Enabling Autonomous Agents for Mobile Wireless Sensor Networks
Abstract
1. Introduction
2. Related Work
2.1. Wireless Sensor Networks: Applications
2.2. Wireless Sensor Networks: Metrics
2.3. Mobile WSNs
2.4. Orchestration Methods and Software for Multi-Robot Systems
3. Contributions
4. Network Operation Phases
4.1. SPF-Only Strategy
4.2. Agents Strategy
5. Implementation
5.1. Battery Simulation of Network Operations
Listing 1. Pseudocode for the controlled flooding routing protocol. |
msg = {id: msg_id, dest: j, sender: i} forward(i,msg) function forward(node,msg): if node==msg.dest: process(msg) else: for neighbor in neighbors(node): if not seen(neighbor,msg) and dist(neighbor,msg.dest) < dist(node,msg.dest): mark_seen(neighbor,msg) forward(neighbor,msg) |
5.2. Agents: Negotiation and Replacement
5.3. Readjustment
5.4. SPF Forces
5.5. Algorithms
5.6. Software Architecture
- Stage simulator plus ROS 2 node binding. This ROS 2 node (executable) carries out physics simulation for the robot models within a determined simulation world.
- Initial pose node. The ROS 2 node in charge of publishing the initial poses for each robot in the world reference frame [46]. The existence of this node can be justified due to the differences in the local robot position estimations (odometry) at ‘zero time’ and the real position in a common spatial reference.
- Robot controller. As the name implies, this software component manages the execution state of each robot. It is designed to run on both simulated and real robots. Essentially, the robot controller acts as a wrapper for one or more controller instances, referred to as the Robot class. By encapsulating multiple Robot class instances within a single Robot Controller ROS 2 node, the computational load is reduced compared to running a dedicated node for each robot. This makes it possible to run large-scale multi-robot simulations more efficiently. Without this wrapping, simulations involving 100 to 200 robots have proven too demanding for our test machines. The advantages of grouping multiple Robot class instances within one Robot Controller are demonstrated in Table 2, which highlights how computational requirements grow with swarm size. In real robots, however, this optimization is not feasible: each Robot Controller can only manage a single Robot class instance.
- Supervisor. The supervisor is a simulation mechanism the purposes of which comprise the launching of the deployment phase, the networking simulation, and the negotiation protocol (as right now it is centralized, and only when it applies). Additional tasks the supervisor carries out are those related to metrics collection and visualizing robot positions.
6. Tests and Results
6.1. Test Methodology
6.2. Results
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronym | Meaning |
WSN | Wireless sensor network |
ROS | Robot operating system |
SPF | Social potential forces |
MWSN | Mobile wireless sensor Network |
CPU | Central processing Unit |
Willingness to interact | |
Battery consumption due to robot movement (%) | |
Distance travelled (m) | |
Motor drain at constant velocity (mAh/m) | |
Battery capacity (mAh) | |
Current battery percentage | |
Energy expenditure to send a packet from n (mAh) | |
Battery drain to send a single packet (mAh) | |
Increase in battery drainage according to distance (mAh/m) | |
Radio range (m) | |
Number of packets sent during a network cycle | |
Constant for battery drainage due to transceiver waking-up (mAh) | |
Critical battery level (%) | |
, | Negotiation battery thresholds (%) |
, | Negotiation willingness thresholds |
Negotiation replacement utility | |
Corrected utility | |
, , | Battery expenditure to reach certain points (%) |
, , | Distances from i to j, to a point p or to centre point (z) |
, | Number of depleted robots, number of alive robots within AP range |
Probability of detecting a connectivity event at cell i | |
Probability of j detecting a connectivity event at cell i | |
C | Total coverage (%) |
References
- Yetgin, H.; Cheung, K.T.K.; El-Hajjar, M.; Hanzo, L. A Survey of Network Lifetime Maximization Techniques in Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2017, 19, 828–854. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Wang, X.; Wang, W. Wireless mesh networks: A survey. Comput. Netw. 2005, 47, 445–487. [Google Scholar] [CrossRef]
- Ghosh, A.; Das, S.K. Coverage and connectivity issues in wireless sensor networks: A survey. Pervasive Mob. Comput. 2008, 4, 303–334. [Google Scholar] [CrossRef]
- Yang, Y.; Fonoage, M.I.; Cardei, M. Improving network lifetime with mobile wireless sensor networks. Comput. Commun. 2010, 33, 409–419. [Google Scholar] [CrossRef]
- Huang, H.; Savkin, A.V.; Ding, M.; Huang, C. Mobile robots in wireless sensor networks: A survey on tasks. Comput. Netw. 2019, 148, 1–19. [Google Scholar] [CrossRef]
- Chen, M.; Kwon, T.; Yuan, Y.; Leung, V.C. Mobile Agent Based Wireless Sensor Networks. J. Comput. 2006, 1, 14–21. [Google Scholar] [CrossRef]
- Ghadi, Y.Y.; Mazhar, T.; Shloul, T.A.; Shahzad, T.; Salaria, U.A.; Ahmed, A.; Hamam, H. Machine Learning Solutions for the Security of Wireless Sensor Networks: A Review. IEEE Access 2024, 12, 12699–12719. [Google Scholar] [CrossRef]
- Behiry, M.H.; Aly, M. Cyberattack detection in wireless sensor networks using a hybrid feature reduction technique with AI and machine learning methods. J. Big Data 2024, 11, 16. [Google Scholar] [CrossRef]
- Saranya, M.; Srevarshine, S.; Sujitha, V.; Sobiya, T. Securing Wireless Sensor Networks from Intrusions Using Machine Learning-Based Detection and Response. In Proceedings of the 2025 International Conference on Multi-Agent Systems for Collaborative Intelligence (ICMSCI), Erode, India, 20–22 January 2025; IEEE: New York, NY, USA, 2025; pp. 236–241. [Google Scholar] [CrossRef]
- Zhou, Z. Distributed WSN Vulnerability Remediation System Based on Mobile-N Policy. Int. J. Inf. Secur. Priv. 2025, 19, 1–25. [Google Scholar] [CrossRef]
- Temene, N.; Sergiou, C.; Georgiou, C.; Vassiliou, V. A Survey on Mobility in Wireless Sensor Networks. Ad Hoc Netw. 2022, 125, 102726. [Google Scholar] [CrossRef]
- Oitzman, M. 2022 ROS 2 Metrics Report. 2023. Available online: https://www.therobotreport.com/2022-ros-2-metrics-report/ (accessed on 10 April 2025).
- ROS Discourse. 2022 ROS Metrics Report. 2023. Available online: http://download.ros.org/downloads/metrics/metrics-report-2022-07.pdf (accessed on 10 April 2025).
- Jamshed, M.A.; Ali, K.; Abbasi, Q.H.; Imran, M.A.; Ur-Rehman, M. Challenges, Applications, and Future of Wireless Sensors in Internet of Things: A Review. IEEE Sens. J. 2022, 22, 5482–5494. [Google Scholar] [CrossRef]
- Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.W. Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors 2022, 22, 2087. [Google Scholar] [CrossRef] [PubMed]
- Rashid, B.; Rehmani, M.H. Applications of wireless sensor networks for urban areas: A survey. J. Netw. Comput. Appl. 2016, 60, 192–219. [Google Scholar] [CrossRef]
- Saha, P.; Kumar, V.; Kathuria, S.; Gehlot, A.; Pachouri, V.; Duggal, A.S. Precision Agriculture Using Internet of Things and Wireless Sensor Networks. In Proceedings of the 2023 International Conference on Disruptive Technologies (ICDT), Greater Noida, India, 11–12 May 2023; IEEE: New York, NY, USA, 2023; pp. 519–522. [Google Scholar] [CrossRef]
- Videgain, M.; Martínez-Casasnovas, J.A.; Vigo-Morancho, A.; Vidal, M.; García-Ramos, F.J. On-farm experimentation of precision agriculture for differential seed and fertilizer management in semi-arid rainfed zones. Precis. Agric. 2024, 25, 3048–3069. [Google Scholar] [CrossRef]
- Musa, P.; Sugeru, H.; Wibowo, E.P. Wireless Sensor Networks for Precision Agriculture: A Review of NPK Sensor Implementations. Sensors 2023, 24, 51. [Google Scholar] [CrossRef]
- EFR32MG24 Series 2 Multiprotocol Wireless SoC—Silicon Labs. Available online: https://www.silabs.com/wireless/zigbee/efr32mg24-series-2-socs (accessed on 10 April 2025).
- nRF5340 Product Specification. Available online: https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6470/NRF5340-DK.pdf (accessed on 10 April 2025).
- Nurcan-Atceken, D.; Altin-Kayhan, A.; Tavli, B. A novel differentiated coverage-based lifetime metric for wireless sensor networks. Ad Hoc Netw. 2024, 164, 103636. [Google Scholar] [CrossRef]
- Dao, T.C.; Tam, N.T.; Binh, H.T.T. Node depth Representation-based Evolutionary Multitasking Optimization for Maximizing the Network Lifetime of Wireless Sensor Networks. Eng. Appl. Artif. Intell. 2024, 128, 107463. [Google Scholar] [CrossRef]
- Anand, R.; Singh, J.; Pandey, D.; Pandey, B.K.; Nassa, V.K.; Pramanik, S. Modern Technique for Interactive Communication in LEACH-Based Ad Hoc Wireless Sensor Network. In Software Defined Networking for Ad Hoc Networks; EAI/Springer Innovations in Communication and Computing; Springer: Cham, Switzerland, 2022; pp. 55–73. [Google Scholar] [CrossRef]
- Sachan, S.; Sharma, R.; Sehgal, A. Energy efficient scheme for better connectivity in sustainable mobile wireless sensor networks. Sustain. Comput. Inform. Syst. 2021, 30, 100504. [Google Scholar] [CrossRef]
- Piltyay, S.; Bulashenko, A.; Demchenko, I. Wireless Sensor Network Connectivity in Heterogeneous 5G Mobile Systems. In Proceedings of the 2020 IEEE International Conference on Problems of Infocommunications Science and Technology, PIC S and T 2020, Kharkiv, Ukraine, 6–9 October 2020; pp. 625–630. [Google Scholar] [CrossRef]
- Di Francesco, M.; Das, S.K.; Anastasi, G. Data Collection in Wireless Sensor Networks with Mobile Elements. ACM Trans. Sens. Netw. (TOSN) 2011, 8, 1–31. [Google Scholar] [CrossRef]
- Natalizio, E.; Loscrí, V. Controlled mobility in mobile sensor networks: Advantages, issues and challenges. Telecommun. Syst. 2013, 52, 2411–2418. [Google Scholar] [CrossRef]
- Lin, C.; Han, G.; Qi, X.; Du, J.; Xu, T.; Martinez-Garcia, M. Energy-Optimal Data Collection for Unmanned Aerial Vehicle-Aided Industrial Wireless Sensor Network-Based Agricultural Monitoring System: A Clustering Compressed Sampling Approach. IEEE Trans. Ind. Inform. 2021, 17, 4411–4420. [Google Scholar] [CrossRef]
- Heinrich, M.K.; Wahby, M.; Dorigo, M.; Hamann, H. Swarm Robotics. In Cognitive Robotics; MIT Press: Cambridge, MA, USA, 2022; pp. 77–98. [Google Scholar] [CrossRef]
- Roldán, J.J.; Garcia-Aunon, P.; Garzón, M.; de León, J.; del Cerro, J.; Barrientos, A. Heterogeneous Multi-Robot System for Mapping Environmental Variables of Greenhouses. Sensors 2016, 16, 1018. [Google Scholar] [CrossRef] [PubMed]
- Landolsi, T.; Sagahyroon, A.; Mirza, M.; Aref, O.; Maki, F.; Maki, S. Pollution monitoring system using position-aware drones with 802.11 Ad-Hoc networks. In Proceedings of the 2018 IEEE Conference on Wireless Sensors, ICWiSe 2018, Langkawi, Malaysia, 21–22 November 2018; pp. 40–43. [Google Scholar] [CrossRef]
- Tang, H.; Zhou, G.; Bai, D.; Li, M.; Zhang, X.; Tang, C. Deployment Method of Wireless Sensor Networks for Coal Mine Safety Monitoring Based on Multi Robot Systems. In Proceedings of the 2023 IEEE International Conference on Robotics and Biomimetics, ROBIO 2023, Koh Samui, Thailand, 4–9 December 2023. [Google Scholar] [CrossRef]
- Weiss, G. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Koutsoubelias, M.; Lalis, S. TeCoLa: A programming framework for dynamic and heterogeneous robotic teams. In Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Hiroshima, Japan, 28 November–1 December 2016; ACM International Conference Proceeding Series. pp. 115–124. [Google Scholar] [CrossRef]
- Aguzzi, G.; Casadei, R.; Viroli, M. MacroSwarm: A Field-Based Compositional Framework for Swarm Programming. In Coordination Models and Languages; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2023; Volume 13908, pp. 31–51. [Google Scholar] [CrossRef]
- Kosak, O.; Huhn, L.; Bohn, F.; Wanninger, C.; Hoffmann, A.; Reif, W. Maple-Swarm: Programming Collective Behavior for Ensembles by Extending HTN-Planning. In Leveraging Applications of Formal Methods, Verification and Validation: Engineering Principles; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2020; Volume 12477, pp. 507–524. [Google Scholar] [CrossRef]
- Carroll, M.; Namjoshi, K.S.; Segall, I. The Resh Programming Language for Multirobot Orchestration. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021. [Google Scholar]
- Fernandez-Cortizas, M.; Molina, M.; Arias-Perez, P.; Perez-Segui, R.; Perez-Saura, D.; Campoy, P. Aerostack2: A Software Framework for Developing Multi-robot Aerial Systems. arXiv 2023, arXiv:2303.18237. [Google Scholar]
- Kaiser, T.K.; Begemann, M.J.; Plattenteich, T.; Schilling, L.; Schildbach, G.; Hamann, H. ROS2SWARM—A ROS 2 Package for Swarm Robot Behaviors. In Proceedings of the IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, 23–27 May 2022; pp. 6875–6881. [Google Scholar] [CrossRef]
- Bareis, A.; Bareis, M.; Bettstetter, C. Robots that Sync and Swarm: A Proof of Concept in ROS 2. In Proceedings of the International Symposium on Multi-Robot and Multi-Agent Systems, MRS 2019, New Brunswick, NJ, USA, 22–23 August 2019; pp. 98–104. [Google Scholar] [CrossRef]
- Urdiales, C.; Aguilera, F.; González-Parada, E.; Cano-García, J.; Sandoval, F. Rule-Based vs. Behavior-Based Self-Deployment for Mobile Wireless Sensor Networks. Sensors 2016, 16, 1047. [Google Scholar] [CrossRef]
- Frasheri, M.; Cano-García, J.; González-Parada, E.; Çürüklü, B.; Ekström, M.; Papadopoulos, A.V.; Urdiales, C. Adaptive autonomy in wireless sensor networks. In Proceedings of the 19th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS’20), Auckland, New Zealand, 9–13 May 2020; pp. 375–383. [Google Scholar]
- Sadeghi Ghahroudi, M.; Shahrabi, A.; Ghoreyshi, S.M.; Alfouzan, F.A. Distributed Node Deployment Algorithms in Mobile Wireless Sensor Networks: Survey and Challenges. ACM Trans. Sens. Netw. 2023, 19, 91. [Google Scholar] [CrossRef]
- Konovalov, P.; Matveev, A. Efficient algorithms for distributed virtual force-based self-spreading of robotic sensor/actuator networks. In Proceedings of the 2024 7th International Conference on Robotics, Control and Automation Engineering (RCAE), Wuhu, China, 25–27 October 2024; IEEE: New York, NY, USA, 2024; pp. 127–132. [Google Scholar] [CrossRef]
- Martín-Rico, F. Chapter: The TF Subsystem. In A Concise Introduction to Robot Programming with ROS 2; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Zhang, D.; Wu, Z.; Chen, J.; Zhu, R.; Munawar, A.; Xiao, B.; Guan, Y.; Su, H.; Hong, W.; Guo, Y.; et al. Human-Robot Shared Control for Surgical Robot Based on Context-Aware Sim-to-Real Adaptation. In Proceedings of the IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, 23–27 May 2022; pp. 7694–7700. [Google Scholar] [CrossRef]
SPF | Agents | ||||
---|---|---|---|---|---|
Deployment | Adjustment | Deployment |
Replacement
and
Retrieval | Adjustment | |
Obstacles, | ✓ | ✓ | ✓ | ✓ | ✓ |
Robots, | ✓ | ✓ | ✓ | ✗ | ✓ |
Attraction, | ✗ | ✗ | ✗ | ✓ | ✗ |
Cohesion, | ✗ | ✓ | ✗ | ✗ | ✗/✓ |
Scenario | Mean CPU Usage (%) | Peak CPU Usage at Startup (%) 1 | Memory Consumption (GB) |
---|---|---|---|
Idle | 0.5 | NaN | 1.7 |
100 robots | 24.5 | 39.1 | 4.5 |
200 robots | 38.1 | 91.2 | 9.4 |
Algorithm | Nomenclature | Alpha | Simulation Runs |
---|---|---|---|
SPF | SPF4 | 4 | 30 |
SPF5 | 5 | 30 | |
SPF6 | 6 | 30 | |
SPF7 | 7 | 30 | |
SPF10 | 10 | 30 | |
Agents | alg0 | 1.6 | 30 |
alg1 | 1.6 | 30 | |
alg2 | 1.6 | 30 | |
alg2sc | 0 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Sánchez, J.-B.; Cano-García, J.-M.; González-Parada, E.; Frasheri, M. Enabling Autonomous Agents for Mobile Wireless Sensor Networks. Appl. Sci. 2025, 15, 6193. https://doi.org/10.3390/app15116193
Castillo-Sánchez J-B, Cano-García J-M, González-Parada E, Frasheri M. Enabling Autonomous Agents for Mobile Wireless Sensor Networks. Applied Sciences. 2025; 15(11):6193. https://doi.org/10.3390/app15116193
Chicago/Turabian StyleCastillo-Sánchez, José-Borja, José-Manuel Cano-García, Eva González-Parada, and Mirgita Frasheri. 2025. "Enabling Autonomous Agents for Mobile Wireless Sensor Networks" Applied Sciences 15, no. 11: 6193. https://doi.org/10.3390/app15116193
APA StyleCastillo-Sánchez, J.-B., Cano-García, J.-M., González-Parada, E., & Frasheri, M. (2025). Enabling Autonomous Agents for Mobile Wireless Sensor Networks. Applied Sciences, 15(11), 6193. https://doi.org/10.3390/app15116193