Exuviae of Tenebrio molitor Larvae as a Source of Chitosan: Characterisation and Possible Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents, and Materials
2.2. Chitin and Chitosan Extraction
2.3. Chitosan Purification
2.4. Evaluation of Raw Material Quality and Extraction Efficiency
2.4.1. Yield Analysis
2.4.2. Basic Chemical Composition of Exuviae and Chitosan
2.4.3. Amino Acid Composition of Exuviae and Chitosan
2.4.4. Demineralization Efficiency
2.4.5. Deproteinization Efficiency
2.5. Chitosan Characterization Methods
2.5.1. Degree of Deacetylation
2.5.2. Viscosity-Average Molecular Weight
2.5.3. Fourier-Transform Infrared Spectroscopy
2.5.4. Differential Scanning Calorimetry
2.5.5. Thermogravimetric Analysis
2.5.6. Scanning Electron Microscopy
2.5.7. Rheology
2.5.8. Water and Fat Binding Capacity
2.5.9. Antioxidant Activity
2.6. Preparation of Chitosan Film
2.7. Film Characterization
2.8. Statistical Analysis
3. Results
3.1. Chitin and Chitosan Yield
3.2. Basic Chemical and Amino Acid Composition of Exuviae and Chitosan
3.3. Degree of Deacetylation and Viscosity-Average Molecular Weight
3.4. Chemical Structure Analysis
3.5. Thermal Behavior Analysis
3.6. Morphology Analysis
3.7. Flow Behavior Analysis
3.8. Water and Fat Binding Capacity Analysis
3.9. DPPH Radical Scavenging Activity Analysis
3.10. Film-Forming Ability of Chitosan
4. Discussion
4.1. Extraction Process Efficiency
4.2. Chitosan Characterization
4.3. Applicability of Chitosan Films
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guzmán, E.; Ortega, F.; Rubio, R.G. Chitosan: A Promising Multifunctional Cosmetic Ingredient for Skin and Hair Care. Cosmetics 2022, 9, 99. [Google Scholar] [CrossRef]
- Dutta, P.K.; Duta, J.; Tripathi, V.S. Chitin and Chitosan: Chemistry, Properties and Applications. J. Sci. Ind. Res. 2004, 63, 20–31. [Google Scholar]
- Casadidio, C.; Peregrina, D.V.; Gigliobianco, M.R.; Deng, S.; Censi, R.; Di Martino, P. Chitin and Chitosans: Characteristics, Eco-Friendly Processes, and Applications in Cosmetic Science. Mar. Drugs 2019, 17, 369. [Google Scholar] [CrossRef]
- Milinković Budinčić, J. Primena Sistema Hitozan-Jonska Površinski Aktivna Materija Za Dobijanje Mikrokapsula Uljnog Sadržaja. Ph.D. Thesis, University of Novi Sad, Novi Sad, Serbia, 2019. [Google Scholar]
- Aranaz, I.; Acosta, N.; Civera, C.; Elorza, B.; Mingo, J.; Castro, C.; Gandía, M.D.l.L.; Heras Caballero, A.H. Cosmetics and Cosmeceutical Applications of Chitin, Chitosan and Their Derivatives. Polymers 2018, 10, 213. [Google Scholar] [CrossRef] [PubMed]
- Hahn, T.; Tafi, E.; Paul, A.; Salvia, R.; Falabella, P.; Zibek, S. Current State of Chitin Purification and Chitosan Production from Insects. J. Chem. Technol. Biotechnol. 2020, 95, 2775–2795. [Google Scholar] [CrossRef]
- Triunfo, M.; Tafi, E.; Guarnieri, A.; Salvia, R.; Scieuzo, C.; Hahn, T.; Zibek, S.; Gagliardini, A.; Panariello, L.; Coltelli, M.B.; et al. Characterization of Chitin and Chitosan Derived from Hermetia Illucens, a Further Step in a Circular Economy Process. Sci. Rep. 2022, 12, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Nafary, A.; Mousavi Nezhad, S.; Jalili, S. Extraction and Characterization of Chitin and Chitosan from Tenebrio Molitor Beetles and Investigation of Its Antibacterial Effect against Pseudomonas Aeruginosa. Adv. Biomed. Res. 2023, 12, 2–7. [Google Scholar] [CrossRef]
- Soon, C.Y.; Tee, Y.B.; Tan, C.H.; Rosnita, A.T.; Khalina, A. Extraction and Physicochemical Characterization of Chitin and Chitosan from Zophobas Morio Larvae in Varying Sodium Hydroxide Concentration. Int. J. Biol. Macromol. 2018, 108, 135–142. [Google Scholar] [CrossRef]
- Mei, Z.; Kuzhir, P.; Godeau, G. Update on Chitin and Chitosan from Insects: Sources, Production, Characterization, and Biomedical Applications. Biomimetics 2024, 9, 297. [Google Scholar] [CrossRef]
- Azzi, M.; Elkadaoui, S.; Zim, J.; Desbrieres, J.; El Hachimi, Y.; Tolaimate, A. Tenebrio Molitor Breeding Rejects as a High Source of Pure Chitin and Chitosan: Role of the Processes, Influence of the Life Cycle Stages and Comparison with Hermetia Illucens. Int. J. Biol. Macromol. 2024, 277, 134475. [Google Scholar] [CrossRef]
- Khatami, N.; Guerrero, P.; Martín, P.; Quintela, E.; Ramos, V.; Saa, L.; Cortajarena, A.L.; de la Caba, K.; Camarero-Espinosa, S.; Abarrategi, A. Valorization of Biological Waste from Insect-Based Food Industry: Assessment of Chitin and Chitosan Potential. Carbohydr. Polym. 2024, 324, 121529. [Google Scholar] [CrossRef]
- Tepper, K.; Edwards, O.; Sunna, A.; Paulsen, I.T.; Maselko, M. Diverting Organic Waste from Landfills via Insect Biomanufacturing Using Engineered Black Soldier Flies (Hermetia illucens). Commun. Biol. 2024, 7, 1–14. [Google Scholar] [CrossRef]
- Beesigamukama, D.; Tanga, C.M.; Sevgan, S.; Ekesi, S.; Kelemu, S. Waste to Value: Global Perspective on the Impact of Entomocomposting on Environmental Health, Greenhouse Gas Mitigation and Soil Bioremediation. Sci. Total Environ. 2023, 902, 166067. [Google Scholar] [CrossRef] [PubMed]
- Zargar, V.; Asghari, M.; Dashti, A. A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. ChemBioEng Rev. 2015, 2, 204–226. [Google Scholar] [CrossRef]
- Kedir, W.M.; Abdi, G.F.; Goro, M.M.; Tolesa, L.D. Pharmaceutical and Drug Delivery Applications of Chitosan Biopolymer and Its Modified Nanocomposite: A Review. Heliyon 2022, 8, e10196. [Google Scholar] [CrossRef] [PubMed]
- de Alvarenga, E.S. Characterization and Properties of Chitosan. In Biotechnology of Biopolymers; Elnashar, M., Ed.; IntechOpen: Rijeka, Croatia, 2011; pp. 91–108. [Google Scholar] [CrossRef]
- Ahmad Khan, T.; Khiang Peh, K.; Seng Ch, H.; Khan, T.A.; Peh, K.K.; Ch’ng, H.S.; Ahmad Khan, T.; Khiang Peh, K.; Seng Ch, H. Reporting Degree of Deacetylation Values of Chitosan: The Influence of Analytical Methods. J. Pharm. Pharm. Sci. 2002, 5, 205–212. [Google Scholar]
- Haghighi, H.; Licciardello, F.; Fava, P.; Siesler, H.W.; Pulvirenti, A. Recent Advances on Chitosan-Based Films for Sustainable Food Packaging Applications. Food Packag. Shelf Life 2020, 26, 100551. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Khubiev, O.M.; Egorov, A.R.; Kirichuk, A.A.; Khrustalev, V.N.; Tskhovrebov, A.G.; Kritchenkov, A.S. Chitosan-Based Antibacterial Films for Biomedical and Food Applications. Int. J. Mol. Sci. 2023, 24, 10738. [Google Scholar] [CrossRef]
- Song, Y.S.; Kim, M.W.; Moon, C.; Seo, D.J.; Han, Y.S.; Jo, Y.H.; Noh, M.Y.; Park, Y.K.; Kim, S.A.; Kim, Y.W.; et al. Extraction of Chitin and Chitosan from Larval Exuvium and Whole Body of Edible Mealworm, Tenebrio Molitor. Entomol. Res. 2018, 48, 227–233. [Google Scholar] [CrossRef]
- Marín-Morales, M.S.; Ibarra-Herrera, C.C.; Rivas-Arreola, M.J. Obtention and Characterization of Chitosan from Exuviae of Tenebrio Molitor and Sphenarium Purpurascens. ACS Omega 2025, 10, 17015–17023. [Google Scholar] [CrossRef]
- Hussain, R.; Iman, M.; Maji, T.K. Determination of Degree of Deacetylation of Chitosan and Their Effect on the Release Behavior of Essential Oil from Chitosan and Chitosan-Gelatin Complex. Int. J. Adv. Eng. Appl. 2013, 2, 4–12. [Google Scholar]
- International, A. Official Methods of Analyses, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Sedlar, T.; Pasković, I.; Dragojlović, D.; Popović, S.; Vidosavljević, S.; Goreta Ban, S.; Popović, L. Enzyme-Assisted Extraction of Proteins from Cauliflower and Broccoli Waste Leaves. Horticulturae 2025, 11, 148. [Google Scholar] [CrossRef]
- Spackman, D.H.; Stein, W.H.; Moore, S. Automatic Recording Apparatus for Use in Chromatography of Amino Acids. Anal. Chem. 1958, 30, 1190–1206. [Google Scholar] [CrossRef]
- Hahn, T.; Tafi, E.; von Seggern, N.; Falabella, P.; Salvia, R.; Thomä, J.; Febel, E.; Fijalkowska, M.; Schmitt, E.; Stegbauer, L.; et al. Purification of Chitin from Pupal Exuviae of the Black Soldier Fly. Waste Biomass Valorization 2022, 13, 1993–2008. [Google Scholar] [CrossRef]
- Xiong, A.; Ruan, L.; Ye, K.; Huang, Z.; Yu, C. Extraction of Chitin from Black Soldier Fly (Hermetia illucens) and Its Puparium by Using Biological Treatment. Life 2023, 13, 1424. [Google Scholar] [CrossRef]
- Yuan, Y.; Chesnutt, B.M.; Haggard, W.O.; Bumgardner, J.D. Deacetylation of Chitosan: Material Characterization and in Vitro Evaluation via Albumin Adsorption and Pre-Osteoblastic Cell Cultures. Materials 2011, 4, 1399–1416. [Google Scholar] [CrossRef]
- Czechowska-Biskup, R.; Wach, R.A.; Rosiak, J.M.; Ulański, P. PROCEDURE FOR DETERMINATION OF THE MOLECULAR WEIGHT OF CHITOSAN BY VISCOMETRY. Prog. Chem. Appl. Chitin its Deriv. 2018, XXIII, 45–54. [Google Scholar] [CrossRef]
- Kasaai, M.R. Calculation of Mark-Houwink-Sakurada (MHS) Equation Viscometric Constants for Chitosan in Any Solvent-Temperature System Using Experimental Reported Viscometric Constants Data. Carbohydr. Polym. 2007, 68, 477–488. [Google Scholar] [CrossRef]
- Wani, T.A.; Masoodi, F.A.; Akhter, R.; Sofi, F.A. Techno-Functional Characterization of Chitosan Nanoparticles Prepared through Planetary Ball Milling. Int. J. Biol. Macromol. 2020, 154, 166–172. [Google Scholar] [CrossRef]
- Lubis, L.D.; Prananda, A.T.; Juwita, N.A.; Nasution, M.A.; Syahputra, R.A.; Sumaiyah, S.; Lubis, R.R.; Lubis, M.F.; Astyka, R.; Atiqah, J.F. Unveiling Antioxidant Capacity of Standardized Chitosan-Tripolyphosphate Microcapsules Containing Polyphenol-Rich Extract of Portulaca Oleraceae. Heliyon 2024, 10, e29541. [Google Scholar] [CrossRef]
- Queiroz, M.F.; Melo, K.R.T.; Sabry, D.A.; Sassaki, G.L.; Rocha, H.A.O. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar. Drugs 2015, 13, 141–158. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, Y.Y.Y.Y.; Han, Q.; Ji, L.; Zhang, H.; Fei, Z.; Wang, Y.Y.Y.Y. Comparison of the Physicochemical, Rheological, and Morphologic Properties of Chitosan from Four Insects. Carbohydr. Polym. 2019, 209, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Marei, N.H.; El-Samie, E.A.; Salah, T.; Saad, G.R.; Elwahy, A.H.M. Isolation and Characterization of Chitosan from Different Local Insects in Egypt. Int. J. Biol. Macromol. 2016, 82, 871–877. [Google Scholar] [CrossRef]
- Saenz-Mendoza, A.I.; Zamudio-Flores, P.B.; Tirado-Gallegos, J.M.; García-Anaya, M.C.; Velasco, C.R.; Acosta-Muñiz, C.H.; Espino-Díaz, M.; Hernández-González, M.; Vela-Gutiérrez, G.; Salgado-Delgado, R.; et al. Insects as a Potential Source of Chitin and Chitosan: Physicochemical, Morphological and Structural Characterization. -A Review. Emirates J. Food Agric. 2023, 35, 388–407. [Google Scholar] [CrossRef]
- Chandra Dey, S.; Al-Amin, M.; Ur Rashid, T.; Zakir Sultan, M.; Ashaduzzaman, M.; Sarker, M.; Md Shamsuddin, S. Preparation, Characterization and Performance Evaluation of Chitosan As an Adsorbent for Remazol Red. Int. J. Latest Res. Eng. Technol. 2016, 2, 52–62. [Google Scholar]
- Ziegler-Borowska, M.; Chełminiak, D.; Kaczmarek, H.; Kaczmarek-Kędziera, A. Effect of Side Substituents on Thermal Stability of the Modified Chitosan and Its Nanocomposites with Magnetite. J. Therm. Anal. Calorim. 2016, 124, 1267–1280. [Google Scholar] [CrossRef]
- Acosta-Ferreira, S.; Castillo, O.S.; Madera-Santana, J.T.; Mendoza-García, D.A.; Núñez-Colín, C.A.; Grijalva-Verdugo, C.; Villa-Lerma, A.G.; Morales-Vargas, A.T.; Rodríguez-Núñez, J.R. Production and Physicochemical Characterization of Chitosan for the Harvesting of Wild Microalgae Consortia. Biotechnol. Rep. 2020, 28, e00554. [Google Scholar] [CrossRef]
- Hosney, A.; Ullah, S.; Barčauskaitė, K. A Review of the Chemical Extraction of Chitosan from Shrimp Wastes and Prediction of Factors Affecting Chitosan Yield by Using an Artificial Neural Network. Mar. Drugs 2022, 20, 675. [Google Scholar] [CrossRef]
- Hossain, M.S.; Iqbal, A. Production and Characterization of Chitosan from Shrimp Shells Waste. J. Bangladesh Agril. Univ. 2014, 12, 153–160. [Google Scholar] [CrossRef]
- Naznin, R. Extraction of Chitin and Chitosan from Shrimp (Metapenaeus monoceros) Shell by Chemical Method. Pakistan J. Biol. Siciences 2005, 8, 1051–1054. [Google Scholar]
- Xie, J.; Xie, W.; Yu, J.; Xin, R.; Shi, Z.; Song, L.; Yang, X. Extraction of Chitin From Shrimp Shell by Successive Two-Step Fermentation of Exiguobacterium Profundum and Lactobacillus Acidophilus. Front. Microbiol. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef]
- Ibitoye, E.B.; Lokman, I.H.; Hezmee, M.N.M.; Goh, Y.M.; Zuki, A.B.Z.; Jimoh, A.A. Extraction and Physicochemical Characterization of Chitin and Chitosan Isolated from House Cricket. Biomed. Mater. 2018, 13, 025009. [Google Scholar] [CrossRef]
- Boudouaia, N.; Bengharez, Z.; Jellali, S. Preparation and Characterization of Chitosan Extracted from Shrimp Shells Waste and Chitosan Film: Application for Eriochrome Black T Removal from Aqueous Solutions. Appl. Water Sci. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Hao, G.; Hu, Y.; Shi, L.; Chen, J.; Cui, A.; Weng, W.; Osako, K. Physicochemical Characteristics of Chitosan from Swimming Crab (Portunus trituberculatus) Shells Prepared by Subcritical Water Pretreatment. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- ur Rehman, K.; Hollah, C.; Wiesotzki, K.; Heinz, V.; Aganovic, K.; ur Rehman, R.; Petrusan, J.I.; Zheng, L.; Zhang, J.; Sohail, S.; et al. Insect-Derived Chitin and Chitosan: A Still Unexploited Resource for the Edible Insect Sector. Sustainability 2023, 15, 4864. [Google Scholar] [CrossRef]
- Gonçalves, C.; Ferreira, N.; Lourenço, L. Production of Low Molecular Weight Chitosan and Chitooligosaccharides (COS): A Review. Polymers 2021, 13, 2466. [Google Scholar] [CrossRef]
- Kittur, F.S.; Harish Prashanth, K.V.; Udaya Sankar, K.; Tharanathan, R.N. Characterization of Chitin, Chitosan and Their Carboxymethyl Derivatives by Differential Scanning Calorimetry. Carbohydr. Polym. 2002, 49, 185–193. [Google Scholar] [CrossRef]
- Ramasamy, P.; Subhapradha, N.; Shanmugam, V.; Shanmugam, A. Extraction, Characterization and Antioxidant Property of Chitosan from Cuttlebone Sepia Kobiensis (Hoyle 1885). Int. J. Biol. Macromol. 2014, 64, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wu, X.; Bao, B.; Guo, R.; Wu, W. Evaluation of α-Chitosan from Crab Shell and β-Chitosan from Squid Gladius Based on Biochemistry Performance. Appl. Sci. 2021, 11, 3183. [Google Scholar] [CrossRef]
- A, K. The Potential of Hermetia illucens as a Source of Chitin, Chitosan and Their Melanin Complexes. Polym. Sci. Peer Rev. J. 2022, 3, 1–7. [Google Scholar] [CrossRef]
- Münstermann, N.; Weichold, O. A Fire-Retardant Coating for Wood Made from Chitosan Itaconate. Prog. Org. Coatings 2024, 197, 108793. [Google Scholar] [CrossRef]
- Barbosa, H.F.G.; Francisco, D.S.; Ferreira, A.P.G.; Cavalheiro, É.T.G. A New Look towards the Thermal Decomposition of Chitins and Chitosans with Different Degrees of Deacetylation by Coupled TG-FTIR. Carbohydr. Polym. 2019, 225, 115232. [Google Scholar] [CrossRef] [PubMed]
- Abu-Jdayil, B.; Ghannam, M.; Ahmed, K.A.; Djama, M. The Effect of Biopolymer Chitosan on the Rheology and Stability of Na-Bentonite Drilling Mud. Polymers 2021, 13, 3361. [Google Scholar] [CrossRef]
- Araújo, F.; Magalh, S.; Medronho, B.; Eivazi, A.; Dahlström, C.; Norgren, M.; Alves, L. Effect of Chitosan Properties and Dissolution State on Solution Rheology and Film Performance in Triboelectric Nanogenerators. Gels 2025, 11, 523. [Google Scholar] [CrossRef]
- do Amaral Sobral, P.J.; Gebremariam, G.; Drudi, F.; De Aguiar Saldanha Pinheiro, A.C.; Romani, S.; Rocculi, P.; Dalla Rosa, M. Rheological and Viscoelastic Properties of Chitosan Solutions Prepared with Different Chitosan or Acetic Acid Concentrations. Foods 2022, 11, 2692. [Google Scholar] [CrossRef]
- Chattopadhyay, D.P.; Inamdar, M.S. Aqueous Behaviour of Chitosan. Int. J. Polym. Sci. 2010, 2010, 939536. [Google Scholar] [CrossRef]
- El-araby, A.; El Ghadraoui, L.; Errachidi, F. Physicochemical Properties and Functional Characteristics of Ecologically Extracted Shrimp Chitosans with Different Organic Acids during Demineralization Step. Molecules 2022, 27, 8285. [Google Scholar] [CrossRef]
- Jena, K.; Ananta, S.; Akthar, J.; Patnaik, A.; Das, S.; Singh, J.; Sathyanarayana, K.; Kar, P.K.; Das, B.K.; Hassan, M.A.; et al. Physical, Biochemical and Antimicrobial Characterization of Chitosan Prepared from Tasar Silkworm Pupae Waste. Environ. Technol. Innov. 2023, 31, 103200. [Google Scholar] [CrossRef]
- No, H.K.; Lee, K.S.; Meyers, S.P. Correlation between Physicochemical Characteristics and Binding Capacities of Chitosan Products. J. Food Sci. 2000, 65, 1134–1137. [Google Scholar] [CrossRef]
- Thambiliyagodage, C.; Jayanetti, M.; Mendis, A.; Ekanayake, G. Recent Advances in Chitosan-Based Applications—A Review. Materials 2023, 16, 2073. [Google Scholar] [CrossRef]
- Otieno, J.O.; Ogutu, F.O.; Okumu, T.N.; Anuro, J.A. Chitosan Processing, Modification, and Multifaceted Applications across Food, Pharmaceutical, and Cosmetics Industries. J. Res. Chem. 2024, 5, 35–44. [Google Scholar] [CrossRef]
- Apetroaei, M.R.; Rau, I.; Paduretu, C.C.; Lilios, G.; Schroder, V. Pharmaceutical Applications of Chitosan Extracted from Local Marine Sources. Rev. Chim. 2019, 70, 2618–2621. [Google Scholar] [CrossRef]
- Kaya, M.; Baran, T.; Asan-Ozusaglam, M.; Cakmak, Y.S.; Tozak, K.O.; Mol, A.; Mentes, A.; Sezen, G. Extraction and Characterization of Chitin and Chitosan with Antimicrobial and Antioxidant Activities from Cosmopolitan Orthoptera Species (Insecta). Biotechnol. Bioprocess Eng. 2015, 20, 168–179. [Google Scholar] [CrossRef]
- Kusnadi; Purgiyanti; Kumoro, A.C.; Legowo, A.M. The Antioxidant and Antibacterial Activities of Chitosan Extract from White Shrimp Shell (Penaeus indicus) in the Waters North of Brebes, Indonesia. Biodiversitas 2022, 23, 1267–1272. [Google Scholar] [CrossRef]
- Shah, J.; Patel, D.; Rananavare, D.; Hudson, D.; Tran, M.; Schloss, R.; Langrana, N.; Berthiaume, F.; Kumar, S. Recent Advancements in Chitosan-Based Biomaterials for Wound Healing. J. Funct. Biomater. 2025, 16, 45. [Google Scholar] [CrossRef] [PubMed]
- Matica, M.A.; Aachmann, F.L.; Tøndervik, A.; Sletta, H.; Ostafe, V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int. J. Mol. Sci. 2019, 20, 5889. [Google Scholar] [CrossRef] [PubMed]
- Stefanowska, K.; Woźniak, M.; Dobrucka, R.; Ratajczak, I. Chitosan with Natural Additives as a Potential Food Packaging. Materials 2023, 16, 1579. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.; Gui, Q.; Yang, H. Drug-Loaded Chitosan Film Prepared via Facile Solution Casting and Air-Drying of Plain Water-Based Chitosan Solution for Ocular Drug Delivery. Bioact. Mater. 2020, 5, 577–583. [Google Scholar] [CrossRef]
- Román-Doval, R.; Torres-Arellanes, S.P.; Tenorio-Barajas, A.Y.; Gómez-Sánchez, A.; Valencia-Lazcano, A.A. Chitosan: Properties and Its Application in Agriculture in Context of Molecular Weight. Polymers 2023, 15, 2867. [Google Scholar] [CrossRef] [PubMed]
Chemical Composition (%) | Exuviae | Chitosan |
---|---|---|
Nitrogen | 8.37 ± 0.91 a | 6.59 ± 0.89 a |
Ash | 3.84 ± 0.11 a | 0.33 ± 0.21 b |
Moisture | 11.30 ± 0.75 a | 7.66 ± 0.54 b |
Amino Acid (%) | Exuviae | Chitosan |
---|---|---|
Asp | 2.375 ± 0.02 a | 0.019 ± 0.01 b |
Thr | nd | nd |
Ser | nd | nd |
Glu | 3.105 ± 0.05 | nd |
Pro | 1.815 ± 0.03 a | 0.054 ± 0.03 b |
Gly | 1.544 ± 0.07 a | 0.012 ± 0.01 b |
Ala | nd | nd |
Cys | nd | nd |
Val | 1.915 ± 0.09 a | 0.012 ± 0.01 b |
Met | 0.315 ± 0.04 | nd |
Ile | 1.502 ± 0.07 a | 0.019 ± 0.02 b |
Leu | 1.958 ± 0.12 a | 0.015 ± 0.01 b |
Tyr | nd | nd |
Phe | nd | nd |
His | 1.468 ± 0.07 | nd |
Lys | 1.671 ± 0.09 | nd |
Arg | nd | nd |
Sum | 17.67 | 0.14 |
Studies | Source | Chitin Yield (%) | Chitosan Yield (%) |
---|---|---|---|
This study | T. molitor—larval exuviae | 12.86 ± 0.71 | 7.41 ± 0.26 |
Song et al. [22] | T. molitor—larval exuviae | 18.01 | 9.20 |
T. molitor—whole larval bodies | 4.92 | 3.65 | |
Azzi et al. [11] | T. molitor—larval exuviae | 20–27.50 | 20.50–21 |
T. molitor—adults | 25–30 | 19.50–24 | |
Khatami et al. [12] | T. molitor—larvae | - | ~17–22 |
T. molitor—exuviae | - | ~1–4 | |
T. molitor—adults | - | ~17–21 | |
Nafary et al. [8] | T. molitor—adults | 13.30–17.70 | 76.43–78.26 |
Triunfo et al. [7] | Hermetia illucens—larvae | 10–13 | 3 |
Hermetia illucens—pupal exuviae | 23–31 | 8–10 | |
Hermetia illucens—dead adults | 6–9 | 2–3 | |
Soon et al. [9] | Zophobas morio—larvae | 4.77–5.43 | 65.84–75.52 |
Luo et al. [36] | Cicada slough *—exuviae | - | 28.20 |
Silkworm chrysalis *—pupa | - | 3.10 | |
Mealworm *—larvae | - | 2.50 | |
Grasshopper *—adults | - | 5.70 |
Studies | Source | DD (%) | Mv (kDa) |
---|---|---|---|
This study | T. molitor—larval exuviae | 72.27 ± 1.03 | 612 |
Song et al. [22] | T. molitor—larval exuviae | 5.76–50.38 | - |
T. molitor—whole larval bodies | 91.90–96.19 | - | |
Azzi et al. [11] | T. molitor—larval exuviae | 86–95 † | 83–339 |
T. molitor—adults | 88–97 † | 91–284 | |
Khatami et al. [12] | T. molitor—larvae | 82–84 | 767.46–796.20 |
T. molitor—exuviae | 83–84 | 234.18–483 | |
T. molitor—adults | 81–84 | 624.58–799.07 | |
Nafary et al. [8] | T. molitor—adults | 72.60–75.84 | - |
Triunfo et al. [7] | Hermetia illucens—larvae | 91–92 | 21–92 |
Hermetia illucens—pupal exuviae | 83–90 | 35–55 | |
Hermetia illucens—dead adults | 91–93 | 36–62 | |
Soon et al. [9] | Zophobas morio—larvae | 64.82–81.06 | - |
Luo et al. [36] | Cicada slough *—exuviae | 84.10 | 37.79 |
Silkworm chrysalis *—pupa | 85.50 | 40.90 | |
Mealworm *—larvae | 85.90 | 39.75 | |
Grasshopper *—adults | 89.70 | 39.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milinković Budinčić, J.; Radonić, Ž.; Dragojlović, D.; Sedlar, T.; Milković, M.; Polić Pasković, M.; Pasković, I. Exuviae of Tenebrio molitor Larvae as a Source of Chitosan: Characterisation and Possible Applications. Appl. Sci. 2025, 15, 9285. https://doi.org/10.3390/app15179285
Milinković Budinčić J, Radonić Ž, Dragojlović D, Sedlar T, Milković M, Polić Pasković M, Pasković I. Exuviae of Tenebrio molitor Larvae as a Source of Chitosan: Characterisation and Possible Applications. Applied Sciences. 2025; 15(17):9285. https://doi.org/10.3390/app15179285
Chicago/Turabian StyleMilinković Budinčić, Jelena, Željana Radonić, Danka Dragojlović, Tea Sedlar, Matija Milković, Marija Polić Pasković, and Igor Pasković. 2025. "Exuviae of Tenebrio molitor Larvae as a Source of Chitosan: Characterisation and Possible Applications" Applied Sciences 15, no. 17: 9285. https://doi.org/10.3390/app15179285
APA StyleMilinković Budinčić, J., Radonić, Ž., Dragojlović, D., Sedlar, T., Milković, M., Polić Pasković, M., & Pasković, I. (2025). Exuviae of Tenebrio molitor Larvae as a Source of Chitosan: Characterisation and Possible Applications. Applied Sciences, 15(17), 9285. https://doi.org/10.3390/app15179285