Human Cervical Intervertebral Disc Pressure Response During Non-Injurious Quasistatic Motion: A Feasibility Study
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
PMHS 1, Trial 1 | PMHS 1, Trial 2 | PMHS 1, Trial 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Motion | C3/C4 | C5/C6 | C7/T1 | C3/C4 | C5/C6 | C7/T1 | C3/C4 | C5/C6 | C7/T1 |
Gentle Traction | 37.62 | 30.29 | 79.87 | 30.95 | 23.96 | 78.76 | 29.32 | 19.42 | 80.35 |
Flexion | 29.60 | 35.87 | −213.05 | 23.61 | 28.86 | −249.71 | 33.77 | 41.00 | −128.83 |
Extension | 16.03 | 13.40 | −135.64 | −15.28 | −3.81 | −114.75 | −7.79 | 17.61 | −121.95 |
Lateral Bending—Left | 35.68 | 39.68 | −21.73 | 24.78 | 19.04 | −7.24 | 34.48 | 50.92 | 1.44 |
Lateral Bending—Right | 40.13 | 40.93 | 59.07 | 0.39 | −9.24 | 61.56 | 33.13 | 55.15 | 19.43 |
Axial Rotation—Left | 33.88 | 37.69 | −16.29 | 22.28 | 14.88 | −20.91 | 31.20 | 59.41 | −9.36 |
Axial Rotation—Right | 42.99 | 57.11 | −18.82 | −2.70 | 33.00 | −3.26 | 4.05 | 67.34 | 1.78 |
Forced Tension | 47.75 | 65.03 | 72.10 | 30.88 | 33.81 | 81.26 | 42.35 | 52.48 | 88.26 |
Forced Compression | −3.59 | 62.51 | −132.98 | −13.20 | 59.80 | −126.73 | −4.49 | 46.53 | −61.58 |
Gentle Traction | 40.79 | 51.16 | 68.85 | 29.81 | 31.85 | 87.30 | 38.12 | 64.12 | 89.49 |
PMHS 2, Trial 1 | PMHS 2, Trial 2 | PMHS 2, Trial 3 | |||||||
Motion | C3/C4 | C5/C6 | C7/T1 | C3/C4 | C5/C6 | C7/T1 | C3/C4 | C5/C6 | C7/T1 |
Gentle Traction | 6.61 | 2.35 | 79.57 | −30.69 | −3.85 | 74.04 | −32.88 | −5.43 | 68.98 |
Flexion | −48.54 | −9.26 | −155.68 | −48.90 | −5.14 | −130.28 | −52.40 | 7.32 | −116.70 |
Extension | −7.01 | 8.28 | −168.37 | −9.22 | 9.65 | −139.59 | −4.63 | 8.45 | −135.46 |
Lateral Bending—Left | −28.96 | −15.93 | −42.55 | −23.05 | −11.52 | −28.46 | −29.54 | −11.17 | −27.50 |
Lateral Bending—Right | −39.39 | −13.08 | −21.15 | −43.83 | −11.61 | −23.04 | −39.72 | −9.90 | −20.19 |
Axial Rotation—Left | −22.88 | −17.87 | −1.60 | −22.64 | −11.90 | −1.32 | −18.00 | −16.10 | −13.05 |
Axial Rotation—Right | −16.33 | −22.17 | 23.15 | −16.84 | −18.16 | −1.39 | −12.12 | −14.94 | 1.00 |
Forced Tension | 22.20 | 5.55 | 99.97 | 22.34 | 6.30 | 103.00 | 31.48 | 7.95 | 92.94 |
Forced Compression | 24.82 | 12.90 | −118.48 | 28.29 | 6.66 | −112.27 | 35.88 | 8.09 | −143.02 |
Gentle Traction | 14.85 | −4.35 | 85.49 | 13.87 | −3.60 | 83.81 | 22.22 | 5.99 | 80.32 |
References
- World Health Organization. Global Status Report on Road Safety 2023; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Road Traffic Injuries. Available online: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries (accessed on 15 October 2024).
- Kent, R.; Cormier, J.; McMurry, T.L.; Johan Ivarsson, B.; Funk, J.; Hartka, T.; Sochor, M. Spinal injury rates and specific causation in motor vehicle collisions. Accid. Anal. Prev. 2023, 186, 107047. [Google Scholar] [CrossRef] [PubMed]
- Looby, S.; Flanders, A. Spine Trauma. Radiol. Clin. 2011, 49, 129–163. [Google Scholar] [CrossRef] [PubMed]
- Yoganandan, N.; Nahum, A.M.; Melvin, J.W.; The Medical College of Wisconsin Inc on behalf of Narayan Yoganandan (Eds.) Accidental Injury: Biomechanics and Prevention; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- National Spinal Cord Injury Statistical Center. The 2023 Annual Statistical Report (Complete Public Version) for the Spinal Cord Injury Model Systems; National Spinal Cord Injury Statistical Center, University of Alabama at Birmingham: Birmingham, AL, USA, 2023. [Google Scholar]
- Barriga-Martín, A.; Pérez-Ruiz, P.; Muñoz-Rodríguez, J.R.; Romero-Muñoz, L.; Peral-Alarma, M.; Ríos-León, M.; Álvarez-Bautista, E. Epidemiology of traumatic spinal cord injury in Spain: A ten-year analysis of trend of clinical and demographic characteristics. J. Spinal Cord Med. 2024, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, R.W.; McElhaney, J.H.; Camacho, D.L.; Kleinberger, M.; Winkelstein, B.A.; Myers, B.S. The Dynamic Responses of the Cervical Spine: Buckling, End Conditions, and Tolerance in Compressive Impacts. SAE Trans. 1997, 106, 3968–3988. [Google Scholar]
- Yoganandan, N.; Haffner, M.; Maiman, D.J.; Nichols, H.; Pintar, F.A.; Jentzen, J.; Weinshel, S.S.; Larson, S.J.; Sances, A. Epidemiology and Injury Biomechanics of Motor Vehicle Related Trauma to the Human Spine. SAE Trans. 1989, 98, 1790–1809. [Google Scholar]
- Freeman, M.D.; Leith, W.M. Estimating the number of traffic crash-related cervical spine injuries in the United States; An analysis and comparison of national crash and hospital data. Accid. Anal. Prev. 2020, 142, 105571. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.; Schwartz, A.; Bhutani, R.; Sharkey, P.; Schwartz, M. Characteristics of injuries to the cervical spine and spinal cord in polytrauma patient population: Experience from a regional trauma unit. Spinal Cord 1999, 37, 560–568. [Google Scholar] [CrossRef]
- Stein, D.M.; Kufera, J.A.; Ho, S.M.; Ryb, G.E.; Dischinger, P.C.; O’Connor, J.V.; Scalea, T.M. Occupant and crash characteristics for case occupants with cervical spine injuries sustained in motor vehicle collisions. J. Trauma 2011, 70, 299–309. [Google Scholar] [CrossRef]
- Association for the Advancement of Automotive Medicine. The Abbreviated Injury Scale; 2015 Revision; AAAM: Des Plaines, IL, USA, 2016. [Google Scholar]
- Hadley, M.N.; Sonntag, V.K.H.; Grahm, T.W.; Masferrer, R.; Browner, C. Axis Fractures Resulting from Motor Vehicle Accidents: The Need for Occupant Restraints. Spine 1986, 11, 861–864. [Google Scholar] [CrossRef]
- Mertz, H.J. Anthropomorphic Test Devices. In Accidental Injury: Biomechanics and Prevention; Nahum, A.M., Melvin, J.W., Eds.; Springer: New York, NY, USA, 2002; pp. 72–88. [Google Scholar] [CrossRef]
- Crandall, J.R.; Bose, D.; Forman, J.; Untaroiu, C.D.; Arregui-Dalmases, C.; Shaw, C.G.; Kerrigan, J.R. Human surrogates for injury biomechanics research. Clin. Anat. 2011, 24, 362–371. [Google Scholar] [CrossRef]
- Iraeus, J.; Poojary, Y.; Jaber, L.; John, J.; Davidsson, J. A new open-source finite element lumbar spine model, its tuning and validation, and development of a tissue-based injury risk function for compression fractures. In Proceedings of the 2023 International Research Council on the Biomechanics of Injury, IRCOBI 2023, Cambridge, UK, 13–15 September 2023; Available online: https://www.ircobi.org/wordpress/downloads/irc23/pdf-files/23132.pdf (accessed on 26 May 2025).
- Tushak, S.; Bollapragada, V.; O’Cain, C.; Shin, J.; Gepner, B.; Pipkorn, B.; Kerrigan, J. Sensitivity of GHBMC Lumbar Spine Biomechanical Response to Subject-specific Geometric Morphing and Soft Tissue Material Property Scaling. In Proceedings of the 2024 International Research Council on the Biomechanics of Injury, IRCOBI 2024, Stockholm, Sweden, 11–13 September 2024. [Google Scholar]
- Yang, K.H. Basic Finite Element Method as Applied to Injury Biomechanics; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- DeWit, J.A.; Cronin, D.S. Cervical spine segment finite element model for traumatic injury prediction. J. Mech. Behav. Biomed. Mater. 2012, 10, 138–150. [Google Scholar] [CrossRef]
- Morgan, M.I.; Corrales, M.A.; Kaur, H.; Cripton, P.A.; Cronin, D.S. Importance of Neck Boundary Condition and Posture on Cervical Spine Response Assessed using a Detailed Finite Element Human Model in a Head-First Impact. Ann. Biomed. Eng. 2025, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kambin, P.; Abda, S.; Kurpicki, F. Intradiskal Pressure and Volume Recording: Evaluation of Normal and Abnormal Cervical Disks. Clin. Orthop. Relat. Res. (1976–2007) 1980, 146, 144. [Google Scholar] [CrossRef]
- Hattori, S.; Oda, H.; Kawaii, S. Cervical intradiscal pressure in movements and traction of the cervical spine. Z Orthop. 1981, 119, 568–569. [Google Scholar]
- Pospiech, J.; Stolke, D.; Wilke, H.J.; Claes, L.E. Intradiscal pressure recordings in the cervical spine. Neurosurgery 1999, 44, 379–384; discussion 384–385. [Google Scholar] [CrossRef]
- Cripton, P.A.; Dumas, G.A.; Nolte, L.-P. A minimally disruptive technique for measuring intervertebral disc pressure in vitro: Application to the cervical spine. J. Biomech. 2001, 34, 545–549. [Google Scholar] [CrossRef]
- Gudavalli, M.R.; Potluri, T.; Carandang, G.; Havey, R.M.; Voronov, L.I.; Cox, J.M.; Rowell, R.M.; Kruse, R.A.; Joachim, G.C.; Patwardhan, A.G.; et al. Intradiscal Pressure Changes during Manual Cervical Distraction: A Cadaveric Study. Evid. Based Complement. Alternat. Med. 2013, 2013, 954134. [Google Scholar] [CrossRef]
- James, C.M.; Brismée, J.-M.; St-Pierre, M.-O.; Descarreaux, M.; Hooper, T.L.; Nougarou, F.; Bélanger, E.M.; Sobczak, S. Variability of Intradiscal Pressure During Cervical Spine Posterior-Anterior Mobilization: A Cadaveric Investigation. J. Manip. Physiol. Ther. 2022, 45, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, R.W. The Dynamics of Head and Cervical Spine Impact. Ph.D. Thesis, Department of Biomedical Engineering Duke University, Durham, NC, USA, 1993. [Google Scholar]
- Nightingale, R.W.; McElhaney, J.H.; Richardson, W.J.; Best, T.M.; Myers, B.S. Experimental Impact Injury to the Cervical Spine: Relating Motion of the Head and the Mechanism of Injury. J. Bone Jt. Surg. 1996, 78, 412–421. [Google Scholar] [CrossRef]
- Huelke, D.F.; Mendelsohn, R.A.; States, J.D.; Melvin, J.W. Cervical Fractures and Fracture-dislocations Sustained without Head Impact. J. Trauma Acute Care Surg. 1978, 18, 533. [Google Scholar] [CrossRef]
- Huelke, D.F.; Moffatt, E.A.; Mendelsohn, R.A.; Melvin, J.W. Cervical Fractures and Fracture Dislocations—An Overview. SAE Trans. 1979, 88, 462–468. [Google Scholar]
- Huelke, D.F.; Nusholtz, G.S. Cervical spine biomechanics: A review of the literature. J. Orthop. Res. 1986, 4, 232–245. [Google Scholar] [CrossRef] [PubMed]
- Myers, B.S.; Nightingale, R.W. Review: The Dynamics of Near Vertex Head Impact and its Role in Injury Prevention and the Complex Clinical Presentation of Basicranial and Cervical Spine Injury. J. Crash Prev. Inj. Control 1999, 1, 67–82. [Google Scholar] [CrossRef]
- Myers, B.S.; Winkelstein, B.A. Epidemiology, Classification, Mechanism, and Tolerance of Human Cervical Spine Injuries. Crit. Rev. Biomed. Eng. 1995, 23, 307–409. [Google Scholar] [CrossRef]
- Nusholtz, G.S.; Huelke, D.E.; Lux, P.; Alem, N.M.; Montalvo, F. Cervical Spine Injury Mechanisms; SAE International: Warrendale, PA, USA, 1983. [Google Scholar] [CrossRef]
- Yoganandan, N.; Chirvi, S.; Pintar, F.A.; Banerjee, A.; Voo, L. Injury Risk Curves for the Human Cervical Spine from Inferior-to-Superior Loading; SAE International: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Pintar, F.A.; Yoganandan, N.; Sances, A.; Reinartz, J.; Harris, G.; Larson, S.J. Kinematic and Anatomical Analysis of the Human Cervical Spinal Column Under Axial Loading. SAE Trans. 1989, 98, 1766–1789. [Google Scholar]
- Burns, M.R.; Caldwell, A.J.; Shin, J.; Sochor, S.H.; Kopp, K.P.; Shaw, G.; Gepner, B.; Kerrigan, J.R. Assessing the Ability of Pressure Sensors Inserted into Intervertebral Discs to Detect Compression, Flexion, and Combined Flexion + Compression Loading. SAE Int. J. Transp. Saf. 2024, 12, 193–201. [Google Scholar] [CrossRef]
- Nachemson, A.L. Disc Pressure Measurements. Spine 1981, 6, 93. [Google Scholar] [CrossRef]
- Nachemson, A.; Morris, J.M. In Vivo measurements of intradiscal pressure. Discometry, a method for the determination of pressure in the lower lumbar discs. J. Bone Jt. Surg. Am. 1964, 46, 1077–1092. [Google Scholar] [CrossRef]
- Dmitriev, A.E.; Cunningham, B.W.; Hu, N.; Sell, G.; Vigna, F.; McAfee, P.C. Adjacent level intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty: An in vitro human cadaveric model. Spine 2005, 30, 1165–1172. [Google Scholar] [CrossRef]
- Kretzer, R.M.; Hsu, W.; Hu, N.; Umekoji, H.; Jallo, G.I.; McAfee, P.C.; Tortolani, P.J.; Cunningham, B.W. Adjacent-level range of motion and intradiscal pressure after posterior cervical decompression and fixation: An in vitro human cadaveric model. Spine 2012, 37, E778–E785. [Google Scholar] [CrossRef]
- Lou, J.; Li, Y.; Wang, B.; Meng, Y.; Gong, Q.; Liu, H. Biomechanical evaluation of cervical disc replacement with a novel prosthesis based on the physiological curvature of endplate. J. Orthop. Surg. 2018, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.A.; Bryant, S.C.; Larsen, S.P.; Murrey, D.B.; Nussman, D.S.; Laxer, E.B.; Darden, B.V. Comparison of cervical disk implants and cervical disk fusion treatments in human cadaveric models. J. Biomech. Eng. 2006, 128, 481–486. [Google Scholar] [CrossRef]
- Lu, T.; Luo, C.; Ouyang, B.; Chen, Q.; Deng, Z. Effects of C5/C6 Intervertebral Space Distraction Height on Pressure on the Adjacent Intervertebral Disks and Articular Processes and Cervical Vertebrae Range of Motion. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 2533–2540. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Li, Y.; Wang, B.; Meng, Y.; Wu, T.; Liu, H. In vitro biomechanical comparison after fixed- and mobile-core artificial cervical disc replacement versus fusion. Medicine 2017, 96, e8291. [Google Scholar] [CrossRef]
- Yan, Y.; Bell, K.M.; Hartman, R.A.; Hu, J.; Wang, W.; Kang, J.D.; Lee, J.Y. In vitro evaluation of translating and rotating plates using a robot testing system under follower load. Eur. Spine J. 2017, 26, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.M.; Yan, Y.; Hartman, R.A.; Lee, J.Y. Influence of follower load application on moment-rotation parameters and intradiscal pressure in the cervical spine. J. Biomech. 2018, 76, 167–172. [Google Scholar] [CrossRef]
- Whyte, T.; Barker, J.B.; Cronin, D.S.; Dumas, G.A.; Nolte, L.-P.; Cripton, P.A. Load-Sharing and Kinematics of the Human Cervical Spine Under Multi-Axial Transverse Shear Loading: Combined Experimental and Computational Investigation. J. Biomech. Eng. 2021, 143, 061013. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, Q.; Yang, J.; Zhang, P.; Xu, T.; Cheng, X.; Chen, J.; Guan, H.; Ni, B. Subaxial Cervical Intradiscal Pressure and Segmental Kinematics Following Atlantoaxial Fixation in Different Angles. World Neurosurg. 2016, 87, 521–528. [Google Scholar] [CrossRef]
- King, A.I.; Viano, D.C.; Mizeres, N.; States, J.D. Humanitarian Benefits of Cadaver Research on Injury Prevention. J. Trauma Acute Care Surg. 1995, 38, 564. [Google Scholar] [CrossRef]
- Adams, M.A.; McNally, D.S.; Dolan, P. “Stress” distributions inside intervertebral discs. The effects of age and degeneration. J. Bone Jt. Surg. Br. 1996, 78, 965–972. [Google Scholar] [CrossRef]
- Lundon, K.; Bolton, K. Structure and Function of the Lumbar Intervertebral Disk in Health, Aging, and Pathologic Conditions. J. Orthop. Sports Phys. Ther. 2001, 31, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Fujimura, Y.; Suzuki, N.; Nishi, Y.; Nakamura, M.; Yabe, Y.; Shiga, H. MRI of cervical intervertebral discs in asymptomatic subjects. J. Bone Jt. Surg. Br. 1998, 80-B, 19–24. [Google Scholar] [CrossRef]
- Miyazaki, M.; Hong, S.W.; Yoon, S.H.; Morishita, Y.; Wang, J.C. Reliability of a Magnetic Resonance Imaging-based Grading System for Cervical Intervertebral Disc Degeneration. Clin. Spine Surg. 2008, 21, 288. [Google Scholar] [CrossRef]
- Jacobs, L.J.; Chen, A.F.; Kang, J.D.; Lee, J.Y. Reliable Magnetic Resonance Imaging Based Grading System for Cervical Intervertebral Disc Degeneration. Asian Spine J. 2016, 10, 70–74. [Google Scholar] [CrossRef]
- Otaki, H.; Otani, K.; Watanabe, T.; Sekiguchi, M.; Konno, S. Associations between clinical neck symptoms and various evaluations of cervical intervertebral disc degeneration by magnetic resonance imaging. Fukushima J. Med. Sci. 2021, 67, 107–118. [Google Scholar] [CrossRef]
- Skrzypiec, D.M.; Pollintine, P.; Przybyla, A.; Dolan, P.; Adams, M.A. The internal mechanical properties of cervical intervertebral discs as revealed by stress profilometry. Eur. Spine J. 2007, 16, 1701–1709. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, J.R.; Foster, J.B.; Sochor, M.; Forman, J.; Toczyski, J.; Roberts, C.W.; Crandall, J.R. Axial Compression Injury Tolerance of the Cervical Spine: Initial Results. Traffic Inj. Prev. 2014, 15, S238–S269. [Google Scholar] [CrossRef]
- Patwardhan, A.G.; Khayatzadeh, S.; Havey, R.M.; Voronov, L.I.; Smith, Z.A.; Kalmanson, O.; Ghanayem, A.J.; Sears, W. Cervical sagittal balance: A biomechanical perspective can help clinical practice. Eur. Spine J. 2018, 27, 25–38. [Google Scholar] [CrossRef]
- Foust, D.R.; Chaffin, D.B.; Snyder, R.G.; Baum, J.K. Cervical Range of Motion and Dynamic Response and Strength of Cervical Muscles. SAE Trans. 1973, 82, 3222–3234. [Google Scholar]
- Pan, F.; Arshad, R.; Zander, T.; Reitmaier, S.; Schroll, A.; Schmidt, H. The effect of age and sex on the cervical range of motion—A systematic review and meta-analysis. J. Biomech. 2018, 75, 13–27. [Google Scholar] [CrossRef]
- Nachemson, A. Lumbar Intradiscal Pressure: Experimental Studies on Post-Mortem Material. Acta Orthop. Scand. 1960, 31, 1–104. [Google Scholar] [CrossRef] [PubMed]
- Magee, D.J.; Manske, R.C. Orthopedic Physical Assessment, 7th ed.; Elsevier Educate: St. Louis, MO, USA, 2020; Available online: https://www.educate.elsevier.com/book/details/9780323749510 (accessed on 18 May 2025).
- Gilad, I.; Nissan, M. A Study of Vertebra and Disc Geometric Relations of the Human Cervical and Lumbar Spine. Spine 1986, 11, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Soltan, N.; Svensson, M.Y.; Jones, C.F.; Cripton, P.A.; Siegmund, G.P. In Vivo Pressure Responses of the Cervical Cerebrospinal Fluid in a Porcine Model of Extension and Flexion Whiplash Exposures. Ann. Biomed. Eng. 2025, 53, 1165–1179. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Quarrington, R.D.; Sandoz, B.; Robertson, W.S.P.; Jones, C.F. Evaluation of Apparatus and Protocols to Measure Human Passive Neck Stiffness and Range of Motion. Ann. Biomed. Eng. 2024, 52, 2178–2192. [Google Scholar] [CrossRef]
PMHS # | MOBIOS Donor ID | Sex | Age [yr] | Stature [cm] | Mass [kg] | Cause of Death |
---|---|---|---|---|---|---|
1 | 0028M | Male | 65 | 153.5 | 53.2 | Metastatic Lung Cancer |
2 | 0027F | Female | 53 | 155.0 | 49.8 | Leukemia |
Head/Neck Anthropometry [cm] | PMHS 1 | PMHS 2 | ||||
Head Circumference | 55.6 | 55.5 | ||||
Head Length | 18.2 | 18.5 | ||||
Head Breadth | 14.5 | 14.5 | ||||
Head Height | 22.5 | 23.5 | ||||
Neck Circumference | 36.0 | 33.0 |
C3/C4 | C5/C6 | C7/T1 | ||||
---|---|---|---|---|---|---|
Motion | Mean | +/− | Mean | +/− | Mean | +/− |
Gentle Traction | 28.01 | 6.53 | 14.22 | 14.62 | 76.93 | 3.86 |
Flexion | 39.47 | 14.82 | 21.24 | 19.80 | 165.71 | 44.53 |
Extension | 9.99 | 4.30 | 10.20 | 1.99 | 135.96 | 16.75 |
Lateral Bending—Left | 29.42 | 3.16 | 24.71 | 16.74 | 21.49 | 16.05 |
Lateral Bending—Right | 32.77 | 11.62 | 23.32 | 16.67 | 34.07 | 17.84 |
Axial Rotation—Left | 25.15 | 5.62 | 26.31 | 15.58 | 10.42 | 7.21 |
Axial Rotation—Right | 15.84 | 1.05 | 35.45 | 24.08 | 8.23 | 0.40 |
Forced Tension | 32.83 | 10.60 | 28.52 | 31.00 | 89.59 | 12.80 |
Forced Compression | 18.38 | 15.96 | 32.75 | 33.28 | 115.84 | 12.37 |
Gentle Traction | 26.61 | 13.62 | 26.85 | 31.39 | 82.54 | 0.94 |
SOCHOR, et al. (2024) | HATTORI (1981) [23] | ||||
---|---|---|---|---|---|
Motion | AVERAGE | C3/C4 | C5/C6 | C7/T1 | |
Neutral/Gentle Traction | 42.53 +/− 11.83 | 27.31 +/− 10.08 | 20.53 +/− 23.01 | 79.74 +/− 2.40 | 63.58 +/− 7.40 |
Extension | 52.05 +/− 7.68 | 9.99 +/− 4.30 | 10.20 +/− 1.99 | 135.96 +/− 16.75 | ~132.28 |
Flexion | 75.47 +/− 26.38 | 39.47 +/− 14.82 | 21.24 +/− 19.80 | 165.71 +/− 44.53 | ~85.34 |
Level | Motion | POSPIECH (1999) [24] | SOCHOR, et al. (2024) |
---|---|---|---|
C3/C4 | Flexion/Extension | 46.41 | 24.73 +/− 9.56 |
Lateral Bending | 23.21 | 31.09 +/− 7.39 | |
Axial Rotation | 36.26 | 20.49 +/− 3.33 | |
Level | Motion | POSPIECH (1999) [24] | SOCHOR, et al. (2024) |
C5/C6 | Flexion/Extension | 33.36 | 15.72 +/− 10.90 |
Lateral Bending | 23.21 | 24.01 +/− 16.71 | |
Axial Rotation | 24.66 | 30.88 +/− 19.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sochor, S.; Jiménez Octavio, J.R.; Carpintero Rubio, C.J.; Sochor, M.R.; Asensio-Gil, J.M.; Rodríguez-Morcillo García, C.; Lopez-Valdes, F.J. Human Cervical Intervertebral Disc Pressure Response During Non-Injurious Quasistatic Motion: A Feasibility Study. Appl. Sci. 2025, 15, 6167. https://doi.org/10.3390/app15116167
Sochor S, Jiménez Octavio JR, Carpintero Rubio CJ, Sochor MR, Asensio-Gil JM, Rodríguez-Morcillo García C, Lopez-Valdes FJ. Human Cervical Intervertebral Disc Pressure Response During Non-Injurious Quasistatic Motion: A Feasibility Study. Applied Sciences. 2025; 15(11):6167. https://doi.org/10.3390/app15116167
Chicago/Turabian StyleSochor, Sara, Jesús R. Jiménez Octavio, Carlos J. Carpintero Rubio, Mark R. Sochor, Juan M. Asensio-Gil, Carlos Rodríguez-Morcillo García, and Francisco J. Lopez-Valdes. 2025. "Human Cervical Intervertebral Disc Pressure Response During Non-Injurious Quasistatic Motion: A Feasibility Study" Applied Sciences 15, no. 11: 6167. https://doi.org/10.3390/app15116167
APA StyleSochor, S., Jiménez Octavio, J. R., Carpintero Rubio, C. J., Sochor, M. R., Asensio-Gil, J. M., Rodríguez-Morcillo García, C., & Lopez-Valdes, F. J. (2025). Human Cervical Intervertebral Disc Pressure Response During Non-Injurious Quasistatic Motion: A Feasibility Study. Applied Sciences, 15(11), 6167. https://doi.org/10.3390/app15116167