrochemical Cell. J. Phys. Chem. C 2011, 115, 12844–12849. [Google Scholar] [CrossRef]
- Ku, Y.; Fan, Z.-R.; Chou, Y.-C.; Wang, W.-Y. Characterization and Induced Photocurrent of TiO2 Nanotube Arrays Fabricated by Anodization. J. Electrochem. Soc. 2010, 157, H671. [Google Scholar] [CrossRef]
- Moreira, A.J.; de Araújo, K.C.; Marques, G.N.; Nobrega, E.T.D.; Santos, H.L.S.; Mascaro, L.H.; Onofre, Y.J.; Galeti, H.V.A.; Gobato, Y.G.; Mastelaro, V.R.; et al. Anatase-Rutile-Brookite: Structural and Photocatalytic Properties of TiO2 Modified with Different Boron Concentrations. Mater. Res. Bull. 2024, 179, 112973. [Google Scholar] [CrossRef]
- Heffner, H.; Faccio, R.; López-Corral, I. Electronic Structure Properties of Boron–Doped and Carbon–Boron–Codoped TiO2(B) for Photocatalytic Applications. J. Phys. Chem. Solids 2022, 165, 110685. [Google Scholar] [CrossRef]
- Ramteke, P.; Bhoyar, T.; Umare, S.S. Enhanced Visible Light Photocatalytic Activity of Exfoliated Boron-TiO2 Composite for Degradation of Rhodamine B and Nitrogen Fixation. ChemistrySelect 2024, 9, e202303609. [Google Scholar] [CrossRef]
- Momeni, M.M.; Taghinejad, M.; Ghayeb, Y.; Bagheri, R.; Song, Z. Preparation of Various Boron-Doped TiO2 Nanostructures by in Situ Anodizing Method and Investigation of Their Photoelectrochemical and Photocathodic Protection Properties. J. Iran. Chem. Soc. 2019, 16, 1839–1851. [Google Scholar] [CrossRef]
- Ruan, C.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Enhanced Photoelectrochemical-Response in Highly Ordered TiO2 Nanotube-Arrays Anodized in Boric Acid Containing Electrolyte. Sol. Energy Mater. Sol. Cells 2006, 90, 1283–1295. [Google Scholar] [CrossRef]
- Denisov, N.; Qin, S.; Cha, G.; Yoo, J.; Schmuki, P. Photoelectrochemical Properties of “Increasingly Dark” TiO2 Nanotube Arrays. J. Electroanal. Chem. 2020, 872, 114098. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, J. Some Interesting Properties of Black Hydrogen-Treated TiO2 Nanowires and Their Potential Application in Solar Energy Conversion. Sci. China Chem. 2015, 58, 1810–1815. [Google Scholar] [CrossRef]
- Gao, Q.; Si, F.; Zhang, S.; Fang, Y.; Chen, X.; Yang, S. Hydrogenated F-Doped TiO2 for Photocatalytic Hydrogen Evolution and Pollutant Degradation. Int. J. Hydrog. Energy 2019, 44, 8011–8019. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.; Liu, Y.; Huang, C.; Liu, W.; Mi, X.; Fan, D.; Fan, F.; Lu, H.; Chen, X. SnS2 Nanosheets/H-TiO2 Nanotube Arrays as a Type II Heterojunctioned Photoanode for Photoelectrochemical Water Splitting. ChemSusChem 2019, 12, 961–967. [Google Scholar] [CrossRef]
- Vasilopoulou, M.; Kelaidis, N.; Polydorou, E.; Soultati, A.; Davazoglou, D.; Argitis, P.; Papadimitropoulos, G.; Tsikritzis, D.; Kennou, S.; Auras, F.; et al. Hydrogen and Nitrogen Codoping of Anatase TiO2 for Efficiency Enhancement in Organic Solar Cells. Sci. Rep. 2017, 7, 17839. [Google Scholar] [CrossRef]
- Ratnawati; Gunlazuardi, J.; Dewi, E.L. Slamet Effect of NaBF4 Addition on the Anodic Synthesis of TiO2 Nanotube Arrays Photocatalyst for Production of Hydrogen from Glycerol–Water Solution. Int. J. Hydrog. Energy 2014, 39, 16927–16935. [Google Scholar] [CrossRef]
- Cai, J.; Zhou, M.; Xu, X.; Du, X. Stable Boron and Cobalt Co-Doped TiO2 Nanotubes Anode for Efficient Degradation of Organic Pollutants. J. Hazard. Mater. 2020, 396, 122723. [Google Scholar] [CrossRef]
- Mehta, M.; Kodan, N.; Kumar, S.; Kaushal, A.; Mayrhofer, L.; Walter, M.; Moseler, M.; Dey, A.; Krishnamurthy, S.; Basu, S.; et al. Hydrogen Treated Anatase TiO2: A New Experimental Approach and Further Insights from Theory. J. Mater. Chem. A 2016, 4, 2670–2681. [Google Scholar] [CrossRef]
- Fushimi, K.; Habazaki, H. Anodic Dissolution of Titanium in NaCl-Containing Ethylene Glycol. Electrochim. Acta 2008, 53, 3371–3376. [Google Scholar] [CrossRef]
- Kim, D.; Son, K.; Sung, D.; Kim, Y.; Chung, W. Effect of Added Ethanol in Ethylene Glycol–NaCl Electrolyte on Titanium Electropolishing. Corros. Sci. 2015, 98, 494–499. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, O.; Martínez, L.M.; Videa, M. Electropolishing and Anodization of Titanium in Water/Ethylene Glycol Baths for the Production of TiO2 Nanotubes. J. Nanoparticle Res. 2020, 22, 119. [Google Scholar] [CrossRef]
- Yuferov, Y.V.; Popov, I.D.; Zykov, F.M.; Suntsov, A.Y.; Baklanova, I.V.; Chukin, A.V.; Kukharenko, A.I.; Cholakh, S.O.; Zhidkov, I.S. Study of the Influence of Anodizing Parameters on the Photocatalytic Activity of Preferred Oriented TiO2 Nanotubes Self-Doped by Carbon. Appl. Surf. Sci. 2022, 573, 151366. [Google Scholar] [CrossRef]
- Ulyanova, E.S.; Shalaeva, E.V.; Krasil’nikov, V.N.; Gyrdasova, O.I.; Selyanin, I.O.; Zykov, F.M.; Koshkina, A.A.; Melentsova, A.A.; Buldakova, L.Y.; Samigulina, R.F. Structural, Spectroscopic and Improved Photoelectrochemical Properties of TiO2/C Composites with Anatase/Brookite Matrix, Prepared by Air-Thermolysis of Microspherical Titanium Glycolate. Mater. Chem. Phys. 2024, 323, 129638. [Google Scholar] [CrossRef]
- Kapusta-Kołodziej, J.; Chudecka, A.; Sulka, G.D. 3D Nanoporous Titania Formed by Anodization as a Promising Photoelectrode Material. J. Electroanal. Chem. 2018, 823, 221–233. [Google Scholar] [CrossRef]
- Kapusta-Kołodziej, J.; Syrek, K.; Sulka, G.D. Synthesis and Photoelectrochemical Properties of Anodic Oxide Films on Titanium Formed by Pulse Anodization. J. Electrochem. Soc. 2018, 165, H838–H844. [Google Scholar] [CrossRef]
- Kapusta-Kołodziej, J.; Syrek, K.; Pawlik, A.; Jarosz, M.; Tynkevych, O.; Sulka, G.D. Effects of Anodizing Potential and Temperature on the Growth of Anodic TiO2 and Its Photoelectrochemical Properties. Appl. Surf. Sci. 2017, 396, 1119–1129. [Google Scholar] [CrossRef]
- Chen, Z.; Dinh, H.N.; Miller, E. Photoelectrochemical Water Splitting; Springer Briefs in Energy; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-8297-0. [Google Scholar]
- Tenkyong, T.; Sahaya Selva Mary, J.; Praveen, B.; Pugazhendhi, K.; Sharmila, D.J.; Shyla, J.M. Structural Modulation and Band Gap Optimisation of Electrochemically Anodised TiO2 Nanotubes. Mater. Sci. Semicond. Process. 2018, 83, 150–158. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, R.; Wang, J.; Liu, Y.; Mai, W. Mechanism of High PEC Performance of B-Doped TiO2 Nanotube Arrays: Highly Reactive Surface Defects and Lattice Stress. Appl. Surf. Sci. 2023, 638, 158066. [Google Scholar] [CrossRef]
- Einollahzadeh-Samadi, M.; Dariani, R.S.; Paul, A. Tailoring Morphology, Structure and Photoluminescence Properties of Anodic TiO2 Nanotubes. J. Appl. Crystallogr. 2017, 50, 1133–1143. [Google Scholar] [CrossRef]
- Acevedo-Peña, P.; González, F.; González, G.; González, I. The Effect of Anatase Crystal Orientation on the Photoelectrochemical Performance of Anodic TiO2 Nanotubes. Phys. Chem. Chem. Phys. 2014, 16, 26213–26220. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Park, I.J.; Kim, D.H.; Seong, W.M.; Kim, D.W.; Han, G.S.; Kim, J.Y.; Jung, H.S.; Hong, K.S. Crystallographically Preferred Oriented TiO2 Nanotube Arrays for Efficient Photovoltaic Energy Conversion. Energy Environ. Sci. 2012, 5, 7989. [Google Scholar] [CrossRef]
- Park, I.J.; Kim, D.H.; Seong, W.M.; Han, B.S.; Han, G.S.; Jung, H.S.; Yang, M.; Fan, W.; Lee, S.; Lee, J.-K.; et al. Observation of Anatase Nanograins Crystallizing from Anodic Amorphous TiO2 Nanotubes. CrystEngComm 2015, 17, 7346–7353. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Yang, Y.; Wen, X.; Xiang, H.; Li, Y. Fabrication of Different Crystallographically Oriented TiO2 Nanotube Arrays Used in Dye-Sensitized Solar Cells. RSC Adv. 2015, 5, 41120–41124. [Google Scholar] [CrossRef]
- Herman, G.S.; Dohnálek, Z.; Ruzycki, N.; Diebold, U. Experimental Investigation of the Interaction of Water and Methanol with Anatase−TiO2(101). J. Phys. Chem. B 2003, 107, 2788–2795. [Google Scholar] [CrossRef]
- Posternak, M.; Baldereschi, A.; Delley, B. Dissociation of Water on Anatase TiO2 Nanoparticles: The Role of Undercoordinated Ti Atoms at Edges. J. Phys. Chem. C 2009, 113, 15862–15867. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. X-Ray Photoelectron Spectroscopy: Towards Reliable Binding Energy Referencing. Prog. Mater. Sci. 2020, 107, 100591. [Google Scholar] [CrossRef]
- Krishnan, P.; Liu, M.; Itty, P.A.; Liu, Z.; Rheinheimer, V.; Zhang, M.-H.; Monteiro, P.J.M.; Yu, L.E. Characterization of Photocatalytic TiO2 Powder under Varied Environments Using near Ambient Pressure X-Ray Photoelectron Spectroscopy. Sci. Rep. 2017, 7, 43298. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. The Same Chemical State of Carbon Gives Rise to Two Peaks in X-Ray Photoelectron Spectroscopy. Sci. Rep. 2021, 11, 11195. [Google Scholar] [CrossRef]
- Zhou, Y.; Ren, X.; Guo, Q.; Zhang, H.; Wang, J.; Huang, Z.; Ma, F.; Chen, R.; Ni, H. Chemical Synthetic Protocol of M-DMAP (M = Ag+, Cr3+, Cu2+, Co2+, In3+, Ce3+) Coordination Compounds and Their Photoelectrochemical Performance. ACS Appl. Energy Mater. 2025, 8, 4418–4427. [Google Scholar] [CrossRef]
- Henderson, M.A.; Epling, W.S.; Peden, C.H.F.; Perkins, C.L. Insights into Photoexcited Electron Scavenging Processes on TiO2 Obtained from Studies of the Reaction of O2 with OH Groups Adsorbed at Electronic Defects on TiO2(110). J. Phys. Chem. B 2003, 107, 534–545. [Google Scholar] [CrossRef]
- Katal, R.; Masudy-Panah, S.; Tanhaei, M.; Farahani, M.H.D.A.; Jiangyong, H. A Review on the Synthesis of the Various Types of Anatase TiO2 Facets and Their Applications for Photocatalysis. Chem. Eng. J. 2020, 384, 123384. [Google Scholar] [CrossRef]
- Pan, J.; Liu, G.; Lu, G.Q.M.; Cheng, H.-M. On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals. Angew. Chem. Int. Ed. 2011, 50, 2133–2137. [Google Scholar] [CrossRef]
- Ratova, M.; Klaysri, R.; Praserthdam, P.; Kelly, P.J. Visible Light Active Photocatalytic C-Doped Titanium Dioxide Films Deposited via Reactive Pulsed DC Magnetron Co-Sputtering: Properties and Photocatalytic Activity. Vacuum 2018, 149, 214–224. [Google Scholar] [CrossRef]
- Jia, J.; Li, D.; Wan, J.; Yu, X. Characterization and Mechanism Analysis of Graphite/C-Doped TiO2 Composite for Enhanced Photocatalytic Performance. J. Ind. Eng. Chem. 2016, 33, 162–169. [Google Scholar] [CrossRef]
- Gwag, E.H.; Moon, S.Y.; Mondal, I.; Park, J.Y. Influence of Carbon Doping Concentration on Photoelectrochemical Activity of TiO2 Nanotube Arrays under Water Oxidation. Catal. Sci. Technol. 2019, 9, 688–694. [Google Scholar] [CrossRef]
- Murphy, A. Does Carbon Doping of TiO2 Allow Water Splitting in Visible Light? Comments on “Nanotube Enhanced Photoresponse of Carbon Modified (CM)-n-TiO2 for Efficient Water Splitting”. Sol. Energy Mater. Sol. Cells 2008, 92, 363–367. [Google Scholar] [CrossRef]
- Boukhvalov, D.W.; Zhidkov, I.S.; Kukharenko, A.I.; Slesarev, A.I.; Zatsepin, A.F.; Cholakh, S.O.; Kurmaev, E.Z. Stability of Boron-Doped Graphene/Copper Interface: DFT, XPS and OSEE Studies. Appl. Surf. Sci. 2018, 441, 978–983. [Google Scholar] [CrossRef]
- Shard, A.G. Detection Limits in XPS for More than 6000 Binary Systems Using Al and Mg Kα X-Rays. Surf. Interface Anal. 2014, 46, 175–185. [Google Scholar] [CrossRef]
- Shard, A.G. X-Ray Photoelectron Spectroscopy. In Characterization of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 349–371. [Google Scholar]
- Cano-Casanova, L.; Ansón-Casaos, A.; Hernández-Ferrer, J.; Benito, A.M.; Maser, W.K.; Garro, N.; Lillo-Ródenas, M.A.; Román-Martínez, M.C. Surface-Enriched Boron-Doped TiO2 Nanoparticles as Photocatalysts for Propene Oxidation. ACS Appl. Nano Mater. 2022, 5, 12527–12539. [Google Scholar] [CrossRef] [PubMed]
- Raghunath, P.; Lin, M.C. Adsorption Configurations and Reactions of Boric Acid on a TiO2 Anatase (101) Surface. J. Phys. Chem. C 2008, 112, 8276–8287. [Google Scholar] [CrossRef]
- Yu, C.; Wei, L.; Li, X.; Chen, J.; Fan, Q.; Yu, J.C. Synthesis and Characterization of Ag/TiO2-B Nanosquares with High Photocatalytic Activity under Visible Light Irradiation. Mater. Sci. Eng. B 2013, 178, 344–348. [Google Scholar] [CrossRef]
- Szkoda, M.; Siuzdak, K.; Lisowska-Oleksiak, A.; Karczewski, J.; Ryl, J. Facile Preparation of Extremely Photoactive Boron-Doped TiO2 Nanotubes Arrays. Electrochem. Commun. 2015, 60, 212–215. [Google Scholar] [CrossRef]
- Lu, N.; Zhao, H.; Li, J.; Quan, X.; Chen, S. Characterization of Boron-Doped TiO2 Nanotube Arrays Prepared by Electrochemical Method and Its Visible Light Activity. Sep. Purif. Technol. 2008, 62, 668–673. [Google Scholar] [CrossRef]
- Quesada-González, M.; Boscher, N.D.; Carmalt, C.J.; Parkin, I.P. Interstitial Boron-Doped TiO2 Thin Films: The Significant Effect of Boron on TiO2 Coatings Grown by Atmospheric Pressure Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2016, 8, 25024–25029. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, X.; He, T.; Guo, X.; Feng, Y. Preparation and Photocatalytic Activity of B–N Co-Doped Mesoporous TiO2. Powder Technol. 2014, 253, 608–613. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, K.; Pan, Q.; Xu, Y.; Liu, Q.; Cui, G.; Guo, X.; Sun, X. Boron-Doped TiO2 for Efficient Electrocatalytic N2 Fixation to NH3 at Ambient Conditions. ACS Sustain. Chem. Eng. 2019, 7, 117–122. [Google Scholar] [CrossRef]
- Shen, S.-J.; Yang, T.-S.; Wong, M.-S. Co-Sputtered Boron-Doped Titanium Dioxide Films as Photocatalysts. Surf. Coat. Technol. 2016, 303, 184–190. [Google Scholar] [CrossRef]
- Cadatal-Raduban, M.M.; Olejníček, J.; Kohout, M.; Yamanoi, K.; Horiuchi, Y.; Kato, T.; Ono, S. Vacuum Ultraviolet Photoconductive Detector Based on Anatase TiO2 Thin Film Deposited on SiO2 Substrate. Mater. Today Proc. 2022, 60, 1160–1164. [Google Scholar] [CrossRef]
- Radha, E.; Komaraiah, D.; Sayanna, R.; Sivakumar, J. Photoluminescence and Photocatalytic Activity of Rare Earth Ions Doped Anatase TiO2 Thin Films. J. Lumin. 2022, 244, 118727. [Google Scholar] [CrossRef]
- Dette, C.; Pérez-Osorio, M.A.; Kley, C.S.; Punke, P.; Patrick, C.E.; Jacobson, P.; Giustino, F.; Jung, S.J.; Kern, K. TiO2 Anatase with a Bandgap in the Visible Region. Nano Lett. 2014, 14, 6533–6538. [Google Scholar] [CrossRef] [PubMed]
- Nagaraj, G.; Irudayaraj, A.; Josephine, R.L. Tuning the Optical Band Gap of Pure TiO2 via Photon Induced Method. Optik 2019, 179, 889–894. [Google Scholar] [CrossRef]
- Landi, S.; Segundo, I.R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C.J. Use and Misuse of the Kubelka-Munk Function to Obtain the Band Gap Energy from Diffuse Reflectance Measurements. Solid State Commun. 2022, 341, 114573. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Paul, T.C.; Babu, M.H.; Podder, J.; Dev, B.C.; Sen, S.K.; Islam, S. Influence of Fe3+ Ions Doping on TiO2 Thin Films: Defect Generation, d-d Transition and Band Gap Tuning for Optoelectronic Device Applications. Phys. B Condens. Matter 2021, 604, 412618. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef]
- Komaraiah, D.; Radha, E.; Sivakumar, J.; Ramana Reddy, M.V.; Sayanna, R. Photoluminescence and Photocatalytic Activity of Spin Coated Ag+ Doped Anatase TiO2 Thin Films. Opt. Mater. 2020, 108, 110401. [Google Scholar] [CrossRef]
- Islam, M.N.; Podder, J.; Hossain, K.S.; Sagadevan, S. Band Gap Tuning of P-Type Al-Doped TiO2 Thin Films for Gas Sensing Applications. Thin Solid Film. 2020, 714, 138382. [Google Scholar] [CrossRef]
- Frova, A.; Boddy, P.J.; Chen, Y.S. Electromodulation of the Optical Constants of Rutile in the Uv. Phys. Rev. 1967, 157, 700–708. [Google Scholar] [CrossRef]
- Serpone, N.; Lawless, D.; Khairutdinov, R. Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? J. Phys. Chem. 1995, 99, 16646–16654. [Google Scholar] [CrossRef]
- Daude, N.; Gout, C.; Jouanin, C. Electronic Band Structure of Titanium Dioxide. Phys. Rev. B 1977, 15, 3229–3235. [Google Scholar] [CrossRef]
- Ye, X.; Luo, Y.; Liu, S.; Hou, D.; You, W. Intense and Color-Tunable Upconversion Luminescence of Er3+ Doped and Er3+/Yb3+ Co-Doped Ba3Lu4O9 Phosphors. J. Alloys Compd. 2017, 701, 806–815. [Google Scholar] [CrossRef]
- Takanabe, K. Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design. ACS Catal. 2017, 7, 8006–8022. [Google Scholar] [CrossRef]
- Frank, O.; Zukalova, M.; Laskova, B.; Kürti, J.; Koltai, J.; Kavan, L. Raman Spectra of Titanium Dioxide (Anatase, Rutile) with Identified Oxygen Isotopes (16, 17, 18). Phys. Chem. Chem. Phys. 2012, 14, 14567. [Google Scholar] [CrossRef]
- Avena, M.J.; Cámara, O.R.; De Pauli, C.P. Open Circuit Potential Measurements with Ti/TiO2 Electrodes. Colloids Surf. 1993, 69, 217–228. [Google Scholar] [CrossRef]
Boric Acid [M] | 0 | 0.01 | 0.05 | 0.10 | 0.25 | 0.50 | 1.00 |
---|---|---|---|---|---|---|---|
Array Type | Nanotubular | Nanoporous | Barrier Layer | ||||
Pore Diameter [nm] | 51.5 ± 4.1 | 52.1 ± 3.1 | 54.6 ± 4.7 | 55.2 ± 5.1 | 23.0 ± 2.1 | Not Detectable | |
Wall thickness [nm] | 11.3 ± 0.8 | 10.4 ± 0.8 | 9.9 ± 0.6 | 17.1 ± 1.0 | - |
BA Concentration [M] | 0 | 0.01 | 0.05 | 0.10 |
---|---|---|---|---|
Anodizing Time [min] | Thickness [µm] | |||
40 | 2.8 ± 0.1 | 2.3 ± 0.3 | 4.1 ± 0.5 | 5.8 ± 0.3 |
60 | 3.0 ± 0.2 | 2.9 ± 0.3 | 3.9 ± 0.6 | 6.7 ± 0.5 |
120 | 4.0 ± 0.2 | 3.7 ± 0.6 | 6.6 ± 1.2 | 9.9 ± 0.7 |
Anodizing Time [min] | BA Concentration [M] | 0 | 0.01 | 0.05 | 0.10 | 0.25 | 0.50 | 1 |
---|---|---|---|---|---|---|---|---|
Texture Coefficient | ||||||||
40 | TC (101) | 0.10 | 0.09 | 0.13 | 0.16 | 0.77 | Undetectable | |
TC (004) | 3.49 | 3.56 | 3.54 | 2.47 | 1.98 | |||
60 | TC (101) | 0.10 | 0.22 | 0.19 | 0.25 | 0.90 | ||
TC (004) | 3.47 | 2.94 | 2.71 | 2.26 | 1.81 | |||
120 | TC (101) | 0.09 | 0.12 | 0.08 | 0.13 | 1.41 | ||
TC (004) | 3.73 | 3.94 | 4.13 | 2.86 | 1.55 |
Attribution | NTO-0/y | NTO-0.01/y | NTO-0.05/y | NTO-0.10/y |
---|---|---|---|---|
Gaussian Peak [eV] | ||||
V0•• + | 2.01 | 2.05 | 1.99 | 1.91 |
2B2g → 2B1g (Ti3+) | 2.26 | 2.37 | 2.31 | 2.33 |
V0 (anatase) | 2.55 | 2.53 | 2.58 | 2.63 |
2.79 | 2.71 | 2.79 | 2.87 | |
Χ1a → Γ1b | 2.90 | 2.89 | 2.94 | 2.96 |
Χ2b → Γ1b | 3.09 | 3.05 | 3.10 | 3.11 |
Γ3 → Χ1b | 3.14 | 3.21 | ||
Χ1a → Χ1b | 3.47 | 3.49 | 3.52 | 3.44 |
Χ2b → Χ1b | 3.66 | 3.67/3.81 (2-component) | 3.85 | 3.73 |
Γ5′a → Γ1b | 4.02 | 3.93 | ||
Γ5′a + Γ2′ → Γ1b | 4.12 | 4.16 | ||
Γ2′ → Γ1b | 4.21 | 4.25 | ||
Γ3 → Γ5′b | 4.63 | 4.55 | 4.69 | 4.62 |
Sample | Bandgap Calculation | |||
---|---|---|---|---|
Direct Transition | Indirect Transition | |||
Eg [eV] | (Eg)S [eV] | Eg [eV] | (Eg)S [eV] | |
NTO-0/y | 3.19 | 3.30 | 2.58 | 3.27 |
NTO-0.01/y | 3.15 | 3.30 | 2.37 | 3.27 |
NTO-0.05/y | 2.50 | 3.26 | 0.2 | 3.29 |
NTO-0.10/y | 3.01 | 3.26 | 1.93 | 3.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zykov, F.; Rahumi, O.; Selyanin, I.; Vasin, A.; Popov, I.; Kartashov, V.; Borodianskiy, K.; Yuferov, Y. Boron-Modified Anodization of Preferentially Oriented TiO2 Nanotubes for Photoelectrochemical Applications. Appl. Sci. 2025, 15, 9405. https://doi.org/10.3390/app15179405
Zykov F, Rahumi O, Selyanin I, Vasin A, Popov I, Kartashov V, Borodianskiy K, Yuferov Y. Boron-Modified Anodization of Preferentially Oriented TiO2 Nanotubes for Photoelectrochemical Applications. Applied Sciences. 2025; 15(17):9405. https://doi.org/10.3390/app15179405
Chicago/Turabian StyleZykov, Fedor, Or Rahumi, Igor Selyanin, Andrey Vasin, Ivan Popov, Vadim Kartashov, Konstantin Borodianskiy, and Yuliy Yuferov. 2025. "Boron-Modified Anodization of Preferentially Oriented TiO2 Nanotubes for Photoelectrochemical Applications" Applied Sciences 15, no. 17: 9405. https://doi.org/10.3390/app15179405
APA StyleZykov, F., Rahumi, O., Selyanin, I., Vasin, A., Popov, I., Kartashov, V., Borodianskiy, K., & Yuferov, Y. (2025). Boron-Modified Anodization of Preferentially Oriented TiO2 Nanotubes for Photoelectrochemical Applications. Applied Sciences, 15(17), 9405. https://doi.org/10.3390/app15179405