Decoding Humor-Induced Amusement via Facial Expression Analysis: Toward Emotion-Aware Applications
Abstract
1. Introduction
2. Material and Methods
2.1. Participants
2.2. Compliance with Ethical Standards
2.3. Videos
2.3.1. Stimuli Selection
2.3.2. Video Features
2.4. Behavioral Task and Data
2.4.1. The Experimental Design
2.4.2. Behavioral Reactions: Detection of Facial Expression with iMotions
2.4.3. Individual Behavioral Ratings of Videos
2.4.4. Final Video Categories Based on Individual Ratings
2.5. Machine Learning Analyses
2.5.1. Random Forest Classifier
2.5.2. The Machine Learning Pipeline
2.5.3. Application of the Pipeline
2.6. Data Analyses
2.6.1. Behavioral Data and Facial Expressions
2.6.2. Predicting Humorous Amusement
2.6.3. Temporal Dynamics of Amusement
2.6.4. Transparency and Openness
3. Results
3.1. Behavioral and Facial Correlates of Humorous Amusement
3.1.1. Behavioral Ratings
3.1.2. Facial Expressions
3.2. Predicting Humorous Amusement Intensity Using Video Characteristics and Smiling
3.3. Temporal Evolution of Humorous Amusement Intensity
4. Discussion
4.1. Behavioral Correlates and Facial Expressions of Humorous Amusement
4.2. Propensity to Smile Is the Best Predictor of Humorous Amusement
4.3. Temporal Dynamics of Humor Appreciation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abernathy, D.; Zettle, R.D. Inducing Amusement in the Laboratory and Its Moderation by Experiential Approach. Psychol. Rep. 2022, 125, 2213–2231. [Google Scholar] [CrossRef]
- Aillaud, M.; Piolat, A. Influence of gender on judgment of dark and nondark humor. Individ. Differ. Res. 2012, 10, 211–222. [Google Scholar]
- Aslam, A.; Hussian, B. Emotion recognition techniques with rule based and machine learning approaches. arXiv 2021, arXiv:2103.00658. [Google Scholar] [CrossRef]
- Averill, J.R. Autonomic Response Patterns During Sadness and Mirth. Psychophysiology 1969, 5, 399–414. [Google Scholar] [CrossRef]
- Bains, G.S.; Berk, L.S.; Daher, N.; Lohman, E.; Schwab, E.; Petrofsky, J.; Deshpande, P. The effect of humor on short-term memory in older adults: A new component for whole-person wellness. Adv. Mind-Body Med. 2014, 28, 16–24. [Google Scholar] [PubMed]
- Bains, G.S.; Berk, L.S.; Lohman, E.; Daher, N.; Petrofsky, J.; Schwab, E.; Deshpande, P. Humors Effect on Short-term Memory in Healthy and Diabetic Older Adults. Altern. Ther. Health Med. 2015, 21, 16–25. [Google Scholar] [PubMed]
- Barral, O.; Kosunen, I.; Jacucci, G. No Need to Laugh Out Loud: Predicting Humor Appraisal of Comic Strips Based on Physiological Signals in a Realistic Environment. ACM Trans. Comput.-Hum. Interact. 2017, 24, 1–29. [Google Scholar] [CrossRef]
- Baveye, Y.; Bettinelli, J.-N.; Dellandréa, E.; Chen, L.; Chamaret, C. A Large Video Database for Computational Models of Induced Emotion. In Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva, Switzerland, 2–5 September 2013; pp. 13–18. [Google Scholar] [CrossRef]
- Bennett, M.P.; Zeller, J.M.; Rosenberg, L.; McCann, J. The Effect of Mirthful Laughter on Stress and Natural Killer Cell Activity; Western Kentucky University: Bowling Green, KY, USA, 2003. [Google Scholar]
- Bird, S.; Klein, E.; Loper, E. Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2009. [Google Scholar]
- Bischetti, L.; Canal, P.; Bambini, V. Funny but aversive: A large-scale survey of the emotional response to Covid-19 humor in the Italian population during the lockdown. Lingua 2021, 249, 102963. [Google Scholar] [CrossRef]
- Bradski, G. The openCV library. Dr. Dobb’s J. Softw. Tools Prof. Program. 2000, 25, 120–123. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cann, A.; Collette, C. Sense of Humor, Stable Affect, and Psychological Well-Being. Eur. J. Psychol. 2014, 10, 464–479. [Google Scholar] [CrossRef]
- Carretero-Dios, H.; Ruch, W. Humor Appreciation and Sensation Seeking: Invariance of Findings Across Culture and Assessment Instrument? De Gruyter Brill: Berlin, Germany, 2010. [Google Scholar]
- Chandrasekaran, A.; Vijayakumar, A.K.; Antol, S.; Bansal, M.; Batra, D.; Zitnick, C.L.; Parikh, D. We are humor beings: Understanding and predicting visual humor. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4603–4612. [Google Scholar]
- Cilibrasi, R.L.; Vitanyi, P.M. The google similarity distance. IEEE Trans. Knowl. Data Eng. 2007, 19, 370–383. [Google Scholar] [CrossRef]
- Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar]
- Crawford, S.A.; Caltabiano, N.J. Promoting emotional well-being through the use of humour. J. Posit. Psychol. 2011, 6, 237–252. [Google Scholar] [CrossRef]
- Dente, P.; Küster, D.; Skora, L.; Krumhuber, E. Measures and metrics for automatic emotion classification via FACET. In Proceedings of the Conference on the Study of Artificial Intelligence and Simulation of Behaviour (AISB), Bath, UK, 18–21 April 2017; pp. 160–163. [Google Scholar]
- Domínguez-Jiménez, J.A.; Campo-Landines, K.C.; Martínez-Santos, J.C.; Delahoz, E.J.; Contreras-Ortiz, S.H. A machine learning model for emotion recognition from physiological signals. Biomed. Signal Process. Control 2020, 55, 101646. [Google Scholar] [CrossRef]
- Ekman, P. Are there basic emotions? Psychol. Rev. 1992, 99, 550–553. [Google Scholar] [CrossRef]
- Ekman, P.; Davidson, R.J.; Friesen, W.V. The Duchenne smile: Emotional expression and brain physiology: II. J. Personal. Soc. Psychol. 1990, 58, 342. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. Facial action coding system. Environ. Psychol. Nonverbal Behav. 1978. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. Felt, false, and miserable smiles. J. Nonverbal Behav. 1982, 6, 238–252. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. Unmasking the Face: A Guide to Recognizing Emotions from Facial Clues; ISHK: Los Altos, CA, USA, 2003. [Google Scholar]
- Ellard, K.K.; Farchione, T.J.; Barlow, D.H. Relative Effectiveness of Emotion Induction Procedures and the Role of Personal Relevance in a Clinical Sample: A Comparison of Film, Images, and Music. J. Psychopathol. Behav. Assess. 2012, 34, 232–243. [Google Scholar] [CrossRef]
- Frank, M.G.; Ekman, P. Not All Smiles Are Created Equal: The Differences Between Enjoyment and Nonenjoyment Smiles; De Gruyter Brill: Berlin, Germany, 1993. [Google Scholar]
- Frank, M.G.; Ekman, P.; Friesen, W.V. Behavioral markers and recognizability of the smile of enjoyment. J. Personal. Soc. Psychol. 1993, 64, 83. [Google Scholar] [CrossRef] [PubMed]
- Froehlich, E.; Madipakkam, A.R.; Craffonara, B.; Bolte, C.; Muth, A.-K.; Park, S.Q. A short humorous intervention protects against subsequent psychological stress and attenuates cortisol levels without affecting attention. Sci. Rep. 2021, 11, 1. [Google Scholar] [CrossRef]
- Gavanski, I. Differential sensitivity of humor ratings and mirth responses to cognitive and affective components of the humor response. J. Personal. Soc. Psychol. 1986, 51, 209–214. [Google Scholar] [CrossRef]
- Geslin, E.; Jégou, L.; Beaudoin, D. How color properties can be used to elicit emotions in video games. Int. J. Comput. Games Technol. 2016, 2016, 5182768. [Google Scholar] [CrossRef]
- Ghai, M.; Lal, S.; Duggal, S.; Manik, S. Emotion recognition on speech signals using machine learning. In Proceedings of the 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC), Chirala, India, 23–25 March 2017; pp. 34–39. [Google Scholar] [CrossRef]
- Ghimire, D.; Lee, J. Geometric feature-based facial expression recognition in image sequences using multi-class adaboost and support vector machines. Sensors 2013, 13, 7714–7734. [Google Scholar] [CrossRef]
- Girard, J.M.; Cohn, J.F.; Yin, L.; Morency, L.-P. Reconsidering the Duchenne Smile: Formalizing and Testing Hypotheses About Eye Constriction and Positive Emotion. Affect. Sci. 2021, 2, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Gunnery, S.D.; Hall, J.A. The expression and perception of the Duchenne smile. In The Social Psychology of Nonverbal Communication; Palgrave Macmillan: London, UK; Springer Nature: Berlin, Germany, 2015; pp. 114–133. [Google Scholar] [CrossRef]
- Herzog, T.R.; Karafa, J.A. Preferences for Sick Versus Nonsick Humor; De Gruyter Brill: Berlin, Germany, 1998. [Google Scholar]
- Hofmann, J.; Platt, T.; Lau, C.; Torres-Marín, J. Gender differences in humor-related traits, humor appreciation, production, comprehension,(neural) responses, use, and correlates: A systematic review. Curr. Psychol. 2020, 42, 16451–16464. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, L. Saliency detection: A spectral residual approach. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Jang, E.-H.; Park, B.-J.; Kim, S.-H.; Chung, M.-A.; Park, M.-S.; Sohn, J.-H. Emotion classification based on bio-signals emotion recognition using machine learning algorithms. In Proceedings of the 2014 International Conference on Information Science, Electronics and Electrical Engineering, Sapporo, Japan, 26–28 April 2014; Volume 3, pp. 1373–1376. [Google Scholar] [CrossRef]
- Jeganathan, J.; Campbell, M.; Hyett, M.; Parker, G.; Breakspear, M. Quantifying dynamic facial expressions under naturalistic conditions. Elife 2022, 11, e79581. [Google Scholar] [CrossRef]
- Krumhuber, E.G.; Manstead, A.S.R. Can Duchenne smiles be feigned? New evidence on felt and false smiles. Emotion 2009, 9, 807–820. [Google Scholar] [CrossRef]
- Kumar, P.; Happy, S.L.; Routray, A. A real-time robust facial expression recognition system using HOG features. In Proceedings of the 2016 International Conference on Computing, Analytics and Security Trends (CAST), Pune, India, 19–21 December 2016; pp. 289–293. [Google Scholar] [CrossRef]
- Lefcourt, H.M.; Martin, R.A. Humor and Life Stress: Antidote to Adversity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Liu, X.; Li, N.; Xia, Y. Affective image classification by jointly using interpretable art features and semantic annotations. J. Vis. Commun. Image Represent. 2019, 58, 576–588. [Google Scholar] [CrossRef]
- Martin, R.A. The social psychology of humor. In The Psychology of Humor: An Integrative Approach; Routledge: Abingdon, UK, 2007; pp. 113–152. [Google Scholar]
- Martin, R.A.; Kuiper, N.A.; Olinger, L.J.; Dance, K.A. Humor, Coping with Stress, Self-Concept, and Psychological Well-Being; De Gruyter Brill: Berlin, Germany, 1993; Volume 6, pp. 89–104. [Google Scholar] [CrossRef]
- Moran, C.C. Short-term mood change, perceived funniness, and the effect of humor stimuli. Behav. Med. 1996, 22, 32–38. [Google Scholar] [CrossRef]
- Peirce, J.; Gray, J.R.; Simpson, S.; MacAskill, M.; Höchenberger, R.; Sogo, H.; Kastman, E.; Lindeløv, J.K. PsychoPy2: Experiments in behavior made easy. Behav. Res. Methods 2019, 51, 195–203. [Google Scholar] [CrossRef]
- Rasheed, Z.; Sheikh, Y.; Shah, M. On the use of computable features for film classification. IEEE Trans. Circuits Syst. Video Technol. 2005, 15, 52–64. [Google Scholar] [CrossRef]
- Ruch, W. Will the real relationship between facial expression and affective experience please stand up: The case of exhilaration. Cogn. Emot. 1995, 9, 33–58. [Google Scholar] [CrossRef]
- Ruch, W. State and Trait Cheerfulness and the Induction of Exhilaration. Eur. Psychol. 1997, 2, 328–341. [Google Scholar] [CrossRef]
- Ruch, W. The Perception of Humor; Word Scientific Publisher: Tokyo, Japan, 2001. [Google Scholar] [CrossRef]
- Ruch, W.; Heintz, S.; Platt, T.; Wagner, L.; Proyer, R.T. Broadening Humor: Comic Styles Differentially Tap into Temperament, Character, and Ability. Front. Psychol. 2018, 9, 6. [Google Scholar] [CrossRef]
- Saive, A.-L. Laughing to remember: Humor-related memory improvement. Rev. Psicol.-Terc. Época 2021, 20, 178–192. [Google Scholar] [CrossRef]
- Schaefer, A.; Nils, F.; Sanchez, X.; Philippot, P. Assessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchers. Cogn. Emot. 2010, 24, 1153–1172. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, P. Comparative study ID3, cart and C4. 5 decision tree algorithm: A survey. Int. J. Adv. Inf. Sci. Technol. IJAIST 2014, 27, 97–103. [Google Scholar]
- Stöckli, S.; Schulte-Mecklenbeck, M.; Borer, S.; Samson, A.C. Facial expression analysis with AFFDEX and FACET: A validation study. Behav. Res. Methods 2018, 50, 1446–1460. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef]
- Svebak, S. The Development of the Sense of Humor Questionnaire: From SHQ to SHQ-6; De Gruyter Brill: Berlin, Germany, 1996. [Google Scholar]
- Svebak, S.; Martin, R.A.; Holmen, J. The Prevalence of Sense of Humor in a Large, Unselected County Population in Norway: Relations with Age, Sex, and Some Health Indicators; De Gruyter Brill: Berlin, Germany, 2004. [Google Scholar]
- Terry, R.L.; Ertel, S.L. Exploration of Individual Differences in Preferences for Humor. Psychol. Rep. 1974, 34 (Suppl. S3), 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.A.; Esses, V.M. Individual Differences in Reactions to Sexist Humor. Group Process. Intergroup Relat. 2004, 7, 89–100. [Google Scholar] [CrossRef]
- Tian, Y.-L.; Kanade, T.; Cohn, J.F. Recognizing Action Units for Facial Expression Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 97–115. [Google Scholar] [CrossRef]
- Toupin, G.; Benlamine, M.S.; Frasson, C. Prediction of Amusement Intensity Based on Brain Activity. In Novelties in Intelligent Digital Systems; IOS Press: Amsterdam, The Netherlands, 2021; pp. 229–238. [Google Scholar] [CrossRef]
- Vernon, P.A.; Martin, R.A.; Schermer, J.A.; Cherkas, L.F.; Spector, T.D. Genetic and Environmental Contributions to Humor Styles: A Replication Study. Twin Res. Hum. Genet. 2008, 11, 44–47. [Google Scholar] [CrossRef]
- Vieillard, S.; Pinabiaux, C. Spontaneous response to and expressive regulation of mirth elicited by humorous cartoons in younger and older adults. Aging Neuropsychol. Cogn. 2019, 26, 407–423. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Dudek, P. A fast self-tuning background subtraction algorithm. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 395–398. [Google Scholar]
- Westermann, R.; Spies, K.; Stahl, G.; Hesse, F.W. Relative effectiveness and validity of mood induction procedures: A meta-analysis. Eur. J. Soc. Psychol. 1996, 26, 557–580. [Google Scholar] [CrossRef]
- Wu, Z.; Palmer, M. Verb semantics and lexical selection. arXiv 1994, arXiv:cmp-lg/9406033. [Google Scholar]
- Wyer, R.S.; Collins, J.E. A theory of humor elicitation. Psychol. Rev. 1992, 99, 663. [Google Scholar] [CrossRef]
- Zhao, J.; Yin, H.; Wang, X.; Zhang, G.; Jia, Y.; Shang, B.; Zhao, J.; Wang, C.; Chen, L. Effect of humour intervention programme on depression, anxiety, subjective well-being, cognitive function and sleep quality in Chinese nursing home residents. J. Adv. Nurs. 2020, 76, 2709–2718. [Google Scholar] [CrossRef]
- Zhao, S.; Gao, Y.; Jiang, X.; Yao, H.; Chua, T.-S.; Sun, X. Exploring Principles-of-Art Features For Image Emotion Recognition. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 47–56. [Google Scholar] [CrossRef]
Average Feature Contribution (STD) | ||||||
---|---|---|---|---|---|---|
Features | All Videos (Classes: Neutral/Funny/Very Funny) | Humorous Video (Classes: Low/Moderate/High) | ||||
Beginning | Middle | End | Beginning | Middle | End | |
Movement | 0.318 (0.008) | 0.328 (0.006) | 0.220 (0.018) | 0.209 (0.033) | 0.213 (0.011) | 0.171 (0.030) |
Saliency | 0.291 (0.009) | 0.269 (0.007) | 0.282 (0.006) | 0.248 (0.022) | 0.213 (0.019) | 0.142 (0.039) |
Semantic Distance | 0.294 (0.011) | 0.248 (0.007) | 0.237 (0.006) | 0.223 (0.023) | 0.191 (0.022) | 0.106 (0.036) |
NGD | 0.059 (0.006) | 0.047 (0.002) | 0.052 (0.003) | 0.089 (0.010) | 0.046 (0.007) | 0.037 (0.009) |
Smile | 0.037 (0.021) | 0.107 (0.012) | 0.209 (0.018) | 0.232 (0.053) | 0.337 (0.042) | 0.543 (0.098) |
Mean Accuracy | 62.1% (5.0%) | 62.3% (5.6%) | 64.1% (5.4%) | 41.0% (2.8%) | 43.9% (3.1%) | 45.2% (4.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toupin, G.; Dehgan, A.; Buffo, M.; Feyt, C.; Alamian, G.; Jerbi, K.; Saive, A.-L. Decoding Humor-Induced Amusement via Facial Expression Analysis: Toward Emotion-Aware Applications. Appl. Sci. 2025, 15, 7499. https://doi.org/10.3390/app15137499
Toupin G, Dehgan A, Buffo M, Feyt C, Alamian G, Jerbi K, Saive A-L. Decoding Humor-Induced Amusement via Facial Expression Analysis: Toward Emotion-Aware Applications. Applied Sciences. 2025; 15(13):7499. https://doi.org/10.3390/app15137499
Chicago/Turabian StyleToupin, Gabrielle, Arthur Dehgan, Marie Buffo, Clément Feyt, Golnoush Alamian, Karim Jerbi, and Anne-Lise Saive. 2025. "Decoding Humor-Induced Amusement via Facial Expression Analysis: Toward Emotion-Aware Applications" Applied Sciences 15, no. 13: 7499. https://doi.org/10.3390/app15137499
APA StyleToupin, G., Dehgan, A., Buffo, M., Feyt, C., Alamian, G., Jerbi, K., & Saive, A.-L. (2025). Decoding Humor-Induced Amusement via Facial Expression Analysis: Toward Emotion-Aware Applications. Applied Sciences, 15(13), 7499. https://doi.org/10.3390/app15137499