A Quantitative Evaluation of UAV Flight Parameters for SfM-Based 3D Reconstruction of Buildings
Abstract
1. Introduction
2. Literature Review
2.1. Acquisition of Building Shape Information
2.2. Structure from Motion (SfM)
2.3. Previous Research on SfM-Based 3D Reconstruction
3. Methodology
4. Validation
4.1. Single Shooting Pattern
4.1.1. Multiple Regression
4.1.2. Kruskal–Wallis Test
4.1.3. Random Forest Feature Importance
4.1.4. Principal Component Analysis and K-Means Clustering
4.1.5. Response Surface Methodology (RSM)
4.1.6. Pareto Optimization of Single Shooting Patterns
4.2. Analysis of Multiple Shooting Patterns
4.2.1. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
4.2.2. Pareto Optimization of Multiple Shooting Patterns
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Pattern | Offset Distance | Radian | Forward Overlap (m) | Side Overlap (m) | Tilt Angle | Reprojection Error | Final Points | Registered Images | Mean Track Length | Point Density | Reconstruction Completeness | Computation Time (min) | Total Features |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Circular | 20 | 10 | - | 1 | 63.4 | 124.3939 | 33,210 | 35 | 90.32 | 0.1267 | 0.9459 | 3.63 | 666 |
Circular | 20 | 20 | - | 1 | 45 | 132.685 | 27,280 | 34 | −1 | 7.6351 | 0.9444 | 4.16 | 618 |
Circular | 40 | 10 | - | 1 | 76 | 126.6485 | 35,120 | 36 | −1 | 0.1714 | 0.9474 | 4.53 | 703 |
Circular | 40 | 20 | - | 1 | 63.4 | 126.058 | 30,303 | 34 | −1 | 1.3026 | 0.9444 | 4.47 | 630 |
Circular | 40 | 30 | - | 1 | 53.1 | 136.3338 | 29,454 | 34 | −1 | 5.2306 | 0.9444 | 4.31 | 630 |
Circular | 40 | 40 | - | 1 | 45 | 136.3338 | 29,454 | 34 | −1 | 5.2306 | 0.9444 | 4.31 | 630 |
Circular | 40 | 50 | - | 1 | 38.7 | 156.2284 | 25,039 | 34 | −1 | 5.0211 | 0.9444 | 8.32 | 549 |
Circular | 60 | 10 | - | 1 | 80.5 | 132.8113 | 34,030 | 34 | 53.72 | 0.0571 | 0.9444 | 6.93 | 630 |
Circular | 60 | 20 | - | 1 | 71.6 | 129.7001 | 34,584 | 34 | 728.14 | 0.8784 | 0.9444 | 6.31 | 630 |
Circular | 60 | 30 | - | 1 | 63.4 | 129.7001 | 34,584 | 34 | 728.14 | 0.8784 | 0.9444 | 6.31 | 630 |
Circular | 60 | 40 | - | 1 | 56.3 | 143.3672 | 33,524 | 34 | −1 | 6.9719 | 0.9444 | 5.08 | 630 |
Circular | 60 | 50 | - | 1 | 50.2 | 152.4983 | 31,645 | 34 | −1 | 4.5198 | 0.9444 | 4.78 | 622 |
Circular | 80 | 20 | - | 1 | 76 | 130.3469 | 36,155 | 34 | 144.44 | 0.5553 | 0.9444 | 7.7 | 630 |
Circular | 80 | 30 | - | 1 | 69.4 | 135.738 | 37,659 | 34 | 568.94 | 1.3056 | 0.9444 | 5.54 | 630 |
Circular | 80 | 40 | - | 1 | 63.4 | 145.7929 | 35,092 | 34 | −1 | 4.1629 | 0.9444 | 4.78 | 630 |
Circular | 80 | 50 | - | 1 | 58 | 145.7929 | 35,092 | 34 | −1 | 4.1629 | 0.9444 | 4.78 | 630 |
Surface | 10 | - | 1 | 1 | 0 | 126.2504 | 244,956 | 386 | 11459.98 | 0.0266 | 0.9948 | 30.12 | 47,431 |
Surface | 10 | - | 1 | 1 | 15 | 126.2504 | 244,956 | 386 | 11,459.98 | 0.0266 | 0.9948 | 30.12 | 47,431 |
Surface | 10 | - | 1 | 1 | 30 | 116.0709 | 260,805 | 385 | 10,790.98 | 0.0258 | 0.9948 | 32.95 | 49,122 |
Surface | 10 | - | 1 | 1 | 45 | 103.7865 | 250,460 | 381 | 6348.13 | 0.024 | 0.9948 | 23.62 | 53,334 |
Surface | 10 | - | 1 | 2 | 0 | 136.0838 | 136,274 | 205 | 7161.62 | 0.0479 | 0.9903 | 25.58 | 13,152 |
Surface | 10 | - | 1 | 2 | 15 | 132.4321 | 130,594 | 200 | 4092.17 | 0.0211 | 0.9901 | 29.47 | 12,335 |
Surface | 10 | - | 1 | 2 | 30 | 122.4061 | 139,154 | 199 | 3241.23 | 0.0278 | 0.99 | 33.62 | 12,739 |
Surface | 10 | - | 1 | 2 | 45 | 108.9702 | 142,087 | 197 | 2155.59 | 0.0266 | 0.99 | 24.24 | 14,054 |
Surface | 10 | - | 1 | 4 | 0 | 139.8755 | 70,166 | 109 | 2547.65 | 0.0336 | 0.982 | 25.25 | 3696 |
Surface | 10 | - | 1 | 4 | 15 | 138.2702 | 64,126 | 106 | 1702.08 | 0.0134 | 0.9815 | 29.53 | 3441 |
Surface | 10 | - | 1 | 4 | 30 | 138.2702 | 64,126 | 106 | 1702.08 | 0.0134 | 0.9815 | 29.53 | 3441 |
Surface | 10 | - | 1 | 4 | 45 | 112.5045 | 80,870 | 109 | 210.86 | 0.0403 | 0.982 | 26.6 | 4193 |
Surface | 10 | - | 2 | 1 | 0 | 134.116 | 119,438 | 192 | 2777.12 | 0.0187 | 0.9897 | 30.15 | 11,767 |
Surface | 10 | - | 2 | 1 | 15 | 134.116 | 119,438 | 192 | 2777.12 | 0.0187 | 0.9897 | 30.15 | 11,767 |
Surface | 10 | - | 2 | 1 | 30 | 122.886 | 129,485 | 192 | 1215.99 | 0.0219 | 0.9897 | 33.61 | 12,224 |
Surface | 10 | - | 2 | 1 | 45 | 108.5725 | 134,300 | 190 | 1124.01 | 0.0449 | 0.9896 | 24.91 | 13,288 |
Surface | 10 | - | 2 | 2 | 0 | 143.9869 | 56,231 | 102 | 1204.69 | 0.0249 | 0.9808 | 26.84 | 3251 |
Surface | 10 | - | 2 | 2 | 15 | 142.6184 | 50,242 | 97 | 1016.29 | 0.0074 | 0.9798 | 30.62 | 2939 |
Surface | 10 | - | 2 | 2 | 30 | 129.0874 | 55,608 | 99 | 437.28 | 0.0121 | 0.9802 | 35.09 | 3188 |
Surface | 10 | - | 2 | 2 | 45 | 112.254 | 65,824 | 98 | 393.11 | 0.0138 | 0.98 | 25.18 | 3479 |
Surface | 10 | - | 2 | 4 | 0 | 148.5389 | 23,576 | 54 | 313.27 | 0.0263 | 0.9643 | 26.57 | 923 |
Surface | 10 | - | 2 | 4 | 15 | 150.365 | 18,565 | 52 | 325.12 | 0.0052 | 0.9811 | 30.89 | 804 |
Surface | 10 | - | 2 | 4 | 30 | 188.2078 | 332 | 65 | −1 | 1.2115 | 0.9811 | 24.01 | 918 |
Surface | 10 | - | 2 | 4 | 45 | 114.8124 | 28,820 | 54 | −1 | 0.0325 | 0.9643 | 27.65 | 1016 |
Surface | 10 | - | 4 | 1 | 0 | 145.3158 | 57,307 | 101 | 1974.9 | 0.0486 | 0.9806 | 25.25 | 3185 |
Surface | 10 | - | 4 | 1 | 15 | 141.8635 | 50,919 | 95 | 242.25 | 0.0085 | 0.9794 | 31.21 | 2910 |
Surface | 10 | - | 4 | 1 | 30 | 128.4746 | 55,605 | 95 | −1 | 0.0147 | 0.9794 | 34.81 | 3044 |
Surface | 10 | - | 4 | 1 | 45 | 112.2702 | 64,456 | 94 | −1 | 0.0522 | 0.9792 | 25.68 | 3322 |
Surface | 10 | - | 4 | 2 | 0 | 151.6473 | 17,177 | 46 | −1 | 0.0119 | 0.9388 | 33.56 | 720 |
Surface | 10 | - | 4 | 2 | 15 | 151.6473 | 17,177 | 46 | −1 | 0.0119 | 0.9388 | 33.56 | 720 |
Surface | 10 | - | 4 | 2 | 30 | 136.0137 | 18,479 | 47 | −1 | 0.0102 | 0.94 | 38.04 | 778 |
Surface | 10 | - | 4 | 2 | 45 | 113.4647 | 26,665 | 50 | −1 | 0.0172 | 0.9615 | 26.38 | 907 |
Surface | 10 | - | 4 | 4 | 0 | 157.4342 | 6518 | 24 | −1 | 0.0079 | 0.8889 | 33.18 | 199 |
Surface | 10 | - | 4 | 4 | 15 | 158.6881 | 4880 | 24 | −1 | 0.0047 | 0.8889 | 37.25 | 204 |
Surface | 10 | - | 4 | 4 | 30 | 164.5591 | 279 | 30 | −1 | 0.2522 | 0.8889 | 26.62 | 216 |
Surface | 10 | - | 4 | 4 | 45 | 114.8897 | 9687 | 27 | −1 | 0.1767 | 0.931 | 28.06 | 261 |
Surface | 20 | - | 1 | 1 | 0 | 117.4807 | 215,946 | 370 | 37,253.42 | 0.0477 | 0.9946 | 8.71 | 62,637 |
Surface | 20 | - | 1 | 1 | 15 | 110.8154 | 230,876 | 369 | 35,045.16 | 0.0523 | 0.9946 | 13.14 | 61,923 |
Surface | 20 | - | 1 | 1 | 30 | 91.6698 | 228,508 | 372 | 26,412.67 | 0.0347 | 0.9947 | 21.69 | 58,153 |
Surface | 20 | - | 1 | 1 | 45 | 76.4481 | 205,333 | 370 | 12,493.58 | 0.0579 | 0.9946 | 13.54 | 59,541 |
Surface | 20 | - | 1 | 2 | 0 | 122.3159 | 136,409 | 192 | 19,439.12 | 0.0409 | 0.9897 | 9.34 | 16,750 |
Surface | 20 | - | 1 | 2 | 15 | 116.0804 | 145,108 | 194 | 17,347.84 | 0.0382 | 0.9898 | 13.98 | 17,057 |
Surface | 20 | - | 1 | 2 | 30 | 96.3049 | 143,972 | 194 | 18,102.06 | 0.0754 | 0.9898 | 22.33 | 15,841 |
Surface | 20 | - | 1 | 2 | 45 | 81.1682 | 128,709 | 192 | 5803.54 | 0.1279 | 0.9897 | 13.69 | 16,014 |
Surface | 20 | - | 1 | 4 | 0 | 126.8276 | 82,441 | 104 | 8368.59 | 0.0483 | 0.9811 | 10.37 | 4833 |
Surface | 20 | - | 1 | 4 | 15 | 119.8551 | 88,141 | 106 | 7969.87 | 0.0305 | 0.9815 | 14.7 | 5044 |
Surface | 20 | - | 1 | 4 | 30 | 100.445 | 88,680 | 104 | 7972.34 | 0.0315 | 0.9811 | 23.04 | 4495 |
Surface | 20 | - | 1 | 4 | 45 | 85.6205 | 79,142 | 103 | 1971.81 | 0.0634 | 0.981 | 14.11 | 4619 |
Surface | 20 | - | 2 | 1 | 0 | 122.6949 | 12,4828 | 184 | 15,036.38 | 0.031 | 0.9892 | 9.13 | 15,618 |
Surface | 20 | - | 2 | 1 | 15 | 122.6949 | 12,4828 | 184 | 15,036.38 | 0.031 | 0.9892 | 9.13 | 15,618 |
Surface | 20 | - | 2 | 1 | 30 | 96.2432 | 13,4237 | 185 | 6888.16 | 0.0652 | 0.9893 | 21.78 | 14,467 |
Surface | 20 | - | 2 | 1 | 45 | 96.2432 | 13,4237 | 185 | 6888.16 | 0.0652 | 0.9893 | 21.78 | 14,467 |
Surface | 20 | - | 2 | 2 | 0 | 128.8887 | 72,343 | 95 | 5084.25 | 0.0244 | 0.9794 | 10 | 4155 |
Surface | 20 | - | 2 | 2 | 15 | 122.0118 | 74,507 | 96 | 2119.56 | 0.0214 | 0.9796 | 14.06 | 4251 |
Surface | 20 | - | 2 | 2 | 30 | 109.8035 | 3679 | 159 | −1 | 1.5683 | 0.9796 | 8.19 | 3907 |
Surface | 20 | - | 2 | 2 | 45 | 85.1361 | 72,991 | 95 | −1 | 0.0514 | 0.9794 | 14.24 | 3967 |
Surface | 20 | - | 2 | 4 | 0 | 136.5335 | 36,370 | 52 | 3465.17 | 0.0112 | 0.963 | 11.53 | 1229 |
Surface | 20 | - | 2 | 4 | 15 | 128.4041 | 38,392 | 52 | 1159.09 | 0.0525 | 0.963 | 15.38 | 1247 |
Surface | 20 | - | 2 | 4 | 30 | 110.1034 | 3558 | 114 | −1 | 1.6157 | 0.963 | 4.94 | 1101 |
Surface | 20 | - | 2 | 4 | 45 | 89.1996 | 39,466 | 51 | −1 | 0.0253 | 0.9623 | 15.25 | 1155 |
Surface | 20 | - | 4 | 1 | 0 | 130.3841 | 69,471 | 91 | 4512.23 | 0.0787 | 0.9785 | 9.49 | 3859 |
Surface | 20 | - | 4 | 1 | 15 | 122.3447 | 70,516 | 91 | 4758.61 | 0.0285 | 0.9785 | 13.88 | 3848 |
Surface | 20 | - | 4 | 1 | 30 | 100.5156 | 77,388 | 92 | 1705.85 | 0.0636 | 0.9787 | 22.62 | 3613 |
Surface | 20 | - | 4 | 1 | 45 | 84.5974 | 70,656 | 91 | −1 | 0.0534 | 0.9785 | 14.6 | 3690 |
Surface | 20 | - | 4 | 2 | 0 | 136.5941 | 35,242 | 47 | 714.78 | 0.0711 | 0.9592 | 10.63 | 1041 |
Surface | 20 | - | 4 | 2 | 15 | 128.3716 | 33,188 | 46 | −1 | 0.031 | 0.9583 | 14.94 | 997 |
Surface | 20 | - | 4 | 2 | 30 | 128.3716 | 33,188 | 46 | −1 | 0.031 | 0.9583 | 14.94 | 997 |
Surface | 20 | - | 4 | 2 | 45 | 88.1287 | 39,462 | 48 | −1 | 0.0935 | 0.96 | 15.4 | 1026 |
Surface | 20 | - | 4 | 4 | 0 | 147.6474 | 12,580 | 25 | 14.04 | 0.0349 | 0.9259 | 14.69 | 297 |
Surface | 20 | - | 4 | 4 | 15 | 139.5202 | 12,650 | 25 | −1 | 0.0108 | 0.9259 | 19.01 | 303 |
Surface | 20 | - | 4 | 4 | 30 | 111.5926 | 13,406 | 24 | 544.54 | 0.0399 | 0.9231 | 27.23 | 256 |
Surface | 20 | - | 4 | 4 | 45 | 111.5926 | 13,406 | 24 | 544.54 | 0.0399 | 0.9231 | 27.23 | 256 |
Surface | 30 | - | 1 | 1 | 0 | 99.8357 | 140,081 | 229 | 14,082.35 | 0.0318 | 0.9913 | 3.08 | 26,561 |
Surface | 30 | - | 1 | 1 | 15 | 99.5791 | 133,387 | 229 | 18,462.12 | 0.0218 | 0.9913 | 4.64 | 26,454 |
Surface | 30 | - | 1 | 1 | 30 | 95.0395 | 135,652 | 229 | 9239.27 | 0.0454 | 0.9913 | 10.87 | 24,852 |
Surface | 30 | - | 1 | 1 | 45 | 91.6557 | 123,570 | 228 | 13,476.39 | 0.1231 | 0.9913 | 5.82 | 24,920 |
Surface | 30 | - | 1 | 2 | 0 | 103.9715 | 88,734 | 119 | 7106.93 | 0.0118 | 0.9835 | 3.2 | 7260 |
Surface | 30 | - | 1 | 2 | 15 | 104.1194 | 85,163 | 119 | 14,956.72 | 0.0212 | 0.9835 | 4.84 | 7231 |
Surface | 30 | - | 1 | 2 | 30 | 104.1194 | 85,163 | 119 | 14,956.72 | 0.0212 | 0.9835 | 4.84 | 7231 |
Surface | 30 | - | 1 | 2 | 45 | 104.1194 | 85,163 | 119 | 14,956.72 | 0.0212 | 0.9835 | 4.84 | 7231 |
Surface | 30 | - | 1 | 4 | 0 | 108.0496 | 51,259 | 64 | 19.77 | 0.0236 | 0.9697 | 3.73 | 2145 |
Surface | 30 | - | 1 | 4 | 15 | 109.498 | 49,515 | 64 | 7069.7 | 0.0138 | 0.9697 | 5.79 | 2126 |
Surface | 30 | - | 1 | 4 | 30 | 109.498 | 49,515 | 64 | 7069.7 | 0.0138 | 0.9697 | 5.79 | 2126 |
Surface | 30 | - | 1 | 4 | 45 | 100.0733 | 44,627 | 63 | 1800.06 | 0.085 | 0.9692 | 6.72 | 1929 |
Surface | 30 | - | 2 | 1 | 0 | 103.3338 | 83,067 | 114 | 5171.95 | 0.0283 | 0.9828 | 3.19 | 6670 |
Surface | 30 | - | 2 | 1 | 15 | 103.6918 | 79,677 | 114 | 5787.55 | 0.0381 | 0.9828 | 4.82 | 6644 |
Surface | 30 | - | 2 | 1 | 30 | 98.3177 | 80,441 | 114 | 2173.11 | 0.1169 | 0.9828 | 11.35 | 6229 |
Surface | 30 | - | 2 | 1 | 45 | 95.1229 | 72,872 | 113 | 3914.18 | 0.0355 | 0.9826 | 6.06 | 6184 |
Surface | 30 | - | 2 | 2 | 0 | 107.1248 | 56,041 | 64 | 869.59 | 0.044 | 0.9697 | 3.9 | 2145 |
Surface | 30 | - | 2 | 2 | 15 | 107.5477 | 54,533 | 64 | 4926.83 | 0.0808 | 0.9697 | 5.96 | 2129 |
Surface | 30 | - | 2 | 2 | 30 | 101.0973 | 53,221 | 64 | 564.33 | 0.0852 | 0.9697 | 13.67 | 1936 |
Surface | 30 | - | 2 | 2 | 45 | 98.0697 | 42,136 | 55 | 2619.23 | 0.0993 | 0.9649 | 6.23 | 1502 |
Surface | 30 | - | 2 | 4 | 0 | 112.9791 | 27,057 | 34 | 813.64 | 0.0393 | 0.9444 | 5.08 | 630 |
Surface | 30 | - | 2 | 4 | 15 | 112.9791 | 27,057 | 34 | 813.64 | 0.0393 | 0.9444 | 5.08 | 630 |
Surface | 30 | - | 2 | 4 | 30 | 107.305 | 25,475 | 34 | 36.11 | 0.0934 | 0.9444 | 13.86 | 565 |
Surface | 30 | - | 2 | 4 | 45 | 101.7301 | 21,249 | 29 | 743.06 | 0.045 | 0.9355 | 8.09 | 433 |
Surface | 30 | - | 4 | 1 | 0 | 109.4827 | 42,376 | 56 | 3125.72 | 0.0301 | 0.9655 | 3.93 | 1653 |
Surface | 30 | - | 4 | 1 | 15 | 109.7895 | 42,050 | 56 | 1420.88 | 0.0842 | 0.9655 | 5.67 | 1641 |
Surface | 30 | - | 4 | 1 | 30 | 102.0954 | 41,935 | 56 | 1342.17 | 0.0246 | 0.9655 | 12.34 | 1541 |
Surface | 30 | - | 4 | 1 | 45 | 98.4708 | 39,761 | 56 | 1560.79 | 0.0126 | 0.9655 | 6.68 | 1557 |
Surface | 30 | - | 4 | 2 | 0 | 113.9939 | 23,814 | 31 | 793.3 | 0.0378 | 0.9394 | 5.57 | 528 |
Surface | 30 | - | 4 | 2 | 15 | 113.9939 | 23,814 | 31 | 793.3 | 0.0378 | 0.9394 | 5.57 | 528 |
Surface | 30 | - | 4 | 2 | 30 | 106.3159 | 23,281 | 31 | −1 | 0.0415 | 0.9394 | 14.87 | 473 |
Surface | 30 | - | 4 | 2 | 45 | 100.9601 | 19,539 | 27 | 725.38 | 0.0712 | 0.931 | 8.12 | 383 |
Surface | 30 | - | 4 | 4 | 0 | 117.2254 | 11,803 | 16 | −1 | 0.016 | 0.8889 | 11.52 | 153 |
Surface | 30 | - | 4 | 4 | 15 | 120.2272 | 11,648 | 16 | −1 | 0.0345 | 0.8889 | 16.56 | 152 |
Surface | 30 | - | 4 | 4 | 30 | 110.2882 | 12,756 | 16 | −1 | 0.0205 | 0.8889 | 24.48 | 138 |
Surface | 30 | - | 4 | 4 | 45 | 102.0131 | 12,644 | 16 | −1 | 0.0763 | 0.8889 | 18.72 | 139 |
Aerial | 20 | - | 1 | 1 | 60 | 95.2114 | 80,012 | 118 | 632.21 | 0.2456 | 0.9752 | 10.19 | 4108 |
Aerial | 40 | - | 1 | 1 | 75 | 95.6289 | 31,755 | 44 | −1 | 3.0771 | 0.9565 | 4.57 | 904 |
References
- Madureira, S.; Flores-Colen, I.; de Brito, J.; Pereira, C. Maintenance planning of facades in current buildings. Constr. Build. Mater. 2017, 147, 790–802. [Google Scholar] [CrossRef]
- Yang, D.Y.; Frangopol, D.M. Risk-based inspection planning of deteriorating structures. Struct. Infrastruct. Eng. 2021, 18, 109–128. [Google Scholar] [CrossRef]
- Fregonara, E.; Ferrando, D.G. The Stochastic Annuity Method for Supporting Maintenance Costs Planning and Durability in the Construction Sector: A Simulation on a Building Component. Sustainability 2020, 12, 2909. [Google Scholar] [CrossRef]
- Dias, I.S.; Flores-Colen, I.; Silva, A. Critical Analysis about Emerging Technologies for Building’s Façade Inspection. Buildings 2021, 11, 53. [Google Scholar] [CrossRef]
- Yoon, J.; Shin, H.; Kim, K.; Lee, S. CNN- and UAV-Based Automatic 3D Modeling Methods for Building Exterior Inspection. Buildings 2024, 14, 5. [Google Scholar] [CrossRef]
- Cho, S.-H.; Lee, K.-T.; Kim, S.-H.; Kim, J.-H. Image Processing for Sustainable Remodeling: Introduction to Real-time Quality Inspection System of External Wall Insulation Works. Sustainability 2019, 11, 1081. [Google Scholar] [CrossRef]
- Dixit, I.; Dunne, C.; Blumer, P.; Logan, C.; Prakitpong, R.; Krebs, C. The best of each capture—the combination of 3D laser scanning with photogrammetry for optimized digital anatomy specimens. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, C.; Jiang, W. Efficient structure from motion for large-scale UAV images: A review and a comparison of SfM tools. ISPRS J. Photogramm. Remote Sens. 2020, 167, 230–251. [Google Scholar] [CrossRef]
- Qu, C.-X.; Jiang, J.-Z.; Yi, T.-H.; Li, H.-N. Computer vision-based 3D coordinate acquisition of surface feature points of building structures. Eng. Struct. 2024, 300, 117212. [Google Scholar] [CrossRef]
- Gao, L.; Zhao, Y.; Han, J.; Liu, H. Research on Multi-View 3D Reconstruction Technology Based on SFM. Sensors 2022, 22, 4366. [Google Scholar] [CrossRef] [PubMed]
- Filatov, A.; Zaslavskiy, M.; Krinkin, K. Multi-Drone 3D Building Reconstruction Method. Mathematics 2021, 9, 303. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, W.; Liu, C. Model-Based Multi-Uav Path Planning For High-Quality 3d Reconstruction Of Buildings. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-1-W2-2023, ISPRS Geospatial Week 2023, Cairo, Egypt, 2–7 September 2023; pp. 1923–1928. [Google Scholar] [CrossRef]
- Abuhussain, M.A.; Waqar, A.; Khan, A.M.; Othman, I.; Alotaibi, B.S.; Althoey, F.; Abuhussain, M. Integrating Building Information Modeling (BIM) for optimal lifecycle management of complex structures. Structures 2024, 60, 105831. [Google Scholar] [CrossRef]
- Carrera-Hernández, J.J.; Levresse, G.; Lacan, P. Is UAV-SfM surveying ready to replace traditional surveying techniques? Int. J. Remote Sens. 2020, 41, 4820–4837. [Google Scholar] [CrossRef]
- Al-Temeemy, A.A.; Al-Saqal, S.A. Laser-based structured light technique for 3D reconstruction using Extreme Laser stripes extraction method with global information extraction. Opt. Laser Technol. 2021, 138, 106897. [Google Scholar] [CrossRef]
- Vacca, G. 3D Survey with Apple LiDAR Sensor—Test and Assessment for Architectural and Cultural Heritage. Heritage 2023, 6, 1476–1501. [Google Scholar] [CrossRef]
- Rocchini, C.; Cignoni, P.; Montani, C.; Pingi, P.; Scopigno, R. A low cost 3D scanner based on structured light. Comput. Graph. Forum. 2001, 20, 299–308. [Google Scholar] [CrossRef]
- Eulitz, M.; Reiss, G. 3D reconstruction of SEM images by use of optical photogrammetry software. J. Struct. Biol. 2015, 191, 190–196. [Google Scholar] [CrossRef]
- Li, Q.; Yang, G.; Gao, C.; Huang, Y.; Zhang, J.; Huang, D.; Zhao, B.; Chen, X.; Chen, B.M. Single drone-based 3D reconstruction approach to improve public engagement in conservation of heritage buildings: A case of Hakka Tulou. J. Build. Eng. 2024, 87, 108954. [Google Scholar] [CrossRef]
- Wudunn, M.; Zakhor, A.; Touzani, S.; Granderson, J. Aerial 3d building reconstruction from rgb drone imagery. Geospat. Inform. X 2020, 11398, 9–19. [Google Scholar] [CrossRef]
- Argyriou, L.; Economou, D.; Bouki, V. Design methodology for 360° immersive video applications: The case study of a cultural heritage virtual tour. Pers. Ubiquitous Comput. 2020, 24, 843–859. [Google Scholar] [CrossRef]
- Anwar, M.S.; Wang, J.; Ullah, A.; Khan, W.; Ahmad, S.; Fei, Z. Measuring quality of experience for 360-degree videos in virtual reality. Sci. China Inf. Sci. 2020, 63, 202301. [Google Scholar] [CrossRef]
- Yu, J.; Yin, W.; Hu, Z.; Liu, Y. 3D Reconstruction for Multi-view Objects. Comput. Electr. Eng. 2023, 106, 108567. [Google Scholar] [CrossRef]
- Gong, Y.; Zhou, P.; Liu, C.; Yu, Y.; Yao, J.; Yuan, W.; Li, L. A cluster-based disambiguation method using pose consistency verification for structure from motion. ISPRS J. Photogramm. Remote Sens. 2024, 209, 398–414. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.; Liu, N.; Wang, X.; Xu, J. 3D Object Recognition and Pose Estimation From Point Cloud Using Stably Observed Point Pair Feature. IEEE Access 2020, 8, 44335–44345. [Google Scholar] [CrossRef]
- Bao, Y.; Lin, P.; Li, Y.; Qi, Y.; Wang, Z.; Du, W.; Fan, Q. Parallel Structure from Motion for Sparse Point Cloud Generation in Large-Scale Scenes. Sensors 2021, 21, 3939. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Lei, Z. Fast SIFT Feature Matching Algorithm Based on Geometric Transformation. IEEE Access 2020, 8, 88133–88140. [Google Scholar] [CrossRef]
- Tahri, O.; Boutat, D.; Mezouar, Y. Brunovsky’s Linear Form of Incremental Structure From Motion. IEEE Trans. Robot. 2017, 33, 1491–1499. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, S.; Shen, T.; Zhou, L.; Luo, Z.; Fang, T.; Quan, L. Distributed Very Large Scale Bundle Adjustment by Global Camera Consensus. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 291–303. [Google Scholar] [CrossRef]
- Qi, Y.; Su, W.; Xu, Q.; Tao, W. Sparse prior guided deep multi-view stereo. Comput. Graph. 2022, 107, 1–9. [Google Scholar] [CrossRef]
- Stathopoulou, E.K.; Remondino, F. A survey on conventional and learning-based methods for multi-view stereo. Photogramm. Rec. 2023, 38, 374–407. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, F.; Su, W.; Qi, Y.; Tao, W. Geometric Prior-Guided Self-Supervised Learning for Multi-View Stereo. Remote Sens. 2023, 15, 2109. [Google Scholar] [CrossRef]
- Vogiatzis, G.; Hernández, C. Video-based, real-time multi-view stereo. Image Vis. Comput. 2011, 29, 434–441. [Google Scholar] [CrossRef]
- Yan, S.; Peng, Y.; Wang, G.; Lai, S.; Zhang, M. Weakly Supported Plane Surface Reconstruction via Plane Segmentation Guided Point Cloud Enhancement. IEEE Access 2020, 8, 60491–60504. [Google Scholar] [CrossRef]
- Stathopoulou, E.-K.; Welponer, M.; Remondino, F. Open-source image-based 3d reconstruction pipelines: Review, comparison and evaluation. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2-W17, ISPRS TC II 6th International Workshop LowCost 3D—Sensors, Algorithms, Applications, Strasbourg, France, 2–3 December 2019; Volume XLII-2/W17, pp. 331–338. [Google Scholar] [CrossRef]
- Pepe, M.; Alfio, V.S.; Costantino, D. UAV Platforms and the SfM-MVS Approach in the 3D Surveys and Modelling: A Review in the Cultural Heritage Field. Appl. Sci. 2022, 12, 12886. [Google Scholar] [CrossRef]
- Ham, Y.; Michalkiewicz, M.; Balakrishnan, G. DRAGON: Drone and Ground Gaussian Splatting for 3D Building Reconstruction. In Proceedings of the IEEE International Conference on Computational Photography (ICCP), Lausanne, Switzerland, 22–24 July 2024; pp. 1–12. [Google Scholar] [CrossRef]
Feature | Incremental SfM | Global SfM | Latest Trends |
---|---|---|---|
Accuracy | Generally high | Initially low, improving | Aims for incremental SfM level or higher |
Robustness | High (Iterative RANSAC/BA) | Low (Outlier sensitive, Weak translation averaging) | Aims for incremental SfM robustness |
Scalability | Low (Sequential, Iterative BA) | High (Parallelizable) | Maintains high scalability |
Cost | High (Repeated BA) | Low (Fewer BA) | Maintains low cost (Faster than incremental) |
Error Accum. | Possible (Drift) | Relatively low | Suppressed by global approach |
Challenges | Cost, Drift | Translation avg. instability, Outlier sensitivity | Solving translation avg., Ensuring robustness |
Implement. | COLMAP | Theia, OpenMVG | GLOMAP |
Pattern Type | Key Variables | Parameter Range/Values | Notes |
---|---|---|---|
Circular | Altitude (AGL) | 20~80 m (relative to rooftop) | Tilt angle oriented towards building center |
Radius (B-Rad) | 10~50 m (from center point) | ||
Tilt Angle | adjusted to face center | ||
Surface | Distance (A-Offset) | 10~30 m | Designed for facade scanning |
Forward Overlap | 1 m, 2 m, 4 m | ||
Side Overlap | 1 m, 2 m, 4 m | ||
Tilt Angle | 0°, 15°, 30°, 45° | ||
Aerial | Altitude (AGL) | 20 m, 40 m | Nadir/Oblique grid pattern |
Overlap (Forward/Side) | Fixed at 80% | ||
Tilt Angle | 60°~75° | ||
All Patterns | Positioning Accuracy (GNSS-RTK) | Horizontal and Vertical < 2~3 cm | Verified via pre-flight simulation |
Category | Parameter | Specification/Value | Purpose/Note |
---|---|---|---|
Hardware | UAV Model | DJI Mavic 3 Enterprise | Commercial-grade drone |
Sensor Resolution | 5280 × 3956 pixels (~20.9 MP) | High-resolution imaging | |
Focal Length | 12.3 mm (24 mm equiv.) | Wide-angle lens suitable for facade mapping | |
Aperture | F/2.8 (fixed) | Balance light intake and depth of field | |
Camera Settings | Shutter Speed | 1/2000 s | Minimize motion blur during flight |
ISO | 400 | Fixed to maintain consistent noise levels | |
Color Space | sRGB | Standard color representation | |
White Balance | Manual | Ensure color consistency | |
Exposure Mode | Manual | Consistent exposure across images | |
Exposure Compensation | 0 EV | No automatic brightness adjustment | |
Environmental Conditions | Lighting | Overcast sky, <20,000 lux | Minimize shadows and harsh lighting variations |
Weather | No direct sunlight, cloudy | Consistent ambient lighting | |
Data Acquisition Summary | Target Building | Similar characteristics to apartment buildings | Representative structure |
Total Flight Paths | 126 | Covering diverse scenarios | |
Avg. Flight Time per Path | ~10 min | ||
Total Images Collected | 13,416 | Sufficient data for analysis | |
Image Format | JPEG | Common image format | |
Average File Size | ~7.8 MB per image | ||
Metadata Recorded | Timestamp, GPS Coordinates, Camera Model, Exposure Info, etc. | Essential for processing and analysis reproducibility |
Shooting Pattern | Surface | Circular | ||||||
---|---|---|---|---|---|---|---|---|
Dependent Variable | Final Points | Reconstruction Completeness | Reprojection Error | Computation Time | Final Points | Reconstruction Completeness | Reprojection Error | Computation Time |
Adj R-squared | 0.6960 | 0.7620 | 0.3780 | 0.0150 | 0.7750 | 0.4930 | 0.7520 | −0.0400 |
Prob | 0.0000 | 0.0000 | 0.0000 | 0.2110 | 0.0001 | 0.0105 | 0.0002 | 0.5140 |
Coef Intercept | 211,300 | 1 | 112 | 12 | 14,250 | 1 | 112 | 7 |
Prob Intercept | 0.000 | 0.000 | 0.000 | 0.000 | 0.104 | 0.000 | 0.000 | 0.353 |
Coef Forward Overlap | −30,560 | −0.0150 | 3.8176 | 1.2686 | 0.4770 | −0.0001 | −0.0589 | 0.0471 |
Prob Forward Overlap | 0.0000 | 0.0000 | 0.0020 | 0.1070 | 50.637 | 0.0070 | 0.7570 | 0.4010 |
Coef Side Overlap | −27,830 | −0.0126 | 4.2159 | 0.5805 | 0.6550 | 0.0001 | 0.6943 | −0.0399 |
Prob Side Overlap | 0.0000 | 0.0000 | 0.0010 | 0.4580 | 236.21 | 0.0420 | 0.0520 | 0.6770 |
Coef Tilt angle | −11.886 | 0.0000 | −0.6057 | 0.0683 | 0.1020 | 0.0001 | 0.1200 | −0.0429 |
Prob Tilt angle | 0.9520 | 0.7320 | 0.0000 | 0.2420 | 47.058 | 0.0110 | 0.7620 | 0.7100 |
Dependent Variable | Kruskal–Wallis (H) | Kruskal–Wallis (p) |
---|---|---|
Reprojection Error | 20.2338 | 0.0001 |
Final Points | 7.4992 | 0.0235 |
Computation Time | 25.8498 | 0.0001 |
Reconstruction Completeness | 15.7081 | 0.0004 |
Shooting Type | Dependent Variable | 1st Feature (Importance≈) | 2nd Feature (Importance≈) | 3rd Feature (Importance≈) | Importance Distribution |
---|---|---|---|---|---|
Circular | Computation Time | Tilt angle (0.59) | Distance (0.30) | Radian (0.12) | High-Mid-Low |
Final Points | Tilt angle (0.71) | Distance (0.22) | Radian (0.07) | High-Mid-Low | |
Reconstruction Completeness | Radian (0.60) | Distance (0.28) | Tilt angle (0.14) | High-Mid-Low | |
Reprojection Error | Radian (0.82) | Tilt angle (0.12) | Distance (0.06) | Very High Dominance | |
Surface | Computation Time | Tilt angle (0.39) | Forward overlap (0.31) | Side overlap (0.30) | Similar High-Mid |
Final Points | Forward Overlap (0.52) | Side overlap (0.45) | Tilt angle (0.03) | Two High, One Low | |
Reconstruction Completeness | Forward Overlap (0.50) | Side overlap (0.46) | Tilt angle (0.04) | Two High, One Low | |
Reprojection Error | Tilt angle (0.59) | Side overlap (0.21) | Forward overlap (0.20) | High, Two Mid |
Principal Component | Individual Explained Variance (%) | Cumulative Explained Variance (%) |
---|---|---|
PC1 | 43.5 | 43.5 |
PC2 | 22.6 | 66.1 |
PC3 | 16.8 | ≈82.8 |
Analysis Combination | Adjusted R2 | Key Feature of Response Surface/Contour | Key Implication |
---|---|---|---|
Circular: Final Points vs. (Offset, Tilt angle) | 0.876 | Gentle ridge shape, points tend to increase towards top-right (high values) | Tilt angle influence relatively large; optimum for max points found |
Circular: Reprojection Error vs. (Radian, Tilt angle) | 0.856 | Elliptical valley shape, error minimum in specific zone (Brad ≈ 10–15 m, Tilt ≈ 55–65°) | Interaction effect is important; identifies ‘sweet spot’ for min error |
Surface: Computation Time vs. (Forward Overlap, Side Overlap) | 0.003 | Parallel straight contours, time increases linearly as overlap decreases (overlap area increases) | Increased overlap causes more computation time; model fit very low |
Surface: Final Points vs. (Forward Overlap, Tilt angle) | 0.422 | Nearly vertical contours, points increase sharply as Forward Overlap decreases | Forward Overlap is decisive for points; Tilt angle effect minimal |
Surface: Reconstruction Completeness vs. (Side Overlap, Tilt angle) | 0.286 | Near-vertical contours, completeness increases as Side Overlap decreases | Side Overlap mainly affects completeness; Tilt angle effect negligible |
Objective Pair Analyzed | N Points on Frontier | Key Frontier Characteristics and Implication |
---|---|---|
Time vs. Error | 4 | Weakly concave shape (bottom-left); diminishing returns for error reduction over time |
Time vs. Points | 5 | Concave rising shape; diminishing returns for point increase over time |
Error vs. Points | 4 | Concave shape (top-left); clear trade-off exists, optimal balance selection needed |
Time vs. Completeness | 4 | Nearly horizontal shape (top-left); diminishing returns for completeness improvement over time |
Topsis Rank | Pattern1 | Pattern2 | Topsis DistIdeal | Topsis DistNegIdeal | Topsis Score |
---|---|---|---|---|---|
1 | C_O40 | L_O30 | 0.039644 | 0.088516 | 0.69067 |
2 | C_O20 | L_O30 | 0.041811 | 0.091929 | 0.687373 |
3 | L_O30 | P_O40 | 0.041934 | 0.09167 | 0.68613 |
4 | C_O40 | P_O20 | 0.046117 | 0.099455 | 0.683203 |
5 | P_O20 | P_O40 | 0.046888 | 0.099512 | 0.679727 |
6 | L_O30 | P_O20 | 0.039896 | 0.084661 | 0.679699 |
7 | C_O20 | P_O20 | 0.047719 | 0.099743 | 0.6764 |
8 | C_O20 | C_O40 | 0.051008 | 0.104072 | 0.671084 |
9 | C_O40 | P_O40 | 0.050765 | 0.103508 | 0.670941 |
10 | C_O20 | P_O40 | 0.052928 | 0.103664 | 0.661999 |
11 | C_O20 | L_O10 | 0.041451 | 0.080858 | 0.661095 |
12 | C_O40 | L_O10 | 0.041381 | 0.080343 | 0.660041 |
13 | L_O10 | P_O40 | 0.041964 | 0.080544 | 0.657458 |
14 | L_O10 | P_O20 | 0.046425 | 0.077117 | 0.624216 |
15 | C_O20 | L_O20 | 0.048799 | 0.070943 | 0.592463 |
16 | L_O20 | P_O40 | 0.048934 | 0.070758 | 0.591167 |
17 | C_O40 | L_O20 | 0.0494 | 0.069785 | 0.585517 |
18 | L_O20 | P_O20 | 0.053078 | 0.066345 | 0.555547 |
19 | L_O10 | L_O30 | 0.062454 | 0.064512 | 0.508104 |
20 | L_O20 | L_O30 | 0.074386 | 0.052379 | 0.413198 |
21 | L_O10 | L_O20 | 0.104304 | 0.051267 | 0.329539 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, I.; Lee, Y.; Ham, N.; Kim, J.; Kim, J.-J. A Quantitative Evaluation of UAV Flight Parameters for SfM-Based 3D Reconstruction of Buildings. Appl. Sci. 2025, 15, 7196. https://doi.org/10.3390/app15137196
Jo I, Lee Y, Ham N, Kim J, Kim J-J. A Quantitative Evaluation of UAV Flight Parameters for SfM-Based 3D Reconstruction of Buildings. Applied Sciences. 2025; 15(13):7196. https://doi.org/10.3390/app15137196
Chicago/Turabian StyleJo, Inho, Yunku Lee, Namhyuk Ham, Juhyung Kim, and Jae-Jun Kim. 2025. "A Quantitative Evaluation of UAV Flight Parameters for SfM-Based 3D Reconstruction of Buildings" Applied Sciences 15, no. 13: 7196. https://doi.org/10.3390/app15137196
APA StyleJo, I., Lee, Y., Ham, N., Kim, J., & Kim, J.-J. (2025). A Quantitative Evaluation of UAV Flight Parameters for SfM-Based 3D Reconstruction of Buildings. Applied Sciences, 15(13), 7196. https://doi.org/10.3390/app15137196