Broadband Sound Insulation Enhancement Using Multi-Layer Thin-Foil Acoustic Membranes: Design and Experimental Validation
Abstract
1. Introduction
2. Theoretical Approaches
3. Finite Element Method Simulation
3.1. Parametric Study Analysis
3.1.1. Influence of Back Cavity Depth with Fixed Thickness for Different Sized Foil Resonators
3.1.2. Influence of Fixed Thickness and Back Cavity Depth for Different-Sized Foil Resonators
4. Experimental Validation
4.1. Sample Fabrication
4.2. Experimental Setup
4.3. Results and Discussions
5. Conclusions
- Due to their simple design and lightweight construction, the developed single-layer and double-layer acoustic membranes based on thin-foil resonators exhibit superior sound insulation performance compared to traditional sound insulation structures.
- A parametric study was conducted by varying the wall thickness and cavity depth to evaluate the impact of each parameter on the membrane’s STL performance. STL improvement across a broader frequency width can be achieved by reducing the wall thickness and size of the foil resonator coffers while increasing cavity depth. Conversely, increasing the thickness and size of the coffers with a smaller back cavity enhances STL performance within a high-frequency width.
- Both single-layer and double-layer thin-foil-resonator-based acoustic membranes are effective in noise attenuation; however, the double-layer membrane is generally more effective. This is attributed to its additional mass, increased stiffness, and the presence of multiple resonant frequencies, which provide improved noise attenuation over a wider frequency range.
- By carefully selecting parameter combinations for single-layer and double-layer square wedge-shaped foil resonator coffer-based acoustic membranes, an average STL of 40 dB to 55 dB can be achieved within the frequency range of 750 Hz to 6000 Hz.
- Experimental testing using combinations of plastic and steel boxes with acoustic membranes inside an anechoic chamber demonstrated a 2–3 dB reduction in overall noise level (OA).
- The current single-layer and double-layer foil-resonator-based acoustic membrane designs offer a promising direction for achieving effective STL performance due to their lightweight structure, water resistance, ease of fabrication, and cost-effectiveness—highlighting their strong potential for noise control applications.
Author Contributions
Funding
Conflicts of Interest
References
- Commission of the European Communities. Green Paper on: “Future Noise Policy”; Commission of the European Communities: Brussels, Belgium, 1996. [Google Scholar]
- WHO. Burden of Disease from Environmental Noise Burden of Disease from Environmental Noise; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Rossi, L.; Prato, A.; Lesina, L.; Schiavi, A. Effects of low-frequency noise on human cognitive performances in laboratory. Build. Acoust. 2018, 25, 17–33. [Google Scholar] [CrossRef]
- Song, Y.; Yang, H.; Zhu, N.; Chen, J. Experimental Investigation on the Acoustic Insulation Properties of Filled Paper Honeycomb-Core Wallboards. Biomimetics 2024, 9, 528. [Google Scholar] [CrossRef]
- Takahashi, D.; Sawaki, S.; Mu, R.-L. Improvement of sound insulation performance of double-glazed windows by using viscoelastic connectors. J. Sound Vib. 2016, 371, 56–66. [Google Scholar] [CrossRef]
- Toyoda, M.; Takahashi, D. Sound transmission through a microperforated-panel structure with subdivided air cavities. J. Acoust. Soc. Am. 2008, 124, 3594–3603. [Google Scholar] [CrossRef]
- Liu, Y.; Jacobsen, F. Measurement of absorption with a p-u sound intensity probe in an impedance tube. J. Acoust. Soc. Am. 2005, 118, 2117–2120. [Google Scholar] [CrossRef]
- Hung, T.-C.; Huang, J.-S.; Wang, Y.-W.; Lin, K.-Y. Inorganic polymeric foam as a sound absorbing and insulating material. Constr. Build. Mater. 2014, 50, 328–334. [Google Scholar] [CrossRef]
- Arenas, J.P.; Crocker, M.J. Recent Trends in Porous Sound-Absorbing Materials. Sound Vib. 2010, 44, 11–17. [Google Scholar]
- Dupont, T.; Leclaire, P.; Sicot, O.; Gong, X.L.; Panneton, R. Acoustic properties of air-saturated porous materials containing dead-end porosity. J. Appl. Phys. 2011, 110, 094903. [Google Scholar] [CrossRef]
- Li, H.; Ren, X.; Yu, C.; Xiong, J.; Wang, X.; Zhao, J. Investigation of vibro-acoustic characteristics of FRP plates with porous foam core. Int. J. Mech. Sci. 2021, 209, 106697. [Google Scholar] [CrossRef]
- Gao, N.; Tang, L.; Deng, J.; Lu, K.; Hou, H.; Chen, K. Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge. Appl. Acoust. 2021, 175, 107845. [Google Scholar] [CrossRef]
- Maa, D.-Y. Potential of microperforated panel absorber. J. Acoust. Soc. Am. 1998, 104, 2861–2866. [Google Scholar] [CrossRef]
- Wang, C.; Huang, L. On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths. J. Acoust. Soc. Am. 2011, 130, 208–218. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, L.; Wei, S.; Zhang, Z.; Choi, S.-K.; Song, B.; Shi, Y. A review of additive manufacturing of metamaterials and developing trends. Mater. Today 2021, 50, 303–328. [Google Scholar] [CrossRef]
- Sagartzazu, X.; Hervella-Nieto, L.; Pagalday, J.M. Review in sound absorbing materials. Arch. Comput. Methods Eng. 2008, 15, 311–342. [Google Scholar] [CrossRef]
- Jaouen, L.; Renault, A.; Deverge, M. Elastic and damping characterizations of acoustical porous materials: Available experimental methods and applications to a melamine foam. Appl. Acoust. 2008, 69, 1129–1140. [Google Scholar] [CrossRef]
- Chevillotte, F.; Panneton, R. Elastic characterization of closed cell foams from impedance tube absorption tests. J. Acoust. Soc. Am. 2007, 122, 2653–2660. [Google Scholar] [CrossRef] [PubMed]
- Zigoneanu, L.; Popa, B.I.; Cummer, S.A. Three-dimensional broadband omnidirectional acoustic ground cloak. Nat. Mater. 2014, 13, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Kan, W.; Shen, Z. Ultra-transparent media with anisotropic mass density for broadband acoustic invisibility. Appl. Phys. Lett. 2017, 111, 223501. [Google Scholar] [CrossRef]
- Liang, Z.; Li, J. Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 2012, 108, 114301. [Google Scholar] [CrossRef]
- Cai, Z.; Zhao, S.; Huang, Z.; Li, Z.; Su, M.; Zhang, Z.; Zhao, Z.; Hu, X.; Wang, Y.; Song, Y. Bubble Architectures for Locally Resonant Acoustic Metamaterials. Adv. Funct. Mater. 2019, 29, 1906984. [Google Scholar] [CrossRef]
- Su, X.; Norris, A.N.; Cushing, C.W.; Haberman, M.R.; Wilson, P.S. Broadband focusing of underwater sound using a transparent pentamode lens. J. Acoust. Soc. Am. 2017, 141, 4408–4417. [Google Scholar] [CrossRef]
- Zhang, T.C.; Chen, J.H.; Qian, J.; Ge, Y.; Yuan, S.Q.; Sun, H.X.; Liu, X.J. Observation of Ultrabroadband Acoustic Focusing Based on V-Shaped Meta-Atoms. Adv. Mater. Technol. 2020, 5, 1900956. [Google Scholar] [CrossRef]
- Jin, Y.; Bonello, B.; Pan, Y. Acoustic metamaterials with piezoelectric resonant structures. J. Phys. D Appl. Phys. 2014, 47, 245301. [Google Scholar] [CrossRef]
- Ma, G.; Yang, M.; Xiao, S.; Yang, Z.; Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 2014, 13, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Dai, H.M.; Chan, N.H.; Ma, G.C.; Sheng, P. Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 2010, 96, 2012–2015. [Google Scholar] [CrossRef]
- Wu, X.; Fu, C.; Li, X.; Meng, Y.; Gao, Y.; Tian, J.; Wang, L.; Huang, Y.; Yang, Z.; Wen, W. Low-frequency tunable acoustic absorber based on split tube resonators. Appl. Phys. Lett. 2016, 109, 043501. [Google Scholar] [CrossRef]
- Long, H.; Cheng, Y.; Tao, J.; Liu, X. Perfect absorption of low-frequency sound waves by critically coupled subwavelength resonant system. Appl. Phys. Lett. 2017, 110, 023502. [Google Scholar] [CrossRef]
- Liu, C.R.; Wu, J.H.; Yang, Z.; Ma, F. Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance. Compos. Struct. 2020, 246, 112366. [Google Scholar]
- Guo, J.; Zhang, X.; Fang, Y.; Qu, R. An extremely-thin acoustic metasurface for low-frequency sound attenuation with a tunable absorption bandwidth. Int. J. Mech. Sci. 2022, 213, 106872. [Google Scholar] [CrossRef]
- Li, Y.; Assouar, B.M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 2016, 108, 063502. [Google Scholar] [CrossRef]
- Cai, X.; Guo, Q.; Hu, G.; Yang, J. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Appl. Phys. Lett. 2014, 105, 121901. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.; Zhang, Y.; Huang, L. Investigation of broadband sound absorption of smart micro-perforated panel (MPP) absorber. Int. J. Mech. Sci. 2021, 199, 106426. [Google Scholar] [CrossRef]
- Mosa, A.I.; Putra, A.; Ramlan, R.; Prasetiyo, I.; Esraa, A.A. Theoretical model of absorption coefficient of an inhomogeneous MPP absorber with multi-cavity depths. Appl. Acoust. 2019, 146, 409–419. [Google Scholar] [CrossRef]
- Rafique, F.; Wu, J.H.; Naqvi, S.M.A.; Ma, F. Enhanced wideband low-frequency sound absorption of a single-layer multiple parallel-arranged inhomogeneous microperforated panel absorber. Acoust. Aust. 2022, 50, 49–69. [Google Scholar] [CrossRef]
- Rafique, F.; Wu, J.H.; Waqas, M.; Lushuai, X.; Ma, F. A thin double-layer multiple parallel-arranged inhomogeneous microperforated panel absorber for wideband low-frequency sound absorption. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 31. [Google Scholar] [CrossRef]
- Rafique, F.; Wu, J.H.; Liu, C.R.; Ma, F. Low-Frequency Sound Absorption of an Inhomogeneous Micro-Perforated Panel with J-Shaped Cavities of Different Depths. Acoust. Aust. 2022, 50, 203–214. [Google Scholar] [CrossRef]
- Rafique, F.; Hui Wu, J.; Rui Liu, C.; Ma, F. Transmission Loss analysis of a simple expansion chamber muffler with extended inlet and outlet combined with inhomogeneous micro-perforated panel (iMPP). Appl. Acoust. 2022, 194, 108808. [Google Scholar] [CrossRef]
- Rafique, F.; Hui Wu, J.; Naqvi, S.M.A.; Waqas, M.; Liu, C.R. Extremely effective broadband low-frequency sound absorption with inhomogeneous micro-perforated panel (iMPP) backed with spider-web designed cavities. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2023, 237, 843–858. [Google Scholar] [CrossRef]
- Krushynska, A.O.; Bosia, F.; Miniaci, M.; Pugno, N.M. Tunable spider-web inspired hybrid labyrinthine acoustic metamaterials for low-frequency sound control. arXiv 2017, arXiv:1701.07622. [Google Scholar]
- Frenzel, T.; David Brehm, J.; Bückmann, T.; Schittny, R.; Kadic, M.; Wegener, M. Three-dimensional labyrinthine acoustic metamaterials. Appl. Phys. Lett. 2013, 103, 061907. [Google Scholar] [CrossRef]
- Xie, Y.; Konneker, A.; Popa, B.I.; Cummer, S.A. Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Appl. Phys. Lett. 2013, 103, 201906. [Google Scholar] [CrossRef]
- Yang, Z.; Mei, J.; Yang, M.; Chan, N.H.; Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 2008, 101, 204301. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Chen, Z.; Zhang, S.Y.; Ding, J.; Li, X.J.; Zhang, H. An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation. Appl. Phys. Lett. 2015, 106, 151908. [Google Scholar] [CrossRef]
- Langfeldt, F.; Riecken, J.; Gleine, W.; Von Estorff, O. A membrane-type acoustic metamaterial with adjustable acoustic properties. J. Sound Vib. 2016, 373, 1–18. [Google Scholar] [CrossRef]
- Langfeldt, F.; Gleine, W. Membrane- and plate-type acoustic metamaterials with elastic unit cell edges. J. Sound Vib. 2019, 453, 65–86. [Google Scholar] [CrossRef]
- Ang, L.Y.L.; Koh, Y.K.; Lee, H.P. Broadband sound transmission loss of a large-scale membrane-type acoustic metamaterial for low-frequency noise control. Appl. Phys. Lett. 2017, 111, 041903. [Google Scholar] [CrossRef]
- Fratoni, G.; Tenpierik, M.; Turrin, M.; Garai, M.; D’ORazio, D. Acoustic performance of multi-resonator screens in a virtually reconstructed open-plan office. Appl. Acoust. 2025, 229, 110381. [Google Scholar] [CrossRef]
- Triwulandari, E.; Prihastuti, H.; Haryono, A.; Susilo, E. Synthesis and Structure Properties of Rigid Polyurethane Foam From Palm Oil Based Polyol. Indones. J. Mater. Sci. 2008, 2008, 31–36. [Google Scholar]
- Rafique, F.; Gong, C.; Shigong, S.; Wenbo, L.; Yunzhu, W.; Yang, F.P. Designing and experimental validation of single-layer mixed foil resonator acoustic membrane to enhance sound transmission loss (STL) within low to medium frequency range. Appl. Acoust. 2024, 219, 109930. [Google Scholar] [CrossRef]
- Du, G.; Zhu, Z.; Gong, X. Fundamentals of Acoustics, 3rd ed.; Nanjing University Press: Nanjing, China, 2012. [Google Scholar]
- Kutz, M. Processing, Sustainability, Materials, and Applications. In Applied Plastics Engineering Handbook; Elsevier B.V.: Amsterdam, The Netherlands, 2023; pp. 1–870S. [Google Scholar]
- Siemens Digital Industries Software. Simcenter Testlab (Version 2306). 2023. Available online: https://plm.sw.siemens.com/en-US/simcenter/physical-testing/testlab/ (accessed on 20 January 2024).
- Doutres, O.; Salissou, Y.; Atalla, N.; Panneton, R. Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube. Appl. Acoust. 2010, 71, 506–509. [Google Scholar] [CrossRef]
- Lomte, A.; Sharma, B.; Drouin, M.; Schaffarzick, D. Sound absorption and transmission loss properties of open-celled aluminum foams with stepwise relative density gradients. Appl. Acoust. 2022, 193, 108780. [Google Scholar] [CrossRef]
- Zai, B.A.; Sami, S.; Ali, R. Determination of Acoustic Characteristics of Melamine foam with Experimental Validation. J. Appl. Mech. Eng. 2021, 10, 366. [Google Scholar]
Foil Resonator Acoustic Membrane | Foil Resonator Size (Length × Width) | Cavity Depth | Foil-Resonator Thickness | Base Thickness | Total Length | Total Width | |
---|---|---|---|---|---|---|---|
l (mm) | w (mm) | d (mm) | t1 (mm) | t2 (mm) | L (mm) | W (mm) | |
1 | 50 | 50 | 30 | 0.3–0.5 | 1.0–1.5 | 500 | 300 |
2 | 40 | 40 | 20 | 0.3–0.5 | 1.0–1.5 | 500 | 300 |
3 | 30 | 30 | 15 | 0.3–0.5 | 1.0–1.5 | 500 | 300 |
Foil Resonator Acoustic Membrane | Upper-Layer Foil Resonator Size (Length × Width) | Lower-Layer Foil Resonator Size (Length × Width) | Cavity Depth | Foil Resonator Thickness | Base Thickness | Total Length | Total Width | |||
---|---|---|---|---|---|---|---|---|---|---|
l1 (mm) | w1 (mm) | l2 (mm) | w2 (mm) | d1 (mm) | d2 (mm) | t1 (mm) | t2 (mm) | L (mm) | W (mm) | |
1 | 50 | 50 | 40 | 40 | 30 | 20 | 0.3–0.5 | 1.0–1.5 | 500 | 300 |
2 | 50 | 50 | 40 | 40 | 30 | 15 | 0.3–0.5 | 1.0–1.5 | 500 | 300 |
3 | 50 | 50 | 40 | 40 | 30 | 10 | 0.3–0.5 | 1.0–1.5 | 500 | 300 |
Mesh Size | Domain Elements | Boundary Elements | Edge Elements | Max. Element Size (mm) | Min. Element Size (mm) |
---|---|---|---|---|---|
Coarse Mesh | 366,764 | 31,922 | 4512 | 75 | 14 |
Normal Mesh | 415,725 | 42,036 | 5800 | 50 | 9 |
Fine Mesh | 3,779,881 | 453,818 | 21,192 | 27.5 | 2 |
Extra Finer Mesh | 22,563,942 | 2,291,192 | 54,374 | 17.5 | 0.75 |
Membrane Type | Foil Resonator Size (Length × Width) | Cavity Depth | Wall Thickness | Base Thickness | Total Length | Avg. STL (dB) at Specific Cavity Depth | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
l (mm) | w (mm) | d1 (mm) | d2 (mm) | d3 (mm) | d4 (mm) | t1 (mm) | t2 (mm) | L (mm) | d1 (mm) | d2 (mm) | d3 (mm) | d4 (mm) | |
M1 | 30 | 30 | 15 | 20 | 25 | 30 | 0.3 | 1 | 500 | 51.88 | 48.71 | 48.89 | 46.02 |
M1 | 30 | 30 | 15 | 20 | 25 | 30 | 0.4 | 1 | 500 | 52.78 | 53.93 | 51.63 | 50.18 |
M1 | 30 | 30 | 15 | 20 | 25 | 30 | 0.5 | 1 | 500 | 55.96 | 58.13 | 52.93 | 55.22 |
M2 | 40 | 40 | 15 | 20 | 25 | 30 | 0.3 | 1 | 500 | 47.61 | 47.07 | 50.77 | 50.3 |
M2 | 40 | 40 | 15 | 20 | 25 | 30 | 0.4 | 1 | 500 | 50.12 | 50.13 | 52.88 | 51.89 |
M2 | 40 | 40 | 15 | 20 | 25 | 30 | 0.5 | 1 | 500 | 52.92 | 55.29 | 51.88 | 51.88 |
M3 | 50 | 50 | 15 | 20 | 25 | 30 | 0.3 | 1 | 500 | 46.18 | 48.88 | 50.04 | 53.4 |
M3 | 50 | 50 | 15 | 20 | 25 | 30 | 0.4 | 1 | 500 | 46.23 | 53.55 | 50.44 | 57.6 |
M3 | 50 | 50 | 15 | 20 | 25 | 30 | 0.5 | 1 | 500 | 46.18 | 48.79 | 50.07 | 53.4 |
Membrane Type | Foil Resonator Size (Length × Width) | Cavity Depth | Wall Thickness | Base Thickness | Total Length | Avg. STL (dB) at Specific Cavity Depth | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
l (mm) | w (mm) | d1 (mm) | d2 (mm) | d3 (mm) | d4 (mm) | t1 (mm) | t2 (mm) | L (mm) | d1 (mm) | d2 (mm) | d3 (mm) | d4 (mm) | |
M1 | 30 | 30 | 15 | 20 | 25 | 30 | 0.3 | 1 | 500 | 46.23 | 48.71 | 48.89 | 46.02 |
M2 | 40 | 40 | 15 | 20 | 25 | 30 | 0.3 | 1 | 500 | 47.23 | 47.07 | 50.77 | 50.39 |
M3 | 50 | 50 | 15 | 20 | 25 | 30 | 0.3 | 1 | 500 | 51.88 | 48.80 | 50.33 | 53.41 |
M1 | 30 | 30 | 15 | 20 | 25 | 30 | 0.4 | 1 | 500 | 52.78 | 53.93 | 51.63 | 50.18 |
M2 | 40 | 40 | 15 | 20 | 25 | 30 | 0.4 | 1 | 500 | 50.12 | 51.78 | 52.88 | 51.89 |
M3 | 50 | 50 | 15 | 20 | 25 | 30 | 0.4 | 1 | 500 | 46.23 | 53.55 | 50.44 | 57.60 |
M1 | 30 | 30 | 15 | 20 | 25 | 30 | 0.5 | 1 | 500 | 55.96 | 58.13 | 52.93 | 55.21 |
M2 | 40 | 40 | 15 | 20 | 25 | 30 | 0.5 | 1 | 500 | 52.92 | 55.29 | 54.32 | 53.80 |
M3 | 50 | 50 | 15 | 20 | 25 | 30 | 0.5 | 1 | 500 | 51.49 | 56.87 | 53.09 | 59.22 |
Foil Resonator Acoustic Membrane | Upper-Layer Foil Resonator Size (Length × Width) | Inner-Layer Foil Resonator Size (Length × Width) | Cavity Depth | Foil Resonator Thickness | Base Thickness | Total Length | Total Width | |||
---|---|---|---|---|---|---|---|---|---|---|
l1 (mm) | w1 (mm) | l2 (mm) | w2 (mm) | d1 (mm) | d2 (mm) | t1 (mm) | t2 (mm) | L (mm) | W (mm) | |
M1 | 30 | 30 | 25 | 0.5 | 1.5 | 500 | 300 | |||
M2 | 40 | 40 | 20 | 0.5 | 1.5 | 500 | 300 | |||
M3 | 50 | 50 | 30 | 0.5 | 1.5 | 500 | 300 | |||
M4 | 50 | 50 | 40 | 40 | 30 | 10 | 0.5 | 1.5 | 500 | 300 |
M5 | 50 | 50 | 40 | 40 | 30 | 20 | 0.5 | 1.5 | 500 | 300 |
Sample/Material | Thickness (mm) | Avg. STL (dB) | Frequency Range | STL/Thickness |
---|---|---|---|---|
Plastic Foam [55] | 51.44 | 6.2 | 500–4000 Hz | 0.12 |
Fibrous Material [55] | 18.5 | 3.06 | 500–4000 Hz | 0.17 |
Aluminum Foam [56] | 50.8 | 6.3 | 500–6000 Hz | 0.12 |
Melamine Foam [57] | 75 | 7.3 | 500–7000 Hz | 0.10 |
Single-Layer Mixed AM [51] | 30 | 40–45 | 500–6000 Hz | 1.50 |
Double-Layer AM (Current Study) | 15–30 | 40–55 | 500–6000 Hz | 2.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, C.; Rafique, F.; Yang, F. Broadband Sound Insulation Enhancement Using Multi-Layer Thin-Foil Acoustic Membranes: Design and Experimental Validation. Appl. Sci. 2025, 15, 9279. https://doi.org/10.3390/app15179279
Gong C, Rafique F, Yang F. Broadband Sound Insulation Enhancement Using Multi-Layer Thin-Foil Acoustic Membranes: Design and Experimental Validation. Applied Sciences. 2025; 15(17):9279. https://doi.org/10.3390/app15179279
Chicago/Turabian StyleGong, Chun, Faisal Rafique, and Fengpeng Yang. 2025. "Broadband Sound Insulation Enhancement Using Multi-Layer Thin-Foil Acoustic Membranes: Design and Experimental Validation" Applied Sciences 15, no. 17: 9279. https://doi.org/10.3390/app15179279
APA StyleGong, C., Rafique, F., & Yang, F. (2025). Broadband Sound Insulation Enhancement Using Multi-Layer Thin-Foil Acoustic Membranes: Design and Experimental Validation. Applied Sciences, 15(17), 9279. https://doi.org/10.3390/app15179279