Experimental Evaluation of Arc Stud Welding Techniques on Structural and Stainless Steel: Effects on Penetration Depth and Weld Quality
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Process Overview
2.2. Experimental Procedure
- Immersion: the extent to which the stud extends from the ceramic ring;
- Duration: the welding time, selected according to the base material thickness;
- Alignment: the accuracy of the stud’s centering along the welding axis.
- ARC CF (conventional arc welding with a ceramic ferrule);
- ARC SG (arc welding with shielding gas);
- ARC SRM (arc welding assisted by a radially symmetric magnetic field).
2.3. Materials and Sample Preparation
2.4. Welding Setup, Parameters, and Quality Assurance
2.5. Testing and Quality Evaluation
3. Results
3.1. Macrostructural Characteristics and Penetration Depth
3.2. Visual Appearance and Surface Quality
3.3. Hardness Distribution
3.4. Observed Defects and Non-Destructive Testing Results
3.5. Comparative Performance Analysis
4. Discussion
- 1.
- Penetration depth and fusion quality:The ARC CF method achieved the greatest penetration depths (2.679–3.547 mm) due to effective arc confinement by the ceramic ferrule. ARC SG produced moderate penetration (1.632–2.383 mm) with stable fusion, while ARC SRM yielded the shallowest but most uniform fusion zones (1.232–2.001 mm), minimizing thermal impact.
- 2.
- Surface quality and visual defects:Visual inspection confirmed process-dependent surface features: “hot welds” in ARC CF due to high heat input, and “cold welds” in ARC SG linked to arc blow or gun misalignment. ARC SRM produced the cleanest weld collars with minimal spatter, ideal for applications requiring high surface quality and low post-processing effort.
- 3.
- Hardness distribution:Vickers HV10 testing verified that higher penetration correlated with increased weld metal hardness: ARC CF reached up to 295 HV10, ARC SRM up to 256 HV10, and ARC SG up to 235 HV10. These results confirm controlled energy input without undesirable hardness gradients or brittle phases [34].
- 4.
- Defects and compliance:Non-destructive liquid penetrant testing, performed in accordance with EN ISO 3452-1:2021, confirmed the absence of surface-breaking defects. Visual and radiographic inspections verified that all welds complied with ISO 5817:2014 Quality Level C, with only minor, acceptable imperfections.
- 5.
- Process selection recommendations:
- ○
- ARC CF is best suited when maximum joint strength and deep fusion are priorities, but demands careful ferrule handling and spatter control.
- ○
- ARC SG balances adequate penetration and cleaner post-weld surfaces, but requires precise alignment to avoid cold welds.
- ○
- ARC SRM offers the highest process stability and best surface finish with low heat input, making it highly suitable for thin sections or applications sensitive to heat distortion.
- Investigating alternative material combinations and larger stud diameters to validate scalability;
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARC CF | Arc stud welding with ceramic ferrule |
ARC SG | Arc stud welding with shielding gas |
ARC SRM | Arc stud welding with a radially symmetric magnetic field |
RF | Ring ferrule |
SRM | Stud welding with a radially symmetric magnetic field |
HV | Vickers hardness |
DASW | Drawn arc stud welding |
DOE | Design of experiment |
EN ISO | European Standard for Arc Stud Welding of Metallic Materials |
PT | Penetrant testing |
NDT | Non-destructive testing |
HAZ | Heat-affected zone |
MTC | Mill test certificate |
References
- Nishikawa, W. The Principle and Application Field of Stud Welding. Weld. Int. 2003, 17, 699–705. [Google Scholar] [CrossRef]
- Gao, X.; Liu, Y.; Wu, Y.; Zhao, H. A review on arc stud welding technology and its developments. J. Manuf. Process. 2022, 79, 437–449. [Google Scholar] [CrossRef]
- Chi, Q.; Zhang, J.; Fu, J. Development and Application of Arc Stud Welding Technology. Weld. Technol. 2003, 32, 18–20. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, Y.; Ma, D. Stud Welding Technology in Building Engineering (1)—Present Status and Outlook of Stud Welding Technology in Steel Structure Engineering. Steel Constr. 2002, 17, 56–60. [Google Scholar] [CrossRef]
- Köhler, M.; Wieschemann, A.; Dilthey, U. Welding of High-Strength Steels Using Arc Stud Welding Techniques with Process Monitoring. Weld. World 2006, 50, 19–27. [Google Scholar] [CrossRef]
- Szymanski, R.; Gazda, T.; Kozioł, M. Effect of Power Supply and Arc Control on Arc Stud Welding Quality. Weld. Int. 2018, 32, 257–266. [Google Scholar]
- Tanaka, K. Recent Advances in Capacitor Discharge Stud Welding. Weld. World 2018, 62, 357–364. [Google Scholar]
- Hameed, F.H.; Mohamed, M.T.; Sami, A.; Nawi; Gattmah, J. Dissimilar Arc Stud Welding AISI 304/AISI 1008: Mechanical Properties. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1076, 012079. [Google Scholar] [CrossRef]
- Hartz-Behrend, K.; Marqués, J.L.; Forster, G.; Jenicek, A.; Müller, M.; Cramer, H.; Jilg, A.; Soyer, H.; Schein, J. Stud Arc Welding in a Magnetic Field-Investigation of the Influences on the Arc Motion. J. Phys. Conf. Ser. 2014, 550, 012003. [Google Scholar] [CrossRef]
- Jones, J.E.; Rhoades, V.L.; Holverson, T.E.; Cuneo, A.N.; Madden, S.K. Stud Welding System, Consumables, and. Method. Patent PCT/US2012/046743 (WO2013012746A2), 13 July 2012. Available online: https://patentscope.wipo.int/search/en/WO2013012746 (accessed on 23 June 2025). [CrossRef]
- Abass, M.H.; Alali, M.S.; Abbas, W.; Shehab, A.A. Study of solidification behaviour and mechanical properties of arc stud welded AISI 316L stainless steel. J. Achiev. Mater. Manuf. Eng. 2019, 97, 5–14. [Google Scholar] [CrossRef]
- Hsu, C.; Mumaw, J. Weldability of Advanced High-Strength Steel Drawn Arc Stud Welding. Weld. J. 2011, 90, 36–47. [Google Scholar]
- Eyercìoğlu, Ö.; Ucar, T. The effect of arc stud welding parameters on mechanical properties of docol 1500m advanced high strength steel welding joints. Int. J. Res. 2024, 12, 82–98. [Google Scholar]
- Afkhami, S.; Björk, T.; Larkiola, J. Weldability of Cold-Formed High Strength and Ultra-High Strength Steels. J. Constr. Steel Res. 2019, 158, 86–98. [Google Scholar] [CrossRef]
- HRN EN ISO 14555; Welding—Arc Stud Welding of Metallic Materials, 4th ed. Croatian Standards Institute: Zagreb, Croatia, 2017.
- HRN ISO 3452-1; Non-Destructive Testing—Penetrant Testing—Part 1: General Principles. Croatian Standards Institute: Zagreb, Croatia, 2021.
- ISO 5817; Welding—Fusion-Welded Joints in Steel, Nickel, Titanium and Their Alloys—Quality Levels for Imperfections. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 13918; Welding—Studs and Ceramic Ferrules for Arc Stud Welding. International Organization for Standardization: Geneva, Switzerland, 2017.
- DIN EN 10204/3.1; Inspection Certificate. Bolte: Neumark, Germany, 2021.
- Haridas, A.D.B.M.; Asari, R. Drawn Arc Stud Welding—Process Parameters Analysis & Simulation Development. 2020. Available online: https://www.researchgate.net/publication/349238319_Drawn_Arc_Stud_Welding_-Process_Parameters_Analysis_Simulation_Development?channel=doi&linkId=6026354592851c4ed566a055&showFulltext=true (accessed on 23 June 2025). [CrossRef]
- Ghany, A.; Newby, M. Optimization of process parameters for improved stud welding of stainless steel. J. Mater. Process. Technol. 2014, 214, 2428–2435. [Google Scholar]
- Wu, Z.; Guo, X.; Wang, Z. Effect of stud diameter and welding current on the strength of arc stud welds. J. Mater. Process. Technol. 2019, 264, 159–167. [Google Scholar]
- Kumar, S.; Singh, K. Review on quality assurance techniques in arc welding. J. Manuf. Process. 2020, 55, 259–276. [Google Scholar]
- Wang, L.; Zhang, Y.; Sun, Y. Optimization of Drawn Arc Stud Welding for High Strength Steels. Mater. Des. 2021, 198, 109358. [Google Scholar]
- Kankuri, E.; Heljo, J.; Palonen, J.; Kiviranta, L.; Miettunen, K.; Mäki-Jaskari, M. Microstructure and Mechanical Properties of Arc Stud Welded Joint of High-Strength Structural Steel S700MC. Mater. Des. 2021, 200, 109427. [Google Scholar]
- Li, Y.; Liu, Y.; Zhang, Y. Dynamic analysis of arc motion in magnetic field assisted stud welding. Weld. J. 2019, 98, 399s–408s. [Google Scholar]
- Ma, J.; Zhang, Y.; Liu, X. Experimental study on arc blow in arc stud welding. Int. J. Adv. Manuf. Technol. 2018, 95, 2401–240831. [Google Scholar]
- Zhang, J.; Feng, J.; Yang, Z. Heat input and arc stability in gas shielded arc stud welding. Weld. J. 2015, 94, 147s–153s. [Google Scholar]
- Park, J.; Lee, Y.; Kim, S. Influence of Shielding Gas Composition on Stud Weld Quality. J. Mater. Process. Technol. 2019, 271, 136–143. [Google Scholar]
- Chen, L.; Wang, Y.; Li, X. Numerical analysis of temperature field and residual stress in arc stud welding. Int. J. Heat Mass Transf. 2016, 99, 846–854. [Google Scholar]
- Song, J.; Yin, Z.; Xiong, J. Process optimization of short cycle arc stud welding. J. Mater. Process. Technol. 2017, 249, 304–311. [Google Scholar]
- Zhang, Y.; Xu, G.; Liu, J.; Chen, X. Numerical simulation and experimental study of stud welding process for dissimilar metals. J. Mater. Process. Technol. 2017, 245, 107–116. [Google Scholar]
- Gong, S.; Sun, Z.; Chen, W. Effects of welding parameters on weld pool behavior in stud arc welding. Int. J. Adv. Manuf. Technol. 2015, 79, 1579–1587. [Google Scholar]
- Ramasamy, P.; Senthil Kumar, P.; Padmanabhan, K.A. Experimental analysis and microstructure characterization of drawn arc stud welding on high-strength steel. Mater. Des. 2015, 65, 978–987. [Google Scholar]
- Lee, J.; Kim, H. Fatigue Performance of Stud Welded Connections in Composite Structures. Eng. Struct. 2016, 127, 521–530. [Google Scholar]
- Cho, H.; Lee, H.; Bae, J. Numerical and experimental investigation on residual stress in arc stud welded joints. J. Constr. Steel Res. 2017, 136, 78–86. [Google Scholar]
- Liu, X.; Wang, Y.; Ma, J. Residual Stress and Distortion in Stud Welding: Finite Element Analysis and Experimental Verification. Int. J. Adv. Manuf. Technol. 2022, 119, 4299–4311. [Google Scholar]
- Zhang, Y.; Wu, S.; Li, Y. Numerical Simulation of Arc Behavior in Stud Welding Assisted by Magnetic Field. Weld. J. 2017, 96, 93s–101s. [Google Scholar]
- Chen, Q.; Han, J.; Li, Z. Evaluation of fatigue crack propagation in stud welded joints. Int. J. Fatigue 2019, 127, 208–215. [Google Scholar]
Welding Method | Stud Range (Ø mm) | Heat Input & Control | Weld Pool Protection | Surface Sensitivity | Typical Use Cases | Key Advantages | Key Limitations |
---|---|---|---|---|---|---|---|
Lift ignition + ceramic ring/gas | 3–25 | High (up to 2500 A, long time) | Ceramic or shielding gas | Medium (requires clean, rolled) | Thick plates, high-strength joints | Deep penetration, strong joints | Spatter, slow cycle, ferrule handling |
Lift ignition short cycle | 3–12 | Medium (≤1500 A, 5–100 ms) | Optional gas | Moderate (galvanized/lightly oiled OK) | Structural steel, mild automation | Faster, more flexible | Limited to small–medium studs |
Capacitor discharge (lift ignition) | 2–8 | Very short, low energy | None | Low (light oils tolerable) | Thin sheets, electronics | Fastest cycle, minimal heat distortion | Low mechanical strength |
Capacitor discharge (tip ignition) | 2–8 | Ultra-short, very low energy (1–3 ms) | None | High sensitivity (clean only) | Precision devices, low-load joints | Ultra-fast, minimal footprint | Not suitable for load-bearing |
SRM (radial magnetic field + gas) | 3–16 | Controlled (1000 A max, 3–1000 ms) | Magnetic field + shielding gas | Low (clean only) | Automation, clean welds, thin materials | Clean surface, no ceramic, low distortion | Newer method, less industry validation |
S235JR + N | C | Mn | Si | P | S | Al | Cu |
---|---|---|---|---|---|---|---|
Content of chemical elements, % | 0.12 | 0.76 | 0.011 | 0.017 | 0.012 | 0.043 | 0.10 |
- | Cr | Ni | Mo | Ti | V | Nb | N |
Content of chemical elements, % | 0.05 | 0.03 | 0.009 | 0.002 | 0.003 | 0.002 | 0.005 |
Mechanical Properties | |||||||
Testing temperature | 20 °C | ||||||
Yield strength | 302 N/mm2 | ||||||
Tensile strength | 435 N/mm2 | ||||||
Elongation | 32% |
X5CrNi218-10 | C | Mn | Si | P |
---|---|---|---|---|
Content of Chemical elements, % | 0.027 | 1.7 | 0.310 | 0.032 |
- | Cr | Ni | S | N |
Content of chemical elements, % | 18.14 | 8.06 | 0.001 | 0.076 |
Mechanical Properties | ||||
Testing temperature | 20 °C | |||
Conventional yield Strength for permanent deformation 0.2% | 311 N/mm2 | |||
Yield strength | 618 N/mm2 |
Test Sample | Welding Type | Material | Operations | Stud Specification |
---|---|---|---|---|
3-3 | Arc with ceramic ferrule (ARC CF) | Steel 1.0038 | Plasma cutting, grinding, welding | M12 × 30 A2-50 RD + RF 12 (14 pcs) |
3-5 | ARC CF | Steel 1.4301 | - | M12 × 30 A2-50 RD + RF 12 (14 pcs) |
6-3 | Arc with shielding gas (ARC SG) | Steel 1.0038 | - | M12 × 70 A2-50 PD (14 pcs) |
6-5 | ARC SG | Steel 1.4301 | - | M12 × 70 A2-50 PD (14 pcs) |
9-3 | Arc with SRM (ARC SRM) | Steel 1.0038 | - | M12 × 40 A2-50 HZ-1 (14 pcs) |
9-5 | ARC SRM | Steel 1.4301 | - | M12 × 40 A2-50 HZ-1 (14 pcs) |
Sample | Method | Material | Stud | I (A) | L (mm) | P (mm) | tw (ms) | SRM (mA) | Gas Flow |
---|---|---|---|---|---|---|---|---|---|
3-3 | CF | Steel 1.0038 (S235JR + N) | M12 × 70 A2-50 RD | 684 | 1.4 | 3.0 | 390 | - | - |
3-5 | CF | Steel 1.4301 (X5CrNi18-10) | M12 × 70 A2-50 RD | 684 | 1.4 | 3.0 | 390 | - | - |
6-3 | SG | Steel 1.0038 | M12 × 70 A2-50 PD | 760 | 2.1 | 2.0 | 190 | - | 4 L/min |
6-5 | SG | Steel 1.4301 | M12 × 70 A2-50 PD | 772 | 2.0 | 2.0 | 201 | - | 4 L/min |
9-3 | SRM | Steel 1.0038 | M12 × 40 A2-50 HZ-1 | 772 | 1.3 | 3.5 | 200 | 270 | 4 L/min |
9-5 | SRM | Steel 1.4301 | M12 × 40 A2-50 HZ-1 | 772 | 1.3 | 3.5 | 203 | 270 | 4 L/min |
Macro-Section | Welding Type | Material | d [mm] |
---|---|---|---|
3-3 | ARC CF | Steel 1.0038 (S235JR + N) | 2.679 mm |
3-5 | ARC CF | Steel 1.4301 (X5CrNi18-10) | 3.547 mm |
6-3 | ARC SG | Steel 1.0038 (S235JR + N) | 1.632 mm |
6-5 | ARC SG | Steel 1.4301 (X5CrNi18-10) | 2.383 mm |
9-3 | ARC SRM | Steel 1.0038 (S235JR + N) | 2.001 mm |
9-5 | ARC SRM | Steel 1.4301 (X5CrNi18-10) | 1.232 mm |
Area in the Welded Joint | Macro-Section 3-3 | Macro-Section 6-3 | Macro-Section 9-3 |
---|---|---|---|
Base material S235JR + N | 147.8 | 131.3 | 140.6 |
Weld metal | 295.0 | 235.0 | 256.0 |
Base material S235JR + N | 131.2 | 155.2 | 170.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomić, T.; Mihalic, T.; Groš, J.; Vugrinec, L. Experimental Evaluation of Arc Stud Welding Techniques on Structural and Stainless Steel: Effects on Penetration Depth and Weld Quality. Appl. Sci. 2025, 15, 7269. https://doi.org/10.3390/app15137269
Tomić T, Mihalic T, Groš J, Vugrinec L. Experimental Evaluation of Arc Stud Welding Techniques on Structural and Stainless Steel: Effects on Penetration Depth and Weld Quality. Applied Sciences. 2025; 15(13):7269. https://doi.org/10.3390/app15137269
Chicago/Turabian StyleTomić, Tanja, Tihomir Mihalic, Josip Groš, and Lucija Vugrinec. 2025. "Experimental Evaluation of Arc Stud Welding Techniques on Structural and Stainless Steel: Effects on Penetration Depth and Weld Quality" Applied Sciences 15, no. 13: 7269. https://doi.org/10.3390/app15137269
APA StyleTomić, T., Mihalic, T., Groš, J., & Vugrinec, L. (2025). Experimental Evaluation of Arc Stud Welding Techniques on Structural and Stainless Steel: Effects on Penetration Depth and Weld Quality. Applied Sciences, 15(13), 7269. https://doi.org/10.3390/app15137269