Estimation of Cylinder Grasping Contraction Force of Forearm Muscle in Home-Based Rehabilitation Using a Stretch-Sensor Glove
Abstract
1. Introduction
2. Related Research
2.1. Home-Based Therapy and the Monitoring Challenge
2.2. Monitoring the Contraction Force of Muscle
2.3. Estimation of the Muscle Contraction Force
2.4. Utilization of the Stretch Sensor to Estimate the Contraction Force of Muscle
3. Methods
3.1. Participants
3.2. Instrumentation
3.2.1. Stretch-Sensor Glove
1. | Thumb | : 5.5 cm; |
2. | Index | : 6.5 cm; |
3. | Middle | : 7.5 cm; |
4. | Ring | : 6.5 cm; |
5. | Small | : 6.0 cm. |
3.2.2. EMG Sensor
3.2.3. Experimental Object
3.3. Data Processing
3.3.1. Signal Smoothing
3.3.2. Feature Extraction
3.4. Regression and Evaluation
3.5. Data Collection Experiment
3.5.1. Signal Normalization
3.5.2. Data Collection
4. Results
4.1. Estimation Performance
4.2. Perceived Cylinder Lifting Difficulty
5. Discussion
5.1. Advantage and Challenge of Glove-Type Sensor
5.2. Estimation Performance of the Proposed Method
5.3. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SVM | Support Vector Machine |
RF | Random Forest |
MLP | Multi-Layer Perceptron |
GRASP | Graded Repetitive Arm Supplementary Program |
References
- Rasmussen, B.B.; Richter, E.A. The Balancing Act Between the Cellular Processes of Protein Synthesis and Breakdown: Exercise as a Model to Understand the Molecular Mechanisms Regulating Muscle Mass. Appl. Physiol. 2009, 106, 1365–1366. [Google Scholar] [CrossRef]
- Rasmussen, B.B.; Phillips, S.M. Contractile and Nutritional Regulation of Human Muscle Growth. J. Exerc. Sport Sci. Rev. 2003, 31, 127–131. [Google Scholar] [CrossRef]
- Bisht, B.; Rajan, M.; Dvivedi, S.; Rawat, K.A.V.; Konda, S. Management of Patients with Forearm and Hand Injuries. J. Int. Surg. 2020, 7, 1593. [Google Scholar] [CrossRef]
- Dombovy, M.L.; Sandok, B.A.; Basford, J.R. Rehabilitation for Stroke: A Review. Stroke 1986, 17, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.B.; Handžić, I.; McAmis, S. Home-Based Rehabilitation: Enabling Frequent and Effective Training. In Neuro-Robotics; Artemiadis, P., Ed.; Springer: Dordrecht, The Netherlands, 2014; Volume 2, pp. 379–403. [Google Scholar]
- GRASP Instructor Manuals. Available online: https://med-fom-neurorehab.sites.olt.ubc.ca/grasp-instruction-manual-2/ (accessed on 20 November 2024).
- Troiano, A.; Naddeo, F.; Sosso, E.; Camarota, G.; Merletti, R.; Mesin, L. Assessment of Force and Fatigue in Isometric Contractions of the Upper Trapezius Muscle by Surface EMG Signal and Perceived Exertion Scale. J. Gait Posture 2008, 28, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Erfanian, A.; Chizeck, H.J.; Hashemi, R.M. Using Evoked EMG as a Synthetic Force Sensor of Isometric Electrically Stimulated Muscle. IEEE Trans. Biomed. Eng. 1998, 45, 188–202. [Google Scholar] [CrossRef]
- Son, J.; Hwang, S.; Kim, Y. An EMG-based Muscle Force Monitoring System. J. Mech. Sci. Technol. 2010, 24, 2099–2105. [Google Scholar] [CrossRef]
- Calvert, T.; Chapman, A.E. The Relationship Between the Surface EMG and Force Transients in Muscle: Simulation and Experimental Studies. Proc. IEEE 1977, 65, 682–689. [Google Scholar] [CrossRef]
- Tarata, M.; Spaepen, A. A Method of Reconstruction of the Muscular Force Profile from the EMG in the Voluntary Exercise. J. Acta Physiol. Et Pharmacol. Bulg. 2001, 26, 45–48. [Google Scholar]
- Linderman, S.E.; Scarborough, D.; Day, W.; Wrafter, D.; Berkson, E. Using a Stretch Sensor to Evaluate Muscle Contraction Timing During a Neuromuscular Control Screening Activity. J. Med. Sci. Sport. Exerc. 2019, 51, 149. [Google Scholar] [CrossRef]
- O’Brien, B.M.; Gisby, T.; Anderson, I. Stretch Sensors for Human Body Motion. In Proceedings of the SPIE, Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, 8 March 2014. [Google Scholar]
- Bifulco, P.; Esposito, D.; Gargiulo, G.; Savino, S.; Niola, V.; Iuppariello, L.; Cesarelli, M. A Stretchable, Conductive Rubber Sensor to Detect Muscle Contraction for Prosthetic Hand Control. In Proceedings of the E-Health and Bioengineering Conference (EHB), Sinaia, Romania, 22–24 June 2017. [Google Scholar]
- Tyson, S.; Turner, G. Discharge and follow-up for people with stroke: What happens and why. Clin. Rehabil. 2000, 14, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Gregory, P.; Edwards, L.; Faurot, K.; Williams, S.; Felix, A. Patient preferences for stroke rehabilitation. Top Stroke Rehabil. 2010, 17, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Mayo, N.E. Stroke Rehabilitation at Home: Lessons Learned and Ways Forward. Stroke 2016, 47, 1685–1691. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, G.; Ardalan, A.; Khankef, H.; Kamali, M.; Ostadtaghizadeh, A. Physical Rehabilitation Services in Disasters and Emergencies: A Systematic Review. Iran J. Public Health 2019, 48, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Ajeya, J.; Shankar, P. Perceived risk and hazards associated with home health care among home health nurses of India. Home Health Care Manag. Pract. 2020, 32, 134–140. [Google Scholar] [CrossRef]
- Smith, S.T.; Talaei-Khoei, A.; Ray, M.; Ray, P. Agent-Based Monitoring of Functional Rehabilitation Using Video Games. In Advanced Computational Intelligence Paradigms in Healthcare 5; Brahnam, S., Jain, L.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 326, pp. 113–141. [Google Scholar]
- Zheng, H.; Davies, R.J.; Black, N.D. Web-based monitoring system for home-based rehabilitation with stroke patients. In Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems (CBMS’05), Dublin, Ireland, 23–24 June 2005. [Google Scholar]
- Daponte, P.; De Vito, L.; Sementa, C. A wireless-based home rehabilitation system for monitoring 3D movements. In Proceedings of the 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Gatineau, QC, Canada, 4–5 May 2013. [Google Scholar]
- Sassi, M.; Villa Corta, M.; Pisani, M.G.; Nicodemi, G.; Schena, E.; Pecchia, L.; Longo, U.G. Advanced Home-Based Shoulder Rehabilitation: A Systematic Review of Remote Monitoring Devices and Their Therapeutic Efficacy. Sensors 2024, 24, 2936. [Google Scholar] [CrossRef]
- Warren, G.L.; Lowe, D.A.; Armstrong, R.B. Measurement Tools Used in the Study of Eccentric Contraction-Induced Injury. J. Sport. Med. 1999, 27, 43–59. [Google Scholar] [CrossRef]
- Black, C.; McCully, K. Force Per Active Area and Muscle Injury During Electrically Stimulated Contractions. J. Med. Sci. Sport. Exerc. 2008, 40, 1596–1604. [Google Scholar] [CrossRef]
- Lovering, R.M.; Roche, J.A.; Goodall, M.H.; Clark, B.B.; McMillan, A. An In Vivo Rodent Model of Contraction-induced Injury and Non-invasive Monitoring of Recovery. J. Vis. Exp. 2011, 27, 43–59. [Google Scholar]
- Jarque-Bou, N.J.; Vergara, M.; Sancho-Bru, J.L. Understanding Forearm Muscle Activity during Everyday Common Grasps: Insights for Rehabilitation, Prosthetic Control, and Human–Machine Interaction. Appl. Sci. 2024, 14, 3190. [Google Scholar] [CrossRef]
- Louis, N.; Gorce, P. Upper Limb Muscle Forces: A Comparative Study. J. Comput. Methods Biomech. Biomed. Eng. 2008, 11, 147–148. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Kim, Y. Development of System for Estimating Muscle Force in Real-Time. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 7–12 September 2009. [Google Scholar]
- Du, Y.; Yao, W.; Wang, H.; Xie, P.; Qiu, S.; Zhang, N.; Zhang, J.; Xie, B. Research on An Method of Muscle Force Prediction Based on Dynamic Fuzzy Neural Network. In Proceedings of the Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018. [Google Scholar]
- Vu, C.; Kim, J. Muscle Activity Monitoring with Fabric Stretch Sensors. J. Fibers Polym. 2017, 18, 1931–1937. [Google Scholar] [CrossRef]
- Alvarez, J.T.; Gerez, L.F.; Araromi, O.A.; Hunter, J.G.; Choe, D.K.; Payne, C.J.; Wood, R.J.; Walsh, C.J. Towards Soft Wearable Strain Sensors for Muscle Activity Monitoring. J. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2198–2206. [Google Scholar] [CrossRef]
- Lin, Y.-A.; Mhaskar, Y.; Silder, A.; Sessoms, P.H.; Fraser, J.J.; Loh, K.J. Muscle Engagement Monitoring Using Self-Adhesive Elastic Nanocomposite Fabrics. Sensors 2022, 22, 6768. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, L.; Yang, J.; Wang, S. A Grip Strength Estimation Method Using a Novel Flexible Sensor under Different Wrist Angles. Sensors 2022, 22, 2002. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, A.S.; Gil, T.; Azemard, N.; Thireau, J.; Lacampagne, A.; Todri-Sanial, A.; Charlot, B. Stretchable strain sensors for human movement monitoring. In Proceedings of the 2020 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), Lyon, France, 15–26 June 2020. [Google Scholar]
- Sbernini, L.; Pallotti, A.; Saggio, G. Evaluation of a Stretch Sensor for its inedited application in tracking hand finger movements. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016. [Google Scholar]
- Wu, Y.; Beker, L.; Karakurt, I.; Cai, W.; Elwood, J.; Li, X.; Zhong, J.; Zhang, M.; Wang, X.; Lin, L. High resolution flexible strain sensors for biological signal measurements. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017. [Google Scholar]
- Flexible Stretch Sensor. Available online: https://www.imagesco.com/sensors/stretch-sensor.html (accessed on 20 March 2025).
- MindRove Armband EMG. Available online: https://mindrove.com/armband/ (accessed on 20 March 2025).
- Muscles in the Posterior Compartment of the Forearm. Available online: https://teachmeanatomy.info/upper-limb/muscles/posterior-forearm/ (accessed on 20 March 2025).
- Practical Guide to Data Smoothing and Filtering. Available online: http://isbweb.org/software/sigproc/bogert/filter.pdf (accessed on 8 February 2025).
- Xin, Q.; Yahya, N.; Izhar, L.I.; Xie, P.; Qiu, S.; Zhang, N.; Zhang, J.; Xie, B. Classification of Neurological States from Biosensor Signals Based on Statistical Features. In Proceedings of the 2019 IEEE Student Conference on Research and Development (SCOReD), Bandar Seri Iskandar, Malaysia, 14 November 2019. [Google Scholar]
- Chang, C.Y.; Wu, Y.T.; Lin, C.Y.; Liu, T.S.; Ho, T.Y.; Shen, Y.P.; Liu, K.C.; Lu, T.Y.; Chou, L.W. Inertial Measurement Unit-Based Functional Evaluation for Adhesive Capsulitis Assessment. ConScientiae Saúde 2013, 12, 470–479. [Google Scholar] [CrossRef]
- Silva, R.A.D., Jr. EMG normalization: Considerations of the literature for muscular function evaluation. J. Med. Sci. 2022, 42, 115–119. [Google Scholar]
- Tabard-Fougère, A.; Rose-Dulcina, K.; Pittet, V.; Dayer, R.; Vuillerme, N.; Armand, S. EMG normalization method based on grade 3 of manual muscle testing: Within-and between-day reliability of normalization tasks and application to gait analysis. Gait Posture 2018, 60, 6–12. [Google Scholar] [CrossRef]
- Ali, A.M.M.; Yusof, Z.M.D.; Kushairy, A.K.; Zaharah, H.F.; Ismail, A. Development of Smart Glove system for therapy treatment. In Proceedings of the 2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), Kuala Lumpur, Malaysia, 8 October 2015. [Google Scholar]
- Janarthanan, V.; Assad-Uz-Zaman, M.; Rahman, M.H.; McGonigle, E.; Wang, I. Design and development of a sensored glove for home-based rehabilitation. J. Hand Ther. 2020, 33, 209–219. [Google Scholar] [CrossRef]
- Imtiaz, S.; Humyra, R.; Sharar Kashem, M.R.; Khan, M.F.; Hossain, M.S.; Kabir, M.H. Rehabilitation For Stroke Survivors: The Development of a Smart Glove. In Proceedings of the 2023 26th International Conference on Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh, 27 February 2024. [Google Scholar]
- Bernocchi, P.; Mulè, C.; Vanoglio, F.; Taveggia, G.; Luisa, A.; Scalvini, S. Home-based hand rehabilitation with a robotic glove in hemiplegic patients after stroke: A pilot feasibility study. Top. Stroke Rehabil. 2018, 25, 114–119. [Google Scholar] [CrossRef]
- Wittmann, F.; Held, J.P.; Lambercy, O.; Starkey, M.L.; Curt, A.; Höver, R.; Gonzenbach, R.R. Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system. J. Neuroeng. Rehabil. 2016, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
Participant | Perceived Cylinder Difficulty Level | |
---|---|---|
Easy | Hard | |
1 | 5 | 1 & 6 |
2 | 5 | 1 & 6 |
3 | 4 | 6 |
4 | 5 | 6 |
5 | 5 | 1 |
6 | 5 | 1 |
7 | 5 | 6 |
8 | 3 | 6 |
9 | 4 | 1 |
10 | 5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
P, A.R.S.S.; Ohnishi, A.; Terada, T.; Tsukamoto, M. Estimation of Cylinder Grasping Contraction Force of Forearm Muscle in Home-Based Rehabilitation Using a Stretch-Sensor Glove. Appl. Sci. 2025, 15, 7534. https://doi.org/10.3390/app15137534
P ARSS, Ohnishi A, Terada T, Tsukamoto M. Estimation of Cylinder Grasping Contraction Force of Forearm Muscle in Home-Based Rehabilitation Using a Stretch-Sensor Glove. Applied Sciences. 2025; 15(13):7534. https://doi.org/10.3390/app15137534
Chicago/Turabian StyleP, Adhe Rahmatullah Sugiharto Suwito, Ayumi Ohnishi, Tsutomu Terada, and Masahiko Tsukamoto. 2025. "Estimation of Cylinder Grasping Contraction Force of Forearm Muscle in Home-Based Rehabilitation Using a Stretch-Sensor Glove" Applied Sciences 15, no. 13: 7534. https://doi.org/10.3390/app15137534
APA StyleP, A. R. S. S., Ohnishi, A., Terada, T., & Tsukamoto, M. (2025). Estimation of Cylinder Grasping Contraction Force of Forearm Muscle in Home-Based Rehabilitation Using a Stretch-Sensor Glove. Applied Sciences, 15(13), 7534. https://doi.org/10.3390/app15137534