Dissociative Adsorption of Hydrogen in Hydrogen-Blended Natural Gas Pipelines: A First Principles and Thermodynamic Analysis
Abstract
1. Introduction
2. Methodology
3. Results and Discussion
3.1. Adsorption of Hydrogen Molecules on the Surface of Iron
3.2. Analysis of Hydrogen-Gas and Iron Surface Interactions Based on First Principles
3.3. Thermodynamic Analysis of Hydrogen Dissociative Adsorption on Pipeline Steel Surfaces
3.3.1. Calculation of Adsorption Energy
3.3.2. Calculation of Chemical Potential
3.3.3. Changes in Gibbs Free Energy and Chemical Potential
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hao, L.; Zhai, X.W.; Wang, K. Study on the Diffusion Characteristics of Small Hole Leakage of High-Sulfur Natural Gas in Gathering and Transmission Pipelines. Int. Commun. Heat Mass Transfer 2025, 164, 108942. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, L.; Sun, J.; Chen, R.; Pei, G.; Chen, X.; Fan, J. Numerical Investigation of Air Flow Field Evolution and Leakage Patterns in Large-Scale Goaf Areas. Phys. Fluids 2025, 37, 027151. [Google Scholar] [CrossRef]
- Ren, J.; Musyoka, N.M.; Langmi, H.W.; Mathe, M.; Liao, S. Current Research Trends and Perspectives on Materials-Based Hydrogen Storage Solutions: A Critical Review. Int. J. Hydrog. Energy 2017, 42, 289–311. [Google Scholar] [CrossRef]
- Wang, S.; Hui, H.; Zhai, J. Short-Term Reliability Assessment of Integrated Power-Gas Systems with Hydrogen Injections Using Universal Generating Function. IEEE Trans. Ind. Appl. 2023, 59, 5760–5773. [Google Scholar] [CrossRef]
- Gal, S.; Albulescu, M.; Radulescu, R.; Timur, C. A Review of Natural Gas-Hydrogen Blending in Pipeline Supply and Distribution. Rom. J. Pet. Gas. Technol. 2023, 4, 149–158. [Google Scholar] [CrossRef]
- San Marchi, C.; Ronevich, J.A. Fatigue and Fracture of Pipeline Steels in High-Pressure Hydrogen Gas. J. Press. Vessel. Technol. 2022, 144, 84757. [Google Scholar]
- Gao, Y.; Huang, R.; Wang, J.; Wu, Z.; Jiang, D.-e. Effect of Hydrogen-Induced Metallization on Chemisorption. J. Phys. Chem. C 2019, 123, 14913–14921. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, H.; Yang, M.; Jia, W. From the Perspective of New Technology of Blending Hydrogen into Natural Gas Pipelines Transmission: Mechanism, Experimental Study, and Suggestions for Further Work of Hydrogen Embrittlement in High-Strength Pipeline Steels. Int. J. Hydrogen Energy 2022, 47, 5620–5630. [Google Scholar] [CrossRef]
- Woodtli, J.; Kieselbach, R. Damage Due to Hydrogen Embrittlement and Stress Corrosion Cracking. Eng. Fail. Anal. 2000, 7, 427–450. [Google Scholar] [CrossRef]
- Gavriljuk, V.G.; Shyvaniuk, V.M.; Teus, S.M. Hydrogen in Metallic Alloys—Embrittlement and Enhanced Plasticity: A Review. Corros. Rev. 2024, 42, 267–301. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, J.; Li, J.; Yu, B.; Wang, J.; Lyu, R.; Xi, Q. Research Progress on Corrosion and Hydrogen Embrittlement in Hydrogen-Natural Gas Pipeline Transportation. Nat. Gas. Ind. B 2023, 10, 570–582. [Google Scholar] [CrossRef]
- Kim, S.J.; Jung, H.G.; Kim, K.Y. Effect of Tensile Stress in Elastic and Plastic Range on Hydrogen Permeation of High-Strength Steel in Sour Environment. Electrochim. Acta 2012, 78, 139–146. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Niu, L. Mechanism for Hydrogen Evolution Reaction on Pipeline Steel in Near-Neutral pH Solution. Electrochem. Commun. 2007, 9, 558–562. [Google Scholar] [CrossRef]
- Cheng, Y.F. Fundamentals of Hydrogen Evolution Reaction and Its Implications on Near-Neutral pH Stress Corrosion Cracking of Pipelines. Electrochim. Acta 2007, 52, 2661–2667. [Google Scholar] [CrossRef]
- Djukic, M.; Bakic, G.; Šijački-Žeravčić, V.; Sedmak, A. Hydrogen Embrittlement of Industrial Components: Prediction, Prevention, and Models. Corrosion 2016, 72, 943–961. [Google Scholar] [CrossRef]
- Djukic, M.B.; Bakic, G.M.; Sijacki Zeravcic, V.; Sedmak, A.; Rajicic, B. The Synergistic Action and Interplay of Hydrogen Embrittlement Mechanisms in Steels and Iron: Localized Plasticity and Decohesion. Eng. Fract. Mech. 2019, 216, 106528. [Google Scholar] [CrossRef]
- Atrens, A.; Gray, E.; Venezuela, J.; Hoschke, J.; Roethig, M. Feasibility of the Use of Gas Phase Inhibition of Hydrogen Embrittlement in Gas Transmission Pipelines Carrying Hydrogen: A Review. JOM 2023, 75, 232–238. [Google Scholar] [CrossRef]
- Shaposhnikov, N.; Tsvetkov, A.S.; Strekalovskaya, D.; Nikolaeva, A. Physical Modeling of Steel Resistance to Hydrogen Embrittlement. Key Eng. Mater. 2023, 943, 91–96. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Liu, C.; Hu, Q.; Zhang, R.; Xu, X.; Yang, H.; Ning, Y.; Li, Y. Study on Hydrogen Embrittlement Susceptibility of X80 Steel through In-Situ Gaseous Hydrogen Permeation and Slow Strain Rate Tensile Tests. Int. J. Hydrogen Energy 2023, 48, 243–256. [Google Scholar] [CrossRef]
- Slifka, A.J.; Drexler, E.S.; Nanninga, N.E.; Levy, Y.S.; McColskey, J.D.; Amaro, R.L.; Stevenson, A.E. Fatigue Crack Growth of Two Pipeline Steels in a Pressurized Hydrogen Environment. Corros. Sci. 2014, 78, 313–321. [Google Scholar] [CrossRef]
- Drexler, A.; Helic, B.; Silvayeh, Z.; Mraczek, K.; Sommitsch, C.; Domitner, J. The Role of Hydrogen Diffusion, Trapping, and Desorption in Dual Phase Steels. J. Mater. Sci. 2022, 57, 4789–4805. [Google Scholar] [CrossRef]
- Li, Y.; Wei, H.; Zheng, S.; Kong, J.; Wen, L.; Yuan, Q.; Liu, Y.; Shen, Y.; Zhang, Y.; Wu, H.; et al. Hydrogen Adsorption and Diffusion on the Surface of Alloyed Steel: First-Principles Studies. Int. J. Hydrogen Energy 2024, 54, 1478–1486. [Google Scholar] [CrossRef]
- Cai, L.; Bai, G.; Gao, X.; Li, Y.; Hou, Y. Experimental Investigation on the Hydrogen Embrittlement Characteristics and Mechanism of Natural Gas-Hydrogen Transportation Pipeline Steels. Mater. Res. Express 2022, 9, 046512. [Google Scholar] [CrossRef]
- Li, X.C.; Zhao, R.X.; Wan, C.B.; Sui, T.T.; Ju, X. First-Principles Study on the Hydrogen Trapping by Vacancy and Substitutional Helium in W–Ta Alloy. Nucl. Mater. Energy 2023, 36, 101460. [Google Scholar] [CrossRef]
- Kora, H.H.; Taha, M.; Farghali, A.A.; El-Dek, S.I. First-Principles Study of the Geometric and Electronic Structures and Optical Properties of Vacancy Magnesium Ferrite. Metall. Mater. Trans. A 2020, 51, 5432–5443. [Google Scholar] [CrossRef]
- Sorescu, D.C. First Principles Calculations of the Adsorption and Diffusion of Hydrogen on Fe(100) Surface and in the Bulk. Catal. Today 2005, 105, 44–65. [Google Scholar] [CrossRef]
- Jiang, D.E.; Carter, E.A. Adsorption and Diffusion Energetics of Hydrogen Atoms on Fe(110) from First Principles. Surf. Sci. 2003, 547, 85–98. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhang, Z.; Huang, X. Effect of Solute Atoms Segregation on Al Grain Boundary Energy and Mechanical Properties by First-Principles Study. Mech. Mater. 2023, 185, 104775. [Google Scholar] [CrossRef]
- Du, Y.A.; Ismer, L.; Rogal, J.; Hickel, T. First-Principles Study on the Interaction of H Interstitials with Grain Boundaries in α- and γ-Fe. Phys. Rev. B 2011, 84, 144121. [Google Scholar] [CrossRef]
- Yu, M.; Liu, L.; Wang, Q.; Jia, L.; Hou, B.; Si, Y.; Li, D.; Zhao, Y. High Coverage H2 Adsorption and Dissociation on FCC Co Surfaces from DFT and Thermodynamics. Int. J. Hydrogen Energy 2018, 43, 5576–5590. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-Principles Simulation: Ideas, Illustrations, and the CASTEP Code. J. Phys. Condens. Matter 2002, 14, 2717. [Google Scholar] [CrossRef]
- Mattsson, A.E.; Schultz, P.A.; Desjarlais, M.P.; Mattsson, T.R.; Leung, K. Designing Meaningful Density Functional Theory Calculations in Materials Science—A Primer. Model. Simul. Mater. Sci. Eng. 2005, 13, R1. [Google Scholar] [CrossRef]
- Farzaneh, L.; Nakhaei Pour, A. DFT Study of Hydrogen Adsorption on Metallic Platinum: Associative or Dissociative Adsorption. Phys. Chem. Res. 2022, 10, 339913. [Google Scholar]
- Nunomura, N.; Sunada, S. First-Principles Calculations of the Water Molecules and Hydroxylated Iron Surface. Integr. Ferroelectr. 2016, 175, 247–254. [Google Scholar] [CrossRef]
- Teng, B.-T.; Wen, X.-D.; Fan, M.; Wu, F.-M.; Zhang, Y. Choosing a Proper Exchange–Correlation Functional for the Computational Catalysis on Surface. Phys. Chem. Chem. Phys. 2014, 16, 18563–18569. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, L.; Sun, L.; Li, N. A Study of Functionally Graded Lattice Structural Design and Optimisation. In Proceedings of the 2020 6th International Conference on Mechanical Engineering and Automation Science (ICMEAS), Moscow, Russia, 29–31 October 2020. [Google Scholar]
- Kholtobina, A.S.; Pippan, R.; Romaner, L.; Scheiber, D.; Ecker, W.; Razumovskiy, V.I. Hydrogen Trapping in bcc Iron. Materials 2020, 13, 2288. [Google Scholar] [CrossRef]
- Hayward, E.; Deo, C. Atomic Scale Modeling of Hydrogen and Helium in BCC Iron. Fusion Sci. Technol. 2012, 61, 391–394. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, Y.; Wang, H.; Mi, Z.; Liu, Z.; Gao, L.; Yan, Y.; Su, Y.; Qiao, L. A First-Principles Study on the Hydrogen Trap Characteristics of Coherent Nano-Precipitates in α-Fe. Int. J. Hydrogen Energy 2020, 45, 27941–27949. [Google Scholar] [CrossRef]
- Gao, Z.-F.; Chen, H.; Qi, S.-T.; Yi, C.-H.; Yang, B.-L. Study of Hydrogen Adsorption on Pt and Pt-Based Bimetallic Surfaces by Density Functional Theory. Acta Phys. Chim. Sin. 2013, 29, 1900–1906. [Google Scholar]
- Kovács, I. Hydrogen Storage as K-H Salt on Pd(100) Surface. In Proceedings of the 2023 IEEE 6th International Conference and Workshop Óbuda on Electrical and Power Engineering (CANDO-EPE), Budapest, Hungary, 19–20 October 2023. [Google Scholar]
- Li, S.-Y.; Zhao, W.-M.; Qiao, J.-H.; Wang, Y. Competitive Adsorption of CO and H2 on Strained Fe(110) Surface. Acta Phys. Sin. 2019, 68, 217103. [Google Scholar] [CrossRef]
- Floyd, C.; Papoian, G.A.; Jarzynski, C. Gibbs Free Energy Change of a Discrete Chemical Reaction Event. J. Chem. Phys. 2020, 152, 084116. [Google Scholar] [CrossRef] [PubMed]
- Molina, A.; Laborda, E. Detailed Theoretical Treatment of Homogeneous Chemical Reactions Coupled to Interfacial Charge Transfers. Electrochim. Acta 2018, 286, 374–396. [Google Scholar] [CrossRef]
- Fawcett, W.R.; Chavis, G.J.; Hromadová, M. Charge Distribution Effects in Polyatomic Reactants Involved in Simple Electron Transfer Reactions. Electrochim. Acta 2008, 53, 6787–6792. [Google Scholar] [CrossRef]
- Marshakov, A.I.; Nenasheva, T.A. The Effect of Adsorbed Atomic Hydrogen on the Electrochemical Dissolution Kinetics of Iron. Prot. Met. 2004, 40, 116–120. [Google Scholar] [CrossRef]
- Zhang, S.; Li, K.; Ma, Y.; Bu, Y.; Liang, Z.; Yang, Z.; Zhang, J. The Adsorption Mechanism of Hydrogen on FeO Crystal Surfaces: A Density Functional Theory Study. Nanomaterials 2023, 13, 205. [Google Scholar] [CrossRef]
- Juan, A.; Hoffmann, R. Hydrogen on the Fe(110) Surface and Near Bulk BCC Fe Vacancies: A Comparative Bonding Study. Surf. Sci. 1999, 421, 1–16. [Google Scholar] [CrossRef]
- Gesari, S.B.; Pronsato, M.E.; Juan, A. Grain Boundary Segregation of Hydrogen in BCC Iron: Electronic Structure. Surf. Rev. Lett. 2002, 9, 1437–1442. [Google Scholar] [CrossRef]
- Abdulghany, A.R. An Analytical Formula for Fluctuations in Nuclear Charge Density. Chin. Phys. C 2018, 42, 074101. [Google Scholar] [CrossRef]
- Dong, H.; Li, R.; Zhao, W.; Zhang, Y. Chemical Kinetics Properties and the Influences of Different Hydrogen Blending Ratios on Reactions of Natural Gas. Case Stud. Therm. Eng. 2022, 41, 102676. [Google Scholar] [CrossRef]
- Vira, V.; Krechkovska, H.; Kulyk, V.; Duriagina, Z.; Student, O.; Vasyliv, B.; Cherkes, V.; Loskutova, T. Peculiarities of Fatigue Crack Growth in Steel 17H1S after Long-Term Operations on a Gas Pipeline. Materials 2023, 16, 2964. [Google Scholar] [CrossRef]
- Fultz, B. The Atomic Origins of Thermodynamics and Kinetics. In Phase Transitions in Materials; Cambridge University Press: Cambridge, UK, 2014; pp. 125–126. [Google Scholar]
- Islam, A.; Alam, T.; Sheibley, N.; Edmonson, K.; Burns, D.; Hernandez, M. Hydrogen blending in natural gas pipelines: A comprehensive review of material compatibility and safety considerations. Int. J. Hydrogen Energy 2024, 93, 1429–1461. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, F.; Chen, M.; Zhang, Y.; Zhao, C.; Zhou, H. A Simple Way of Calculating the Change in the Gibbs’ Free Energy of Ion Adsorption Reactions. Adsorpt. Sci. Technol. 2009, 27, 1–17. [Google Scholar]
- Yao, Y.; Xu, F.; Chen, M.; Xu, Z.; Zhu, Z. Adsorption Behavior of Methylene Blue on Carbon Nanotubes. Bioresour. Technol. 2010, 101, 3040–3046. [Google Scholar] [CrossRef] [PubMed]
- Ma, X. Algebraic Perturbation Theory for Calculating Chemical Potentials of Simple Liquid. J. Shanxi Norm. Univ. 2008, 22, 48–51. [Google Scholar]
Distance (Å) | Top Site’s Energy (eV) | Hollow Site’s Energy (eV) |
---|---|---|
0.5 | −10321.70 | −10378.46 |
1 | −10376.92 | −10378.46 |
1.5 | −10383.34 | −10382.77 |
2 | −10383.33 | −10382.97 |
2.5 | −10383.24 | −10383.15 |
Material | Structure | Atomic Count | Surface State | Pre-Reaction Energy | Post-Reaction Energy |
---|---|---|---|---|---|
Fe | Bcc | 14 | Fe(110) | −12077.62 eV | −12110.02 eV |
H | Hydrogen Molecule | 2 | Hydrogen Molecule | −31.31 eV |
T (°C) | ΔG (kJ/mol) | μ (kJ/mol) |
---|---|---|
−15 | −115.444 | 10.275 |
0 | −116.041 | 10.872 |
15 | −116.638 | 11.469 |
25 | −117.036 | 11.867 |
30 | −117.235 | 12.066 |
P (MPa) | ΔG (kJ/mol) | μ (kJ/mol) |
---|---|---|
2 | −112.595 | 7.426 |
4 | −114.313 | 9.144 |
6 | −115.318 | 10.149 |
8 | −116.031 | 10.862 |
10 | −116.584 | 11.415 |
12 | −117.036 | 11.867 |
14 | −117.418 | 12.249 |
16 | −117.749 | 12.580 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Luo, Z.; Zhang, P.; Li, R.; Yang, X. Dissociative Adsorption of Hydrogen in Hydrogen-Blended Natural Gas Pipelines: A First Principles and Thermodynamic Analysis. Appl. Sci. 2025, 15, 7342. https://doi.org/10.3390/app15137342
He W, Luo Z, Zhang P, Li R, Yang X. Dissociative Adsorption of Hydrogen in Hydrogen-Blended Natural Gas Pipelines: A First Principles and Thermodynamic Analysis. Applied Sciences. 2025; 15(13):7342. https://doi.org/10.3390/app15137342
Chicago/Turabian StyleHe, Wei, Zhenmin Luo, Pengyu Zhang, Ruikang Li, and Xi Yang. 2025. "Dissociative Adsorption of Hydrogen in Hydrogen-Blended Natural Gas Pipelines: A First Principles and Thermodynamic Analysis" Applied Sciences 15, no. 13: 7342. https://doi.org/10.3390/app15137342
APA StyleHe, W., Luo, Z., Zhang, P., Li, R., & Yang, X. (2025). Dissociative Adsorption of Hydrogen in Hydrogen-Blended Natural Gas Pipelines: A First Principles and Thermodynamic Analysis. Applied Sciences, 15(13), 7342. https://doi.org/10.3390/app15137342