Acute Effects of Whole-Body Vibration on Gait Kinematics in Individuals with Parkinson’s Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Data Analysis and Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kouli, A.; Torsney, K.M.; Kuan, W.L. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In Parkinson’s Disease: Pathogenesis and Clinical Aspects; Stoker, T.B., Greenland, J.C., Eds.; Codon Publications: Brisbane, Australia, 2018; Chapter 1. [Google Scholar] [PubMed]
- Peppe, A.; Chiavalon, C.; Pasqualetti, P.; Crovato, D.; Caltagirone, C. Does gait analysis quantify motor rehabilitation efficacy in Parkinson’s disease patients? Gait Posture 2007, 26, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Perlmutter, J.S.; Earhart, G.M. A kinematic and electromyographic analysis of turning in people with Parkinson disease. Neurorehabil. Neural Repair 2009, 23, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Plotnik, M.; Hausdorff, J.M. The role of gait rhythmicity and bilateral coordination of stepping in the pathophysiology of freezing of gait in Parkinson’s disease. Mov. Disord. 2008, 23 (Suppl. S2), S444–S450. [Google Scholar] [CrossRef]
- Russo, M.; Amboni, M.; Pisani, N.; Volzone, A.; Calderone, D.; Barone, P.; Amato, F.; Ricciardi, C.; Romano, M. Biomechanics Parameters of Gait Analysis to Char-acterize Parkinson’s Disease: A Scoping Review. Sensors 2025, 25, 338. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martín, P.; Gil-Nagel, A.; Gracia, L.M.; Gómez, J.B.; Martínez-Sarriés, J.; Bermejo, F. Unified Parkinson’s Disease Rating Scale characteristics and structure. The Cooperative Multicentric Group. Mov. Disord. 1994, 9, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.G.; Poewe, W.; Rascol, O.; Sampaio, C.; Stebbins, G.T.; Counsell, C.; Giladi, N.; Holloway, R.G.; Moore, C.G.; Wenning, G.K.; et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations. Mov. Disord. 2004, 19, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- LeWitt, P.A. Levodopa therapy for Parkinson’s disease: Pharmacokinetics and pharmacodynamics. Mov. Disord. 2015, 30, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Reuter, I.; Engelhardt, M. Exercise Training and Parkinson’s Disease: Placebo or Essential Treatment? Phys. Sportsmed. 2002, 30, 43–50. [Google Scholar] [CrossRef]
- Xu, X.; Fu, Z.; Le, W. Exercise and Parkinson’s Disease. Int. Rev. Neurobiol. 2019, 147, 45–74. [Google Scholar]
- Ebersbach, G.; Edler, D.; Kaufhold, O.; Wissel, J. Whole body vibration versus conventional physiotherapy to improve balance and gait in Parkinson’s disease. Arch. Phys. Med. Rehabil. 2008, 89, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Arenales Arauz, Y.L.; Ahuja, G.; Kamsma, Y.P.T.; Kortholt, A.; van der Zee, E.A.; van Heuvelen, M.J.G. Potential of Whole-Body Vibration in Parkinson’s Disease: A Systematic Review and Meta-Analysis of Human and Animal Studies. Biology 2022, 11, 1238. [Google Scholar] [CrossRef] [PubMed]
- Hagbarth, K.E.; Eklund, G. Motor effects of vibratori stimuli in man. In Proceedings of the First Nobel Symposium, Stockholm, Sweden, 6–11 June 1966; Granit, R., Ed.; Almqvist and Wiksell: Stockholm, Sweden, 1966; pp. 177–186. [Google Scholar]
- Cardinale, M.; Bosco, C. The use of vibration as an exercise intervention. Exerc. Sport Sci. Rev. 2003, 31, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.C.; Wu, L.S.; Lee, S.; Wang, C.C.; Lee, P.F.; Tseng, C.Y.; Ho, C.C. Whole-body vibration training improves balance control and sit-to-stand performance among middle-aged and older adults: A pilot randomized controlled trial. Eur. Rev. Aging Phys. Act. 2017, 14, 11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soares, L.T.; Pereira, A.J.F.; Magno, L.D.P.; Figueiras, H.M.; Sobral, L.L. Balance, gait and quality of life in Parkinson’s disease: Effects of whole body vibration treatment. Fisioter Mov. 2014, 27, 261–270. [Google Scholar] [CrossRef]
- Marazzi, S.; Kiper, P.; Palmer, K.; Agostini, M.; Turolla, A. Effects of vibratory stimulation on balance and gait in Parkinson’s disease: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2021, 57, 254–264. [Google Scholar] [CrossRef]
- Rittweger, J. Vibration as an exercise modality: How it may work, and what its potential might be. Eur. J. Appl. Physiol. 2010, 108, 877–904. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, M.; Wakeling, J. Whole body vibration exercise: Are vibrations good for you? Br. J. Sports Med. 2005, 39, 585–589; discussion 589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahlborg, L.; Andersson, C.; Julin, P. Whole-body vibration training compared with resistance training: Effect on spasticity, muscle strength and motor performance in adults with cerebral palsy. J. Rehabil. Med. 2006, 38, 302–308. [Google Scholar] [CrossRef]
- Schuhfried, O.; Mittermaier, C.; Jovanovic, T.; Pieber, K.; Paternostro-Sluga, T. Effects of whole-body vibration in patients with multiple sclerosis: A pilot study. Clin. Rehabil. 2005, 19, 834–842. [Google Scholar] [CrossRef]
- van Ne, I.; Latour, H.; Schils, F.; Meijer, R.; van, K.A.; Geurts, A.C. Long-term effects of 6-week whole-body vibration on balance recovery and activities of daily living in the postacute phase of stroke: A randomized, controlled trial. Stroke 2006, 37, 2331–2335. [Google Scholar] [CrossRef] [PubMed]
- Lam, F.M.H.; Liao, L.R.; Kwok, T.C.Y.; Pang, M.Y.C. Effects of Adding Whole-Body Vibration to Routine Day Activity Program on Physical Functioning in Elderly with Mild or Moderate Dementia: A Randomized Controlled Trial. Int. J. Geriatr. Psychiatry 2018, 33, 21–30. [Google Scholar] [CrossRef]
- Lindholm, B.; Nilsson, M.H.; Hansson, O.; Hagell, P. The clinical significance of 10-m walk test standardizations in Parkinson’s disease. J. Neurol. 2018, 265, 1829–1835. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 153. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Familiari, F.; Mercurio, M.; Arenas-Miquelez, A.; Barone, A.; Greco, F.; Emerenziani, G.P.; Gasparini, G.; Galasso, O. Shoulder brace has no detrimental effect on basic spatio-temporal gait parameters and functional mobility after arthroscopic rotator cuff repair. Gait Posture 2024, 107, 207–211. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, R.; Lebleu, J.; Willems, T.; De Blaiser, C.; Detrembleur, C.; Roosen, P. Concurrent Validity of a Commercial Wireless Trunk Triaxial Accelerometer System for Gait Analysis. J. Sport Rehabil. 2019, 28, jsr.2018-0295. [Google Scholar] [CrossRef] [PubMed]
- Liguori, S.; Moretti, A.; Palomba, A.; Paoletta, M.; Gimigliano, F.; De Micco, R.; Siciliano, M.; Tessitore, A.; Iolascon, G. Non-motor impairments affect walking kinematics in Parkinson disease patients: A cross-sectional study. NeuroRehabilitation 2021, 49, 481–489. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, Y.G.; Lv, W.; Huo, H.Q.; Wu, J.R.; Cheng, W.W.; Wang, S. Meta-analysis of the effect of whole-body vibration training on the improvement of limb function in patients with Parkinson’s disease. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 6985–6995. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, M.; Lim, J. Electromyography activity of vastus lateralis muscle during whole-body vibrations of different frequencies. J. Strength Cond. Res. 2003, 17, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Wile, D.J.; Kraeutner, S.N.; Larocque, K.A.; Jakobi, J.M. Short term effects of contralateral tendon vibration on motor unit discharge rate variability and force steadiness in people with Parkinson’s disease. Front. Aging Neurosci. 2024, 16, 1301012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, J.; Jung, J.; Lee, J.; Kim, E.; Lee, M.; Lee, K. Effect of muscle vibration on postural balance of Parkinson’s diseases patients in bipedal quiet standing. J. Phys. Ther. Sci. 2013, 25, 1433–1435. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arias, P.; Chouza, M.; Vivas, J.; Cudeiro, J. Effect of whole body vibration in Parkinson’s disease: A controlled study. Mov. Disord. 2009, 24, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Dincher, A.; Schwarz, M.; Wydra, G. Analysis of the Effects of Whole-Body Vibration in Parkinson Disease-Systematic Review and Meta-Analysis. PM R 2019, 11, 640–653. [Google Scholar] [CrossRef] [PubMed]
- Lecce, E.; Nuccio, S.; Del Vecchio, A.; Conti, A.; Nicolò, A.; Sacchetti, M.; Felici, F.; Bazzucchi, I. The acute effects of whole-body vibration on motor unit recruitment and discharge properties. Front. Physiol. 2023, 14, 1124242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, K.; Cho, Y.; Chen, R. The effect of whole-body vibration on proprioception and motor function for individuals with moderate parkinson disease: A single-blind randomized controlled trial. Occup. Ther. Int. 2021, 2021, 9441366. [Google Scholar] [CrossRef]
- Oranchuk, D.J.; Storey, A.G.; Nelson, A.R.; Cronin, J.B. Isometric training and long-term adaptations: Effects of muscle length, intensity, and intent: A systematic review. Scand. J. Med. Sci. Sports 2019, 29, 484–503. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.I.; Sung, K.H.; Chung, C.Y.; Lee, K.M.; Lee, S.Y.; Lee, I.H.; Park, M.S. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy. Yonsei Med J. 2016, 57, 217–224, Erratum in Yonsei Med. J. 2016, 57, 807. https://doi.org/10.3349/ymj.2016.57.3.807. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, J.H.; Seo, H.J. Influence of pelvic position and vibration frequency on muscle activation during whole body vibration in quiet standing. J. Phys. Ther. Sci. 2015, 27, 1055–1058. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alam, M.; Khan, A.; Farooq, M. Effect of whole-body vibration on neuromuscular performance: A literature review. Work 2018, 59, 571–583. [Google Scholar] [CrossRef]
- Symons, T.B.; Vandervoort, A.A.; Rice, C.L.; Overend, T.J.; Marsh, G.D. Effects of maximal isometric and isokinetic resistance training on strength and functional mobility in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Neural adaptation to resistance training: Changes in evoked V-wave and H-reflex responses. J. Appl. Physiol. (1985) 2002, 92, 2309–2318. [Google Scholar] [CrossRef] [PubMed]
- Enoka, R.M.; Duchateau, J. Muscle fatigue: What, why and how it influences muscle function. J. Physiol. 2008, 586, 11–23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ritzmann, R.; Kramer, A.; Gruber, M.; Gollhofer, A.; Taube, W. EMG activity during whole body vibration: Motion artifacts or stretch reflexes? Eur. J. Appl. Physiol. 2010, 110, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Carroll, T.J.; Riek, S.; Carson, R.G. Neural adaptations to resistance training: Implications for movement control. Sports Med. 2001, 31, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Enoka, R.M. Neural adaptations with chronic physical activity. J Biomech. 1997, 30, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.J. Automaticity of walking: Functional significance, mechanisms, measurement and rehabilitation strategies. Front. Hum. Neurosci. 2015, 9, 246. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharififar, S.; Coronado, R.A.; Romero, S.; Azari, H.; Thigpen, M. The effects of whole-body vibration on mobility and balance in Parkinson disease: A systematic review. Iran. J. Med. Sci. 2014, 39, 318–326. [Google Scholar] [PubMed] [PubMed Central]
- Ruhde, L.; Hulla, R. An overview of the effects of whole-body vibration on individuals with cerebral palsy. J. Pediatr. Rehabil. Med. 2022, 15, 193–210. [Google Scholar] [CrossRef]
- Greco, F.; Quinzi, F.; Folino, K.; Spadafora, M.; Cosco, L.F.; Tarsitano, M.G.; Emerenziani, G.P. Acute effects of whole-body vibration on quadriceps isometric muscular endurance in middle-aged adults: A pilot study. Vibration 2023, 6, 399–406. [Google Scholar] [CrossRef]
- Artero, E.; Espada-Fuentes, J.; Argüelles-Cienfuegos, J.; Román, A.; Gómez-López, P.; Gutiérrez, Á. Effects of whole-body vibration and resistance training on knee extensors muscular performance. Eur. J. Appl. Physiol. 2011, 112, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhou, H.; Quan, W.; Jiang, X.; Liang, M.; Li, S.; Ugbolue, U.C.; Baker, J.S.; Gusztav, F.; Ma, X.; et al. A new method proposed for realizing human gait pattern recognition: Inspirations for the application of sports and clinical gait analysis. Gait Posture 2024, 107, 293–305. [Google Scholar] [CrossRef] [PubMed]
Participants’ Characteristics (n = 26) | |
---|---|
Age (years) | 66.7 ± 7.8 |
Height (m) | 1.62 ± 0.10 |
Body Mass (kg) | 73.8 ± 13.2 |
BMI (kg/m2) | 27.9 ± 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oranges, F.P.; Greco, F.; Tarsitano, M.G.; Quinzi, F.; Quattrone, A.; Quattrone, A.; Emerenziani, G.P. Acute Effects of Whole-Body Vibration on Gait Kinematics in Individuals with Parkinson’s Disease. Appl. Sci. 2025, 15, 7055. https://doi.org/10.3390/app15137055
Oranges FP, Greco F, Tarsitano MG, Quinzi F, Quattrone A, Quattrone A, Emerenziani GP. Acute Effects of Whole-Body Vibration on Gait Kinematics in Individuals with Parkinson’s Disease. Applied Sciences. 2025; 15(13):7055. https://doi.org/10.3390/app15137055
Chicago/Turabian StyleOranges, Francesco Pio, Francesca Greco, Maria Grazia Tarsitano, Federico Quinzi, Andrea Quattrone, Aldo Quattrone, and Gian Pietro Emerenziani. 2025. "Acute Effects of Whole-Body Vibration on Gait Kinematics in Individuals with Parkinson’s Disease" Applied Sciences 15, no. 13: 7055. https://doi.org/10.3390/app15137055
APA StyleOranges, F. P., Greco, F., Tarsitano, M. G., Quinzi, F., Quattrone, A., Quattrone, A., & Emerenziani, G. P. (2025). Acute Effects of Whole-Body Vibration on Gait Kinematics in Individuals with Parkinson’s Disease. Applied Sciences, 15(13), 7055. https://doi.org/10.3390/app15137055