Exploring the Influence of Growth-Related Conditions on the Antioxidant and Anticholinergic Properties of Pressurized Arctium lappa L. Root Extracts
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material and Sample Pretreatment
2.2.1. Plant Material
2.2.2. Sample Pretreatment
2.3. Pressurized Liquid Extraction of Phenolic Compounds
2.4. Total Phenolic Content (TPC)
2.5. Antioxidant Capacity
2.5.1. DPPH Radical Scavenging Assay
2.5.2. Oxygen Radical Absorbance Capacity (ORAC)
2.6. Anticholinergic Capacity
2.7. Characterization of Phenolic Compounds from Burdock Extracts by HPLC−DAD−IT−MS
2.8. Statistical Analysis
3. Results
3.1. Optimizing the PLE Polyphenol Extraction from Burdock Roots
3.2. Influence of the Extraction Temperatures on the Phenolic Profile of PLE Extracts Obtained from OLE Burdock Roots
3.3. Extraction of Bioactive Phenolic Compounds from Different Ecotypes of Burdock Roots
3.4. Relationship Between Phenolic Profile and Bioactivities of Extracts
4. Discussion
4.1. Influence of PLE Temperature on the Recovery of Phenolic Compounds from Burdock Roots
4.2. Influence of Growing Conditions of Burdock Roots on the Phenolic Composition and Bioactivity of Its PLE Extracts
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, B.; Wang, W. Effects of Aqueous Extract of Arctium lappa L. Roots on Serum Lipid Metabolism. J. Int. Med. Res. 2018, 46, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Duistermaat, H. Monograph of Arctium L. (Asteraceae). Generic delimitation (including Cousinia Cass, p.p.), revision of the species, pollen morphology, and hybrids. Gorteria Dutch Bot. Arch. 1996, 3, 1–143. [Google Scholar]
- De Souza, A.R.C.; De Oliveira, T.L. Phytochemicals and Biological Activities of Burdock (Arctium lappa L.) Extracts: A Review. Chem. Biodiver. 2022, 19, e202200615. [Google Scholar] [CrossRef]
- Romagnolo, D.F.; Selmin, O.I. Mediterranean Diet: Dietary Guidelines and Impact on Health and Disease; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-27967-1. [Google Scholar]
- Chan, Y.-S.; Cheng, L.-N. A Review of the Pharmacological Effects of Arctium lappa (Burdock). Inflammopharmacology 2011, 19, 245–254. [Google Scholar] [CrossRef]
- Da Silva, L.M.; Allemand, A. Ethanolic Extract of Roots from Arctium lappa L. Accelerates the Healing of Acetic Acid-Induced Gastric Ulcer in Rats: Involvement of the Antioxidant System. FCT 2013, 51, 179–187. [Google Scholar] [CrossRef]
- Romualdo, G.R.; Silva, E.D.A. Burdock (Arctium lappa L.) Root Attenuates Preneoplastic Lesion Development in a Diet and Thioacetamide-induced Model of Steatohepatitis-associated Hepatocarcinogenesis. Environ. Toxicol. 2020, 35, 518–527. [Google Scholar] [CrossRef]
- Zhang, X.; Herrera-Balandrano, D.D. Comparison of Nutritional and Nutraceutical Properties of Burdock Roots Cultivated in Fengxian and Peixian of China. Foods 2021, 10, 2095. [Google Scholar] [CrossRef]
- Kumar Sharma, R. Production of Secondary Metabolites in Plants under Abiotic Stress: An Overview. SBB 2018, 2, 196–200. [Google Scholar] [CrossRef]
- Sama, H.; Traoré, D.K. Effect of Pedo-Climatic Conditions on Physicochemical Characteristics and Agro-Industrial Potential of Three Native Oilseeds Fruits from Burkina Faso. BMC Plant Biol. 2022, 22, 321. [Google Scholar] [CrossRef]
- Chiappero, J.; Cappellari, L.D.R. Plant Growth Promoting Rhizobacteria Improve the Antioxidant Status in Mentha piperita Grown under Drought Stress Leading to an Enhancement of Plant Growth and Total Phenolic Content. Ind. Crops Prod. 2019, 139, 111553. [Google Scholar] [CrossRef]
- Farhadi, N.; Ghassemi-Golezani, K. Physiological Changes of Mentha pulegium in Response to Exogenous Salicylic Acid under Salinity. Sci. Hortic. 2020, 267, 109325. [Google Scholar] [CrossRef]
- Brahmi, F.; Lounis, N. Impact of Growth Sites on the Phenolic Contents and Antioxidant Activities of Three Algerian Mentha Species (M. pulegium L., M. rotundifolia (L.) Huds., and M. spicata L.). Front. Pharmacol. 2022, 13, 886337. [Google Scholar] [CrossRef] [PubMed]
- Cornara, L.; Sgrò, F. Pedoclimatic Conditions Influence the Morphological, Phytochemical and Biological Features of Mentha pulegium L. Plants 2022, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Cornara, L.; Malaspina, P. The Influence of Pedo-Climatic Conditions on the Micromorphological, Phytochemical Features, and Biological Properties of Leaves of Saponaria sicula Raf. IJMS 2023, 24, 11693. [Google Scholar] [CrossRef]
- Delfine, S.; Marrelli, M. Variation of Malva Sylvestris Essential Oil Yield, Chemical Composition and Biological Activity in Response to Different Environments across Southern Italy. Ind. Crops Prod. 2017, 98, 29–37. [Google Scholar] [CrossRef]
- Aboukhalid, K.; Al Faiz, C. Influence of Environmental Factors on Essential Oil Variability in Origanum compactum Benth. Growing Wild in Morocco. Chem. Biodivers. 2017, 14, e1700158. [Google Scholar] [CrossRef]
- Rapposelli, E.; Melito, S. Relationship between Soil and Essential Oil Profiles in Salvia desoleana Populations: Preliminary Results. Nat. Prod. Commun. 2015, 10, 1615–1618. [Google Scholar] [CrossRef]
- Pfeifer, M.T.; Koepke, P. Effects of Altitude and Aerosol on UV Radiation. J. Geophys. Res. 2006, 111, 2005JD006444. [Google Scholar] [CrossRef]
- Zidorn, C. Altitudinal Variation of Secondary Metabolites in Flowering Heads of the Asteraceae: Trends and Causes. Phytochem. Rev. 2010, 9, 197–203. [Google Scholar] [CrossRef]
- Suleiman, M.H.A.; ALaerjani, W.M.A. Influence of Altitudinal Variation on the Total Phenolic and Flavonoid Content of Acacia and Ziziphus Honey. Int. J. Food Prop. 2020, 23, 2077–2086. [Google Scholar] [CrossRef]
- Wu, K.-C.; Weng, H.-K. Aqueous Extract of Arctium lappa L. Root (Burdock) Enhances Chondrogenesis in Human Bone Marrow-Derived Mesenchymal Stem Cells. BMC Complement. Med. Ther. 2020, 20, 364. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.G.; Caruso, M. Caffeoylquinic Acids in Centella asiatica Reverse Cognitive Deficits in Male 5XFAD Alzheimer’s Disease Model Mice. Nutrients 2020, 12, 3488. [Google Scholar] [CrossRef] [PubMed]
- Miyamae, Y.; Kurisu, M. Protective Effects of Caffeoylquinic Acids on the Aggregation and Neurotoxicity of the 42-Residue Amyloid β-Protein. Bioorg. Med. Chem 2012, 20, 5844–5849. [Google Scholar] [CrossRef] [PubMed]
- Alcázar Magaña, A.; Kamimura, N. Caffeoylquinic Acids: Chemistry, Biosynthesis, Occurrence, Analytical Challenges, and Bioactivity. Plant J. 2021, 107, 1299–1319. [Google Scholar] [CrossRef]
- Ferracane, R.; Graziani, G. Metabolic Profile of the Bioactive Compounds of Burdock (Arctium lappa) Seeds, Roots and Leaves. J. Pharm. Biomed. Anal. 2010, 51, 399–404. [Google Scholar] [CrossRef]
- Jiang, X.-W.; Bai, J.-P. Caffeoylquinic Acid Derivatives from the Roots of Arctium lappa L. (Burdock) and Their Structure–Activity Relationships (SARs) of Free Radical Scavenging Activities. Phytochem. Lett. 2016, 15, 159–163. [Google Scholar] [CrossRef]
- Hamed, Y.S.; Abdin, M. Effects of Impregnate Temperature on Extraction of Caffeoylquinic Acid Derivatives from Moringa oleifera Leaves and Evaluation of Inhibitory Activity on Digestive Enzyme, Antioxidant, Anti-proliferative and Antibacterial Activities of the Extract. Int. J. Food Sci. Technol. 2020, 55, 3082–3090. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H. Improved Extraction and Identification by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry of Phenolic Compounds in Burdock Leaves. J. Chromatogr. A 2010, 1217, 2441–2446. [Google Scholar] [CrossRef]
- Mondal, S.C.; Lee, W.-H. Ultrasonic Extraction of Reducing Sugar and Polyphenols from Burdock (Arctium lappa L.) Root Waste and Evaluation of Antioxidants and α-Glucosidase Inhibition Activity. Biomass Convers. Biorefinery 2023, 14, 18619–18636. [Google Scholar] [CrossRef]
- Petkova, N.; Ivanov, I. Effect of pressure liquid extraction and ultrasonic irradiation frequency on inulin, phenolic content and antioxidant activity in burdock (Arctium lappa L.) roots. ASPHC 2020, 19, 125–133. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Comp. Rev. Food Sci. Food Safe 2017, 16, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Romano, E.; Domínguez-Rodríguez, G.; Mannina, L.; Cifuentes, A.; Ibáñez, E. Characterization of Non-Polar and Polar Bioactive Compounds Obtained by Pressurized Biobased Solvents from Different Arctium lappa L. Root Ecotypes. Appl. Sci. 2025, 15, 2491. [Google Scholar] [CrossRef]
- Gallego, R.; Bueno, M. Sub- and Supercritical Fluid Extraction of Bioactive Compounds from Plants, Food-by-Products, Seaweeds and Microalgae—An Update. TrAC Trends Anal. Chem. 2019, 116, 198–213. [Google Scholar] [CrossRef]
- Koşar, M.; Dorman, H.J.D. Effect of an Acid Treatment on the Phytochemical and Antioxidant Characteristics of Extracts from Selected Lamiaceae Species. Food Chem. 2005, 91, 525–533. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Sánchez-Martínez, J.D.; Bueno, M. In Vitro Neuroprotective Potential of Terpenes from Industrial Orange Juice by-Products. Food Funct. 2021, 12, 302–314. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Mendiola, J.A. Supercritical Antisolvent Fractionation of Rosemary Extracts Obtained by Pressurized Liquid Extraction to Enhance Their Antiproliferative Activity. J. Supercrit. Fluids 2016, 107, 581–589. [Google Scholar] [CrossRef]
- Suárez-Montenegro, Z.J.; Ballesteros-Vivas, D. Neuroprotective Potential of Tamarillo (Cyphomandra betacea) Epicarp Extracts Obtained by Sustainable Extraction Process. Front. Nutr. 2021, 8, 769617. [Google Scholar] [CrossRef]
- Skowrońska, W.; Granica, S. Arctium lappa and Arctium tomentosum, Sources of Arctii Radix: Comparison of Anti-Lipoxygenase and Antioxidant Activity as Well as the Chemical Composition of Extracts from Aerial Parts and from Roots. Plants 2021, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Plaza, M. Green Processes for the Extraction of Bioactives from Rosemary: Chemical and Functional Characterization via Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry and in-Vitro Assays. J. Chromatogr. A 2010, 1217, 2512–2520. [Google Scholar] [CrossRef] [PubMed]
- Moro, T.M.A.; Clerici, M.T.P.S. Burdock (Arctium lappa L) Roots as a Source of Inulin-Type Fructans and Other Bioactive Compounds: Current Knowledge and Future Perspectives for Food and Non-Food Applications. Food Res. Int. 2021, 141, 109889. [Google Scholar] [CrossRef] [PubMed]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Shakoor, A.; Zhang, C. Maillard Reaction Chemistry in Formation of Critical Intermediates and Flavour Compounds and Their Antioxidant Properties. Food Chem. 2022, 393, 133416. [Google Scholar] [CrossRef]
- Plaza, M.; Amigo-Benavent, M. Facts about the Formation of New Antioxidants in Natural Samples after Subcritical Water Extraction. Food Res. Int. 2010, 43, 2341–2348. [Google Scholar] [CrossRef]
- Schaich, K.M.; Tian, X. Hurdles and Pitfalls in Measuring Antioxidant Efficacy: A Critical Evaluation of ABTS, DPPH, and ORAC Assays. JFF 2015, 14, 111–125. [Google Scholar]
- Plaza, M.; Domínguez-Rodríguez, G.; Castro-Puyana, M.; Marina, M.L. Polyphenols Analysis and Related Challenges, in Polyphenols: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; WP Woodhead Publishing: Cambridge, UK; MA Kidlington: Oxfordshire, UK, 2018; ISBN 978-0-12-813572-3. [Google Scholar]
- Kabtni, S.; Sdouga, D. Influence of Climate Variation on Phenolic Composition and Antioxidant Capacity of Medicago minima Populations. Sci. Rep. 2020, 10, 8293. [Google Scholar] [CrossRef]
- Toscano, S.; Trivellini, A.; Cocetta, G.; Bulgari, R.; Francini, A.; Romano, D.; Ferrante, A. Effect of Preharvest Abiotic Stresses on the Accumulation of Bioactive Compounds in Horticultural Produce. Fron. Plant Sci. 2019, 10, 1212. [Google Scholar] [CrossRef]
- Malesevic, Z.; Jovovic, M.; Govedarica-Lucici, A.; Petkovic, M. Comparative Analysis of Phenolic, Flavonoid and Antioxidant Content in Root Vegetables from Organic and Conventional Production. Hort. Sci. 2023, 50, 283–289. [Google Scholar] [CrossRef]
- Lu, M.; He, W. The Effect of High Altitude on Ephedrine Content and Metabolic Variations in Two Species of Ephedra. Front. Plant Sci. 2023, 14, 1236145. [Google Scholar] [CrossRef] [PubMed]
- Yosri, N.; Alsharif, S.M. Arctium lappa (Burdock): Insights from Ethnopharmacology Potential, Chemical Constituents, Clinical Studies, Pharmacological Utility and Nanomedicine. Biomed. Pharmacother. 2023, 158, 114104. [Google Scholar] [CrossRef] [PubMed]
- Carlotto, J.; Da Silva, L.M. Identification of a Dicaffeoylquinic Acid Isomer from Arctium lappa with a Potent Anti-Ulcer Activity. Talanta 2015, 135, 50–57. [Google Scholar] [CrossRef]
- Ambroselli, D.; Masciulli, F. New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food. Nutrients 2023, 15, 640. [Google Scholar] [CrossRef]
- Ambroselli, D.; Masciulli, F. NMR Metabolomics of Arctium lappa L., Taraxacum officinale and Melissa officinalis: A Comparison of Spontaneous and Organic Ecotypes. Foods 2024, 13, 1642. [Google Scholar] [CrossRef]
Extraction Method | Yield (%) | TPC (mg Gallic Acid/g Extract) | DPPH (µmol Trolox/g Extract) | ORAC IC50 (mg/mL) | AChE IC50 (µg/mL) | BChE IC50 (µg/mL) |
---|---|---|---|---|---|---|
OE SLE | 23 ± 1 b | 38 ± 3 a | 113 ± 1 b | 1.7 ± 0.1 a | 505 ± 136 a | 751 ± 33 a |
OE PLE 50 °C | 27 ± 5 b | 42 ± 4 a | 113± 1 a | 2.85 ± 0.08 b | 442 ± 21 a | 791 ± 80 a |
OE PLE 100 °C | 26 ± 1 b | 33 ± 3 b | 104 ± 3 b | 2.9 ± 0.3 b | 821 ± 76 b | 1151 ± 76 b |
OE PLE 150 °C | 45 ± 2 a | 25 ± 2 c | 98 ± 5 b | 2.3 ± 0.1 c | 912 ± 45 b | 1292 ± 46 b |
No. | Compound | Rt (min) | [M−H]− | MS2 Ions | SLE (g/100 g of Dried Extract) | PLE 50 °C (g/100 g of Dried Extract) | PLE 100 °C (g/100 g of Dried Extract) | PLE 150 °C (g/100 g of Dried Extract) |
---|---|---|---|---|---|---|---|---|
1 | Chlorogenic acid | 7.9 | 374.9 [M−H+Na]− | 353.2, 190.7, 178.7 | 0.67 ± 0.02 c | 1.06 ± 0.03 a | 0.893 ± 0.007 b | 0.26 ± 0.01 d |
2 | 4-O-Caffeoylquinic acid | 8.32 | 353.0 | 190.8, 178.8, 135.0 | 0.015 ± 0.002 a | 0.0095 ± 0.0002 b | 0.0039 ± 0.0004 c | ND |
3 | Cynarine | 10.25 | 515.1 | 353.4, 190.8, 178.8, 135.0 | 0.55 ± 0.02 c | 0.99 ± 0.05 a | 0.862 ± 0.005 b | 0.30 ± 0.02 d |
4 | Dicaffeoylmaloylquinic acid * | 17.9 | 631 | 573.3, 514.9, 468.6, 449.7, 379, 353, 334.9, 298.9, 255.1 | 0.079 ± 0.004 c | 0.27±0.03 a | 0.18±0.03 b | 0.102 ± 0.004 c |
5 | Dicaffeoylmaloylquinic acid isomer 1 * | 19.3 | 652.6 [M−H+Na]− | 631, 514.9, 490.9, 469.1, 451.1, 353.4, 191.0, 173.1, 135 | 0.074 ± 0.008 c | 0.18 ± 0.02 a | 0.11 ± 0.01 b | 0.062 ± 0.003 c |
6 | Dicaffeoylquinic acid * | 20.2 | 536.8 [M−H+Na]− | 515.1, 375, 354.1, 173.1, 135.4 | 0.025 ± 0.002 c | 0.065 ± 0.008 a | 0.037 ± 0.005 b | 0.020 ± 0.002 c |
7 | 3,5-Dicaffeoylquinic acid | 21.1 | 515 | 353, 190.9, 178,9 | 0.060 ± 0.004 b,c | 0.145 ± 0.007 a | 0.0982 ± 0.003 b | 0.044 ± 0.001 d |
8 | 1,5-Dicaffeoylquinic acid | 21.7 | 515 | 353.1, 190.9, 178.9, | 1.06 ± 0.04 c | 2.1 ± 0.1 a | 1.485 ± 0.001 b | 0.84 ± 0.04 d |
9 | Dicaffeoylmaloylquinic acid isomer 2 * | 22.6 | 631 | 515, 490.9, 469, 449, 353, 191, 173, 135 | 0.041 ± 0.003 c | 0.13 ± 0.01 a | 0.09 ± 0.02 b | 0.051 ± 0.004 c |
10 | Dicaffeoyldimaloylquinic acid * | 24.7 | 747 | 631, 515, 469, 451, 433, 353, 335, 191 | 0.118 ± 0.008 c | 0.30 ± 0.02 a | 0.21 ± 0.03 b | 0.117 ± 0.003 c |
Ecotype | Yield (%) | TPC (mg Gallic Acid/g Extract) | ORAC IC50 (mg/mL) | DPPH (µmol Trolox/g Extract) | AChE IC50 (µg/mL) | BChE IC50 (µg/mL) |
---|---|---|---|---|---|---|
OLE | 27 ± 5 b | 55 ± 1 a | 2.85 ± 0.08 c | 113 ± 2 c | 442 ± 5 a | 791 ± 80 c |
SPLE | 32 ± 3 b | 42 ± 2 b | 1.09 ± 0.06 b | 268 ± 24 b | 975 ± 11 b | 527 ± 33 b |
SPME | 38 ± 3 a | 90 ± 7 a | 0.55 ± 0.08 a | 526 ± 138 a | 313 ± 4 a | 298 ± 21 a |
No. | Compound | Rt (min) | [M−H]− | MS2 Ions | OLE PLE 50 °C (g/100 g of Dried Extract) | SPLE PLE 50 °C (g/100 g of Dried Extract) | SPME PLE 50 °C (g/100 g of Dried Extract) |
---|---|---|---|---|---|---|---|
1 | Chlorogenic acid | 7.9 | 374.9 [M−H+Na]− | 353.2, 190.7, 178.7 | 1.06 ± 0.03 b | 1.12 ± 0.06 b | 2.12 ± 0.03 a |
2 | 4-O-Caffeoylquinic acid | 8.32 | 353.0 | 190.8, 178.8, 135.0 | 0.0095 ± 0.0002 b | 0.020 ± 0.002 a | 0.0081 ± 0.0006 b |
3 | Cynarine | 10.25 | 515.1 | 353.4, 190.8, 178.8, 135.0 | 0.99 ± 0.05 b | 0.17 ± 0.09 b | 2.05 ± 0.03 a |
4 | Dicaffeoylmaloylquinic acid * | 17.9 | 631 | 573.3, 514.9, 468.6, 449.7, 379, 353, 334.9, 298.9, 255.1 | 0.27±0.03 c | 0.30 ± 0.01 b | 1.105±0.007 a |
5 | Dicaffeoylmaloylquinic acid isomer 1 * | 19.3 | 652.6 [M−H+Na]− | 631, 514.9, 490.9, 469.1, 451.1, 353.4, 191.0, 173.1, 135 | 0.13 ± 0.02 b | 0.089 ± 0.006 c | 0.308 ± 0.005 a |
6 | Dicaffeoylquinic acid * | 20.2 | 536.8 [M−H+Na]− | 515.1, 375, 354.1, 173.1, 135.4 | 0.065 ± 0.008 b | 0.055 ± 0.007 b | 0.086 ± 0.001 a |
7 | 3,5-Dicaffeoylquinic acid | 21.1 | 515 | 353, 190.9, 178,9 | 0.145 ± 0.007 b | 0.09 ± 0.01 c | 0.28 ± 0.02 a |
8 | 1,5-Dicaffeoylquinic acid | 21.7 | 515 | 353.1, 190.9, 178.9, | 2.1 ± 0.1 b | 2.0± 0.1 c | 4.62 ± 0.08 a |
9 | Dicaffeoylmaloylquinic acid isomer 2 * | 22.6 | 631 | 515, 490.9, 469, 449, 353, 191, 173, 135 | 0.13 ± 0.01 b | 0.119 ± 0.006 b | 0.488 ± 0.006 a |
10 | Dicaffeoyldimaloylquinic acid * | 24.7 | 747 | 631, 515, 469, 451, 433, 353, 335, 191 | 0.30 ± 0.02 b | 0.25 ± 0.01 c | 0.473 ± 0.004 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, E.; Domínguez-Rodríguez, G.; Mannina, L.; Cifuentes, A.; Ibáñez, E. Exploring the Influence of Growth-Related Conditions on the Antioxidant and Anticholinergic Properties of Pressurized Arctium lappa L. Root Extracts. Appl. Sci. 2025, 15, 6978. https://doi.org/10.3390/app15136978
Romano E, Domínguez-Rodríguez G, Mannina L, Cifuentes A, Ibáñez E. Exploring the Influence of Growth-Related Conditions on the Antioxidant and Anticholinergic Properties of Pressurized Arctium lappa L. Root Extracts. Applied Sciences. 2025; 15(13):6978. https://doi.org/10.3390/app15136978
Chicago/Turabian StyleRomano, Enrico, Gloria Domínguez-Rodríguez, Luisa Mannina, Alejandro Cifuentes, and Elena Ibáñez. 2025. "Exploring the Influence of Growth-Related Conditions on the Antioxidant and Anticholinergic Properties of Pressurized Arctium lappa L. Root Extracts" Applied Sciences 15, no. 13: 6978. https://doi.org/10.3390/app15136978
APA StyleRomano, E., Domínguez-Rodríguez, G., Mannina, L., Cifuentes, A., & Ibáñez, E. (2025). Exploring the Influence of Growth-Related Conditions on the Antioxidant and Anticholinergic Properties of Pressurized Arctium lappa L. Root Extracts. Applied Sciences, 15(13), 6978. https://doi.org/10.3390/app15136978