Influence of Biological Maturation on Training Load and Physical Performance Adaptations After a Running-Based HIIT Program in Youth Football
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Maturity Assessment and Grouping
2.4. Testing Procedures
2.5. Training Programme
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Influence of Maturation on Initial Performance
4.2. Effects of the Running-Based HIIT Intervention on Physical Performance
4.3. Variations in Training Load According to Maturation
4.4. Relationship Between Maturation and Training Adaptations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bradley, P.S.; Sheldon, W.; Wooster, B.; Olsen, P.; Boanas, P.; Krustrup, P. High-intensity running in English FA Premier League soccer matches. J. Sports Sci. 2009, 27, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Ju, A.W.; Doran, D.; Hawkins, R.; Evans, M.; Laws, A.; Bradley, S. Contextualised high-intensity running profiles of elite football players with reference to general and specialised tactical roles. Biol. Sport 2023, 40, 291–301. [Google Scholar] [CrossRef]
- Bradley, P.S.; Di Mascio, M.; Peart, D.; Olsen, P.; Sheldon, B. High-intensity activity profiles of elite soccer players at different performance levels. J. Strength. Cond. Res. 2010, 24, 2343–2351. [Google Scholar] [CrossRef]
- Fernández-Jávega, G.; Peña-González, I. Contextual Factors Associated with the 30-15 Intermittent Fitness Test in a Youth Football Academy. Eur. J. Hum. Mov. 2024, 52, 5–16. [Google Scholar] [CrossRef]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of Soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Kunz, P.; Engel, F.A.; Holmberg, H.C.; Sperlich, B. A Meta-Comparison of the Effects of High-Intensity Interval Training to Those of Small-Sided Games and Other Training Protocols on Parameters Related to the Physiology and Performance of Youth Soccer Players. Sport Med.—Open 2019, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Manuel Clemente, F.; Ramirez-Campillo, R.; Nakamura, F.Y.; Sarmento, H. Effects of high-intensity interval training in men soccer player’s physical fitness: A systematic review with meta-analysis of randomized-controlled and non-controlled trials. J. Sports Sci. 2021, 39, 1202–1222. [Google Scholar] [CrossRef]
- Laursen, P.; Buchheit, M. Science and Application of High Intensity Interval Training; Human Kinetics: Champaign, IL, USA, 2019; Volume 11. [Google Scholar]
- Cobley, S.; Baker, J.; Wattie, N.; McKenna, J. Annual age-grouping and athlete development: A meta-analytical review of relative age effects in sport. Sports Med. 2009, 39, 235–256. [Google Scholar] [CrossRef]
- Malina, R.M.; Bouchard, C. Growth, Maturation, and Physical Activity. Med. Sci. Sports Exerc. 1992, 24, 841. [Google Scholar] [CrossRef]
- Peña-González, I.; Javaloyes, A.; Cervelló, E.; Moya-Ramón, M. The maturity status but not the relative age influences elite young football players’ physical performance. Sci. Med. Footb. 2022, 6, 309–316. [Google Scholar] [CrossRef]
- Fernández-Jávega, G.; Moya-Ramón, M.; Peña-González, I. Contextual factors in understanding the jumping performance of young football goalkeepers. Apunts Sports Med. 2024, 59, 100436. [Google Scholar] [CrossRef]
- Radnor, J.M.; Oliver, J.L.; Waugh, C.M.; Myer, G.D.; Moore, I.S.; Lloyd, R.S. The Influence of Growth and Maturation on Stretch-Shortening Cycle Function in Youth. Sports Med. 2018, 48, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Eisenmann, J.C.; Cumming, S.P.; Ribeiro, B.; Aroso, J. Maturity-associated variation in the growth and functional capacities of youth football (soccer) players 13–15 years. Eur. J. Appl. Physiol. 2004, 91, 555–562. [Google Scholar] [CrossRef]
- Pena-González, I.; Fernández-Fernández, J.; Cervelló, E.; Moya-Ramón, M. Effect of biological maturation on strengthrelated adaptations in young soccer players. PLoS ONE 2019, 14, e0219355. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.; Sandercock, G.R.H.; Ramírez-Campillo, R.; Meylan, C.; Collison, J.; Parry, D.A. A meta-analysis of maturation-related variation in adolescent boy athletes’ adaptations to short-term resistance training. J. Sports Sci. 2017, 35, 1041–1051. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L. The youth physical development model: A new approach to long-term athletic development. Strength. Cond. J. 2012, 34, 61–72. [Google Scholar] [CrossRef]
- Baquet, G.; Van Praagh, E.; Berthoin, S. Endurance Training and Aerobic Fitness in Young People. Sports Med. 2003, 33, 1127–1143. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, A.; Brito, J.; Seabra, A.; Oliveira, J.; Drust, B.; Krustrup, P. A new tool to measure training load in soccer training and match play. Int. J. Sports Med. 2012, 33, 297–304. [Google Scholar] [CrossRef]
- Gabbett, T.J.; Nassis, G.P.; Oetter, E.; Pretorius, J.; Johnston, N.; Medina, D.; Rodas, G.; Myslinski, T.; Howells, D.; Beard, A.; et al. The athlete monitoring cycle: A practical guide to interpreting and applying training monitoring data. Br. J. Sports Med. 2017, 51, 1451–1452. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Marcora, S.M.; Coutts, A.J. Internal and external training load: 15 years on. Int. J. Sports Physiol. Perform. 2019, 14, 270–273. [Google Scholar] [CrossRef]
- Buchheit, M.; Mendez-Villanueva, A. Effects of age, maturity and body dimensions on match running performance in highly trained under-15 soccer players. J. Sports Sci. 2014, 32, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Parr, J.; Winwood, K.; Hodson-Tole, E.; Deconinck, F.J.A.; Hill, J.P.; Cumming, S.P. Maturity-Associated Differences in Match Running Performance in Elite Male Youth Soccer Players. Int. J. Sports Physiol. Perform. 2022, 17, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.E.; Alves, A.R.; Ferraz, R.; Forte, P.; Leal, M.; Ribeiro, J.; Silva, A.J.; Barbosa, T.M.; Monteiro, A.M. Effects of Chronological Age, Relative Age, and Maturation Status on Accumulated Training Load and Perceived Exertion in Young Sub-Elite Football Players. Front. Physiol. 2022, 13, 832202. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Sherar, L.B.; Mirwald, R.L.; Baxter-Jones, A.D.G.; Thomis, M. Prediction of adult height using maturity-based cumulative height velocity curves. J. Pediatr. 2005, 147, 508–514. [Google Scholar] [CrossRef]
- Malina, R.M.; Kozieł, S.M. Validation of maturity offset in a longitudinal sample of Polish boys. J. Sports Sci. 2014, 32, 424–437. [Google Scholar] [CrossRef]
- Haugen, T.; Buchheit, M. Sprint Running Performance Monitoring: Methodological and Practical Considerations. Sports Med. 2016, 46, 641–656. [Google Scholar] [CrossRef]
- Buchheit, M.; Al Haddad, H.; Millet, G.P.; Lepretre, P.M.; Newton, M.; Ahmaidi, S. Cardiorespiratory and cardiac autonomic responses to 30-15 intermittent fitness test in team sport players. J. Strength. Cond. Res. 2009, 23, 93–100. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef]
- Engel, F.A.; Ackermann, A.; Chtourou, H.; Sperlich, B. High-intensity interval training performed by young athletes: A systematic review and meta-analysis. Front. Physiol. 2018, 9, 1012. [Google Scholar] [CrossRef] [PubMed]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Carranza-García, L.E.; Cervantes-Hernández, N.; Domínguez-Sosa, M.; Alanís-Flores, M.; López-García, R.; Vasquez-Bonilla, A.; Alberto Flores, L. Somatic Maturity and Physical Performance in Male Youth Players from a Professional Soccer Academy. Int. J. Morphol. 2024, 42, 429–436. [Google Scholar] [CrossRef]
- Ratel, S.; Duché, P.; Williams, C.A. Muscle fatigue during high-intensity exercise in children. Sports Med. 2006, 36, 1031–1065. [Google Scholar] [CrossRef]
- Almeida-Neto, P.F.; Matos, D.G.; Baxter-Jones, A.D.; Baxter-Jones, A.D.; Batista, G.R.; Pinto, V.C.; Dantas, M.; Aidar, F.J.; Dantas, P.M.; Cabral, B.G. The effectiveness of biological maturation and lean mass in relation to muscle strength performance in elite young athletes. Sustainability 2020, 12, 6696. [Google Scholar] [CrossRef]
- Hermassi, S.; Konukman, F.; Al-Marri, S.S.; Hayes, L.D.; Bartels, T.; Schwesig, R. Associations between biological maturation, physical performance, postural control, and mathematical achievement in youth soccer players. PLoS ONE 2024, 19, e0298301. [Google Scholar] [CrossRef]
- Beunen, G.; Malina, R.M. Growth and Physical Performance Relative to the Timing of the Adolescent Spurt. Exerc. Sport Sci. Rev. 2014, 16, 503. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle: Part II: Anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013, 43, 927–954. [Google Scholar] [CrossRef]
- Jimenez-Iglesias, J.; Gonzalo-Skok, O.; Landi-Fernández, M.; Perez-Bey, A.; Castro-Piñero, J. Age-Related Differences and Reliability of a Field-Based Fitness Test Battery in Young Trained Footballers: The Role of Biological Age. Life 2024, 14, 1448. [Google Scholar] [CrossRef]
- Haddad, M.; Stylianides, G.; Djaoui, L.; Dellal, A.; Chamari, K. Session-RPE method for training load monitoring: Validity, ecological usefulness, and influencing factors. Front. Neurosci. 2017, 11, 612. [Google Scholar] [CrossRef]
- Haddad, M.; Chaouachi, A.; Wong, D.P.; Castagna, C.; Hue, O.; Impellizzeri, F.M.; Chamari, K. Influence of exercise intensity and duration on perceived exertion in adolescent Taekwondo athletes. Eur. J. Sport Sci. 2014, 14 (Suppl. 1), S275–S281. [Google Scholar] [CrossRef]
- Malina, R.M.; Cumming, S.P.; Rogol, A.D.; Coelho-e-Silva, M.J.; Figueiredo, A.J.; Konarski, J.M.; Kozieł, S.M. Bio-Banding in Youth Sports: Background, Concept, and Application. Sports Med. 2019, 49, 1671–1685. [Google Scholar] [CrossRef] [PubMed]
- Nobari, H.; Silva, A.F.; Clemente, F.M.; Siahkouhian, M.; García-Gordillo, M.Á.; Adsuar, J.C.; Pérez-Gómez, J. Analysis of Fitness Status Variations of Under-16 Soccer Players over a Season and Their Relationships with Maturational Status and Training Load. Front. Physiol. 2021, 11, 597697. [Google Scholar] [CrossRef]
- Nobari, H.; Gorouhi, A.; Mallo, J.; Lozano, D.; Prieto-González, P.; Mainer-Pardos, E. Variations in cumulative workload and anaerobic power in adolescent elite male football players: Associations with biological maturation. BMC Sports Sci. Med. Rehabil. 2023, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Lovell, R.; Fransen, J.; Ryan, R.; Massard, T.; Cross, R.; Eggers, T.; Duffield, R. Biological maturation and match running performance: A national football (soccer) federation perspective. J. Sci. Med. Sport 2019, 22, 1139–1145. [Google Scholar] [CrossRef]
- Bouchard, C.; Rankinen, T. Individual differences in response to regular physical activity. Med. Sci. Sports Exerc. 2001, 33 (Suppl. 6), 446–451. [Google Scholar] [CrossRef]
- Rumpf, M.C.; Cronin, J.B.; Pinder, S.D.; Oliver, J.; Hughes, M. Effect of different training methods on running sprint times in male youth. Pediatr. Exerc. Sci. 2012, 24, 170–186. [Google Scholar] [CrossRef]
- Radnor, J.M.; Lloyd, R.S.; Oliver, J.L. Individual Response to Different Forms of Resistance Training in School-Aged Boys. J. Strength. Cond. Res. 2017, 31, 787–797. [Google Scholar] [CrossRef]
- Shalfawi, S.A.I.; Ingebrigtsen, J.; Dillern, T.; Tønnessen, E.; Delp, T.K.; Enoksen, E. The Effect of 40 M Repeated Sprint Training on Physical Performance in Young Elite Male Soccer Players. Serbian J. Sports Sci. 2012, 6, 111–116. [Google Scholar]
- Tønnessen, E.; Shalfawi, S.A.I.; Haugen, T.; Enoksen, E. The effect of 40-M repeated sprint training on maximum sprinting speed, repeated sprint speed endurance, vertical jump, and aerobic capacity in young elite male soccer players. J. Strength. Cond. Res. 2011, 25, 2364–2370. [Google Scholar] [CrossRef]
- Ford, P.; de Ste Croix, M.; Lloyd, R.; Meyers, R.; Moosavi, M.; Oliver, J.; Till, K.; Williams, C. The Long-Term Athlete Development model: Physiological evidence and application. J. Sports Sci. 2011, 29, 389–402. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Sortwell, A.; Moran, J.; Afonso, J.; Clemente, F.M.; Lloyd, R.S.; Oliver, J.L.; Pedley, J.; Granacher, U. Plyometric-Jump Training Effects on Physical Fitness and Sport-Specific Performance According to Maturity: A Systematic Review with Meta-analysis. Sports Med.—Open 2023, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Oliver, J.L.; Meyers, R.W.; Moody, J.A.; Stone, M.H. Long-term athletic development and its application to youth weightlifting. Strength. Cond. J. 2012, 34, 55–66. [Google Scholar] [CrossRef]
- Weber, G.; Kartodihardjo, W.; Klissouras, V. Growth and physical training with reference to heredity. J. Appl. Physiol. 1976, 40, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Rowland, T.W. Children’s Exercise Physiology; Human Kinetics: Champaign, IL, USA, 2005. [Google Scholar]
- Birat, A.; Bourdier, P.; Piponnier, E.; Blazevich, A.J.; Maciejewski, H.; Duché, P.; Ratel, S. Metabolic and fatigue profiles are comparable between prepubertal children and well-trained adult endurance athletes. Front. Physiol. 2018, 9, 387. [Google Scholar] [CrossRef] [PubMed]
- Tonson, A.; Ratel, S.; Fur YLe Cozzone, P.; Bendahan, D. Effect of maturation on the relationship between muscle size and force production. Med. Sci. Sports Exerc. 2008, 40, 918–925. [Google Scholar] [CrossRef]
- Sperling, M.A. Sperling Pediatric Endocrinology; Elsevier Health Sciences: Philadelphia, PA, USA, 2020. [Google Scholar] [CrossRef]
- Armstrong, N.; Welsman, J.O. Traditional and New Perspectives on Youth Cardiorespiratory Fitness. Med. Sci. Sports Exerc. 2020, 52, 2563–2573. [Google Scholar] [CrossRef]
Weeks | Session 1 (LH) | Session 2 (SH) | ||||
---|---|---|---|---|---|---|
Series | Work:Rest | % vIFT | Series | Work:Rest | % vIFT | |
1–2 | 5 | 1′:1′ | 80% | 10 | 30″:30″ | 90% |
3–4 | 5 | 1′:30″ | 80% | 10 | 30″:15″ | 90% |
5–6 | 5 | 1′:1′ | 85% | 10 | 30″:30″ | 95% |
7–8 | 5 | 1′:30″ | 85% | 10 | 30″:15″ | 95% |
Pre-PHV | Mid-PHV | Post-PHV | F | p | ηp2 | |
---|---|---|---|---|---|---|
n | 12 | 13 | 16 | |||
5 m sprint (s) | 1.21 ± 0.07 | 1.16 ± 0.09 | 1.08 ± 0.04 ab | 16.06 | <0.001 | 0.458 |
30 m sprint (s) | 5.41 ± 0.55 | 4.94 ± 0.58 a | 4.48 ± 0.16 ab | 14.67 | <0.001 | 0.436 |
vIFT (km·h−1) | 16.88 ± 2.48 | 17.42 ± 2.19 | 18.97 ± 0.94 ab | 4.65 | 0.016 | 0.196 |
LH | SH | t | p | Hedge’s g (95% CI) | |
---|---|---|---|---|---|
time (min) | 8.62 ± 1.25 | 8.66 ± 1.25 | 0.21 | 0.832 | 0.03 (−0.22; 0.27) |
vIFT (%) | 82.67 ± 2.50 | 92.35 ± 2.50 | 31.33 | <0.001 | 3.85 (3.44; 4.26) |
EL (a.u.) | 713.37 ± 108.15 | 799.35 ± 116.85 | 6.19 | <0.001 | 0.76 (0.51; 1.01) |
RPE (1–10) | 6.40 ± 1.25 | 6.90 ± 1.38 | 3.03 | 0.003 | 0.37 (0.13; 0.62) |
IL (a.u.) | 54.94 ± 12.31 | 59.80 ± 15.42 | 2.82 | 0.005 | 0.13 (0.10; 0.59) |
Pre-PHV | Mid-PHV | Post-PHV | F | p | ηp2 | ||
---|---|---|---|---|---|---|---|
LH | n | 28 | 47 | 54 | |||
time (min) | 8.57 ± 1.26 | 8.67 ± 1.26 | 8.61 ± 1.25 | 0.06 | 0.943 | <0.001 | |
vIFT (%) | 82.56 ± 2.52 | 82.66 ± 2.52 | 82.59 ± 2.52 | 0.10 | 0.902 | 0.002 | |
EL (u.a.) | 710.71 ± 110.23 | 717.29 ± 110.72 | 711.34 ± 106.77 | 0.05 | 0.953 | <0.001 | |
RPE (1–10) | 7.07 ± 0.72 | 6.68 ± 1.16 | 5.82 ± 1.30 ab | 13.20 | <0.001 | 0.173 | |
IL (u.a.) | 60.27 ± 8.48 | 57.45 ± 11.28 | 50.00 ± 13.16 ab | 8.94 | <0.001 | 0.124 | |
SH | n | 30 | 50 | 54 | |||
time (min) | 8.83 ± 1.27 | 8.65 ± 1.26 | 8.57 ± 1.25 | 0.44 | 0.644 | 0.007 | |
vIFT (%) | 92.50 ± 2.54 | 92.50 ± 2.53 | 92.13 ± 2.50 | 0.35 | 0.706 | 0.005 | |
EL (u.a.) | 817.08 ± 119.51 | 800.25 ± 119.38 | 788.66 ± 113.93 | 0.57 | 0.567 | 0.009 | |
RPE (1–10) | 7.93 ± 0.94 | 7.02 ± 1.24 a | 6.20 ± 1.32 ab | 19.94 | <0.001 | 0.233 | |
IL (u.a.) | 70.58 ± 15.62 | 60.45 ± 13.10 a | 53.19 ± 13.92 ab | 14.92 | <0.001 | 0.186 | |
overall | n | 58 | 97 | 108 | |||
time (min) | 8.70 ± 1.26 | 8.66 ± 1.25 | 8.59 ± 1.25 | 0.19 | 0.828 | 0.001 | |
vIFT (%) | 87.85 ±5.47 | 87.73 ± 5.54 | 87.36 ± 5.40 | 0.19 | 0.828 | 0.001 | |
EL (u.a.) | 765.73 ± 126.08 | 760.05 ± 122.00 | 750.00 ± 116.55 | 0.36 | 0.695 | 0.003 | |
RPE (1–10) | 7.52 ± 0.94 | 6.86 ± 1.21 a | 6.01 ± 1.32 ab | 31.71 | <0.001 | 0.196 | |
IL (u.a.) | 65.60 ± 13.61 | 59.00 ± 12.28 a | 51.60 ± 13.58 ab | 22.62 | <0.001 | 0.148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Jávega, G.; Javaloyes, A.; Moya-Ramón, M.; Peña-González, I. Influence of Biological Maturation on Training Load and Physical Performance Adaptations After a Running-Based HIIT Program in Youth Football. Appl. Sci. 2025, 15, 6974. https://doi.org/10.3390/app15136974
Fernández-Jávega G, Javaloyes A, Moya-Ramón M, Peña-González I. Influence of Biological Maturation on Training Load and Physical Performance Adaptations After a Running-Based HIIT Program in Youth Football. Applied Sciences. 2025; 15(13):6974. https://doi.org/10.3390/app15136974
Chicago/Turabian StyleFernández-Jávega, Gonzalo, Alejandro Javaloyes, Manuel Moya-Ramón, and Iván Peña-González. 2025. "Influence of Biological Maturation on Training Load and Physical Performance Adaptations After a Running-Based HIIT Program in Youth Football" Applied Sciences 15, no. 13: 6974. https://doi.org/10.3390/app15136974
APA StyleFernández-Jávega, G., Javaloyes, A., Moya-Ramón, M., & Peña-González, I. (2025). Influence of Biological Maturation on Training Load and Physical Performance Adaptations After a Running-Based HIIT Program in Youth Football. Applied Sciences, 15(13), 6974. https://doi.org/10.3390/app15136974