Advancing Fractal Dimension Techniques to Enhance Motor Imagery Tasks Using EEG for Brain–Computer Interface Applications
Abstract
1. Introduction
2. Background and Theory
2.1. Preprocessing Methods
2.1.1. Notch Filtering
2.1.2. High-Pass Filtering
2.1.3. CAR Montage Filtering
2.2. Feature Extraction Techniques
2.2.1. Katz
2.2.2. Petrosian
2.2.3. Higuchi
2.2.4. Box-Counting
2.2.5. Multifractal Detrended Fluctuation Analysis
2.2.6. Detrended Fluctuation Analysis
2.2.7. Correlation Dimension
2.3. Classification Algorithms
2.3.1. LinearSVM
2.3.2. GSVM
2.3.3. CART
- Initiate with the root node containing all instances.
- Terminate if all instances have identical ; otherwise, continue.
- Select the feature and threshold that minimize the impurity:
- Divide the node into two child nodes:
- Recursively repeat steps 2–4 for .
- Terminate when the maximum tree depth is reached or further splits do not significantly enhance the impurity reduction.
- In this context, represents the set of input variables, which consist of EEG features, while denotes the target variable, such as the type of brain activity being classified. Each individual EEG feature is denoted as , and is the threshold for splitting nodes. The measure of homogeneity within the nodes after a split, referred to as impurity , can be assessed using Gini impurity, entropy, or another relevant metric. The dataset is divided into two subsets: , containing instances where is less than or equal to , and , which includes instances where is greater than . To minimize impurity, the optimal values of and are determined using .
2.3.4. SVM Polynomial
2.3.5. SGD
2.4. Cross-Validation
3. Materials and Methods
3.1. EEG Data Acquisition
3.2. Fractal Dimension Combination Pipeline
3.2.1. Signal Preprocessing and Artifact Removal
3.2.2. Feature Extraction
3.2.3. Classification and Performance Evaluation
3.3. Development Environment
3.4. Cross-Validation Evaluation Strategy
3.5. Parameter Optimization and Fine-Tuning Process
4. Results
4.1. Comparison Between Fractal Features Combinations
4.2. Comparison Between Classifiers
4.3. Comparison with Previous Works
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALS | Amyotrophic Lateral Sclerosis. |
BCFD | Box-counting fractal dimension. |
BCI | Brain–computer interface. |
CAR | Common average reference. |
CART | Classification and regression tree. |
CDFD | Correlation dimension fractal dimension. |
CLI | Command Line Interface. |
CM | Chronic migraine. |
CSP | Common spatial pattern. |
CV | Cross-validation. |
DFA | Detrended fluctuation analysis. |
EEG | Electroencephalography. |
EOG | Electrooculography. |
ERD | Event-related desynchronization. |
FD | Fractal dimension. |
FKNN | Fuzzy k-nearest neighbors. |
GDF | General Data Format. |
GPFD | Grassberger–Procaccia fractal dimension. |
GSVM | Gaussian support vector machine. |
HCNs | Higher cognitive networks. |
HFD | Higuchi fractal dimension. |
HPFs | High-Pass Butterworth Filters. |
ICA | Independent component analysis. |
IDE | Integrated development environment. |
KFD | Katz fractal dimension. |
LDA | Linear Discriminant Analysis. |
MAT | MATLAB file. |
MCS | Minimally conscious state. |
MFDFA | Multifractal detrended fluctuation analysis. |
MI | Motor imagery. |
MI-BCI | Motor imagery brain–computer interface. |
MRI | Magnetic resonance imaging. |
PCA | Principal component analysis. |
PFD | Petrosian fractal dimension. |
PNs | Perceptual networks. |
Poly | Polynomial. |
PSD | Power spectral density. |
RBF | Radial basis function. |
RSNs | Resting-state networks. |
SGD | Stochastic gradient descent. |
SVM | Support vector machine. |
TDFD | Time-dependent fractal dimension. |
VS | Vegetative state. |
References
- Sourina, O.; Wang, Q.; Liu, Y.; Nguyen, M.K. Fractal-based brain state recognition from EEG in human-computer interaction. Biomed. Eng. Syst. Technol. 2013, 4, 258–272. [Google Scholar]
- Baillet, S.; Mosher, J.C.; Leahy, R.M. Electromagnetic brain mapping. IEEE Signal Process. Mag. 2001, 18, 14–30. [Google Scholar] [CrossRef]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- McFarland, D.J.; Wolpaw, J.R. EEG-based brain–computer interfaces. Curr. Opin. Biomed. Eng. 2017, 4, 194–200. [Google Scholar] [CrossRef]
- Singh, A.; Hussain, A.A.; Lal, S.; Guesgen, H.W. A comprehensive review on critical issues and possible solutions of motor imagery-based electroencephalography brain-computer interface. Sensors 2021, 21, 2173. [Google Scholar] [CrossRef]
- Martini, M.L.; Oermann, E.K.; Opie, N.L.; Panov, F.; Oxley, T.; Yaeger, K. Sensor modalities for brain-computer interface technology: A comprehensive literature review. Neurosurgery 2020, 86, E108–E117. [Google Scholar] [CrossRef] [PubMed]
- Jeunet, C.; Jahanpour, E.; Lotte, F. Why standard brain-computer interface (BCI) training protocols should be changed: An experimental study. J. Neural Eng. 2016, 13, 671–679. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Neuper, C. Motor imagery and direct brain-computer communication. Proc. IEEE 2001, 89, 1123–1134. [Google Scholar] [CrossRef]
- Islam, M.K.; Rastegarnia, A.; Yang, Z. Methods for artifact detection and removal from scalp EEG: A review. Neurophysiol. Clin. Neurophysiol. 2016, 46, 287–305. [Google Scholar] [CrossRef]
- Lotte, F.; Guan, C. Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms. IEEE Trans. Biomed. Eng. 2010, 58, 355–362. [Google Scholar] [CrossRef]
- Samuel, O.W.; Geng, Y.; Li, X.; Li, G. Towards efficient decoding of multiple classes of motor imagery limb movements based on EEG spectral and time domain descriptors. J. Med. Syst. 2017, 41, 194. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Wang, Z.; Ma, C.; Dang, W.; Zhang, K. A wavelet time-frequency representation-based complex network method for characterizing brain activities underlying motor imagery signals. IEEE Access 2018, 6, 65796–65802. [Google Scholar] [CrossRef]
- Aggarwal, S.; Chugh, N. Signal processing techniques for motor imagery brain-computer interface: A review. Array 2019, 1, 100003. [Google Scholar] [CrossRef]
- Güçlü, U.; Güçlütürk, Y.; Loo, C.K. Evaluation of fractal dimension estimation methods for feature extraction in motor imagery-based brain-computer interface. Procedia Comput. Sci. 2011, 3, 589–594. [Google Scholar] [CrossRef]
- Feng, J.K.; Jin, J.; Daly, I.; Zhou, J.; Niu, Y.; Wang, X.; Cichocki, A. An optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI system. Comput. Intell. Neurosci. 2019, 2019, 8068357. [Google Scholar] [CrossRef]
- Gupta, A.; Agrawal, R.K.; Kaur, B. Performance enhancement of mental task classification using EEG signal: A study of multivariate feature selection methods. Soft Comput. 2015, 19, 2799–2812. [Google Scholar] [CrossRef]
- Jusas, V.; Samuvel, S.G. Classification of motor imagery using a combination of user-specific band and subject-specific band for brain-computer interface. Appl. Sci. 2019, 9, 4990. [Google Scholar] [CrossRef]
- Ayesha, S.; Hanif, M.K.; Talib, R. Overview and comparative study of dimensionality reduction techniques for high-dimensional data. Inf. Fusion 2020, 59, 44–58. [Google Scholar] [CrossRef]
- Roy, S.; Rathee, D.; Chowdhury, A.; Prasad, G. Assessing impact of channel selection on decoding of motor and cognitive imagery from MEG data. J. Neural Eng. 2020, 17, 056037. [Google Scholar] [CrossRef] [PubMed]
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for EEG-based brain-computer interfaces: A 10-year update. J. Neural Eng. 2018, 15, 031005. [Google Scholar] [CrossRef]
- Thomas, E.; Dyson, M.; Clerc, M. An analysis of performance evaluation for motor-imagery based BCI. J. Neural Eng. 2013, 10, 031001. [Google Scholar] [CrossRef] [PubMed]
- Schlögl, A.; Kronegg, J.; Huggins, J.; Mason, S. Evaluation criteria for BCI research. In Toward Brain-Computer Interfacing; MIT Press: Cambridge, UK, 2007; Volume 1, pp. 327–342. [Google Scholar]
- Saha, S.; Ahmed, K.I.U.; Mostafa, R.; Hadjileontiadis, L.; Khandoker, A. Evidence of variabilities in EEG dynamics during motor imagery-based multiclass brain–computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 371–382. [Google Scholar] [CrossRef]
- Cachón, A.; Vázquez, R.A. Tuning the parameters of an integrate and fire neuron via a genetic algorithm for solving pattern recognition problems. Neurocomputing 2015, 148, 187–197. [Google Scholar] [CrossRef]
- Rodrigues, P.L.C.; Jutten, C.; Congedo, M. Riemannian Procrustes analysis: Transfer learning for brain–computer interfaces. IEEE Trans. Biomed. Eng. 2019, 66, 2390–2401. [Google Scholar] [CrossRef]
- Zhu, X.; Li, P.; Li, C.; Yao, D.; Zhang, R.; Xu, P. Separated channel convolutional neural network to realize the training-free motor imagery BCI systems. Biomed. Signal Process. Control 2019, 49, 396–403. [Google Scholar] [CrossRef]
- Joadder, M.; Siuly, S.; Kabir, E.; Wang, H.; Zhang, Y. A new design of mental state classification for subject-independent BCI systems. IRBM 2019, 40, 297–305. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, J.; Cai, W.; Wu, S. Transferring common spatial filters with semi-supervised learning for zero-training motor imagery brain-computer interface. IEEE Access 2019, 7, 58120–58130. [Google Scholar] [CrossRef]
- Kwon, O.; Lee, M.; Guan, C.; Lee, S. Subject-independent brain-computer interfaces based on deep convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 3839–3852. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Kwon, O.Y.; Kim, Y.J.; Kim, H.K.; Lee, Y.E.; Williamson, J.; Fazli, S.; Lee, S.W. EEG dataset and OpenBMI toolbox for three BCI paradigms: An investigation into BCI illiteracy. GigaScience 2019, 8, giz002. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, Z.; Yin, E.; Jiang, J.; Tang, J.; Liu, Y.; Hu, D. Toward brain-actuated car applications: Self-paced control with a motor imagery-based brain-computer interface. Comput. Biol. Med. 2016, 77, 148–155. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, Z.; Liu, Y.; Jiang, J.; Yin, E.; Zhang, N.; Wang, Z.; Liu, Y.; Wu, X.; Hu, D. Self-paced operation of a wheelchair based on a hybrid brain-computer interface combining motor imagery and P300 potential. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2516–2526. [Google Scholar] [CrossRef]
- Rong, H.; Li, C.; Bao, R.; Chen, B. Incremental adaptive EEG classification of motor imagery-based BCI. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–7. [Google Scholar]
- Asensio-Cubero, J.; Gan, J.; Palaniappan, R. Multiresolution analysis over graphs for a motor imagery-based online BCI game. Comput. Biol. Med. 2015, 68, 21–26. [Google Scholar] [CrossRef]
- Škola, F.; Tinková, S.; Liarokapis, F. Progressive training for motor imagery brain-computer interfaces using gamification and virtual reality embodiment. Front. Hum. Neurosci. 2019, 13, 329. [Google Scholar] [CrossRef]
- Mohamed, A.F.; Jusas, V. Developing innovative feature extraction techniques from the emotion recognition field on motor imagery using brain–computer interface EEG signals. Appl. Sci. 2024, 14, 11323. [Google Scholar] [CrossRef]
- Moaveninejad, S.; D’Onofrio, V.; Tecchio, F.; Ferracuti, F.; Iarlori, S.; Monteriù, A.; Porcaro, C. Fractal dimension as a discriminative feature for high-accuracy classification in motor imagery EEG-based brain-computer interface. Comput. Methods Programs Biomed. 2024, 244, 107944. [Google Scholar] [CrossRef]
- Cottone, C.; Porcaro, C.; Cancelli, A.; Olejarczyk, E.; Salustri, C.; Tecchio, F. Neuronal electrical ongoing activity as a signature of cortical areas. Brain Struct. Funct. 2017, 222, 2115–2126. [Google Scholar] [CrossRef]
- Di Ieva, A.; Grizzi, F.; Jelinek, H.; Pellionisz, A.J.; Losa, G.A. Fractals in the neurosciences, part I: General principles and basic neurosciences. Neuroscientist 2014, 20, 403–417. [Google Scholar] [CrossRef]
- Marino, M.; Liu, Q.; Samogin, J.; Tecchio, F.; Cottone, C.; Mantini, D.; Porcaro, C. Neuronal dynamics enable the functional differentiation of resting state networks in the human brain. Hum. Brain Mapp. 2019, 40, 1445–1457. [Google Scholar] [CrossRef]
- Porcaro, C.; Di Renzo, A.; Tinelli, E.; Di Lorenzo, G.; Parisi, V.; Caramia, F.; Fiorelli, M.; Di Piero, V.; Pierelli, F.; Coppola, G. Haemodynamic activity characterization of resting state networks by fractal analysis and thalamocortical morphofunctional integrity in chronic migraine. J. Headache Pain 2020, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Porcaro, C.; Marino, M.; Carozzo, S.; Russo, M.; Ursino, M.; Ruggiero, V.; Ragno, C.; Proto, S.; Tonin, P. Fractal dimension feature as a signature of severity in disorders of consciousness: An EEG study. Int. J. Neural Syst. 2022, 32, 2250031. [Google Scholar] [CrossRef]
- Smits, F.M.; Porcaro, C.; Cottone, C.; Cancelli, A.; Rossini, P.M.; Tecchio, F. Electroencephalographic fractal dimension in healthy ageing and Alzheimer’s disease. PLoS ONE 2016, 11, e0149587. [Google Scholar] [CrossRef] [PubMed]
- Borri, A.; Cerasa, A.; Tonin, P.; Citrigno, L.; Porcaro, C. Characterizing fractal genetic variation in the human genome from the HapMap project. Int. J. Neural Syst. 2022, 32, 2250028. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Huang, S.; Huang, Y.D. Motor imagery EEG classification for patients with amyotrophic lateral sclerosis using fractal dimension and Fisher’s criterion-based channel selection. Sensors 2017, 17, 1557. [Google Scholar] [CrossRef]
- Phothisonothai, M.; Watanabe, K. Optimal fractal feature and neural network: EEG-based BCI applications. In Brain-Computer Interface Systems–Recent Progress and Future Prospects; IntechOpen: Rijeka, Croatia, 2013; pp. 91–113. [Google Scholar]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; Wiley: Hoboken, NJ, USA, 1990. [Google Scholar]
- Peng, C.-K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995, 5, 82–87. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 2002, 316, 87–114. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. Physica D 1983, 9, 189–208. [Google Scholar] [CrossRef]
- Katz, M.J. Fractals and the analysis of waveforms. Comput. Biol. Med. 1988, 18, 145–156. [Google Scholar] [CrossRef]
- Hatamikia, S.; Nasrabadi, A.M. Recognition of emotional states induced by music videos based on nonlinear feature extraction and SOM classification. In Proceedings of the 2014 21st Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 26–28 November 2014; IEEE: New York, NY, USA; pp. 333–337. [Google Scholar]
- Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Yang, J.; Wu, Z.; Peng, K.; Okolo, P.N.; Zhang, W.; Zhao, H.; Sun, J. Parameter selection of Gaussian kernel SVM based on local density of training set. Inverse Probl. Sci. Eng. 2021, 29, 536–548. [Google Scholar] [CrossRef]
- Azuaje, F.; Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed.; Morgan Kaufmann Publishers: San Francisco, CA, USA, 2005; p. 560. ISBN 0-12-088407-0. [Google Scholar]
- Hsu, C.W. A Practical Guide to Support Vector Classification; Department of Computer Science, National Taiwan University: Taipei, Taiwan, 2003. [Google Scholar]
- Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of the COMPSTAT’2010: 19th International Conference on Computational Statistics, Paris, France, 22–27 August 2010; Physica-Verlag HD: Heidelberg, Germany, 2010; pp. 177–186. [Google Scholar]
- Hirano, K.; Nishimura, S.; Mitra, S. Design of digital notch filters. IEEE Trans. Commun. 1974, 22, 964–970. [Google Scholar] [CrossRef]
- Hussin, S.F.; Birasamy, G.; Hamid, Z. Design of Butterworth band-pass filter. Politeknik Kolej Komuniti J. Eng. Technol. 2016, 1, 32–46. [Google Scholar]
- Lemos, M.S.; Fisch, B.J. The weighted average reference montage. Electroencephalogr. Clin. Neurophysiol. 1991, 79, 361–370. [Google Scholar] [CrossRef]
- Diamantidis, N.A.; Karlis, D.; Giakoumakis, E.A. Unsupervised stratification of cross-validation for accuracy estimation. Artif. Intell. 2000, 116, 1–6. [Google Scholar] [CrossRef]
- Brunner, C.; Leeb, R.; Müller-Putz, G.; Schlögl, A.; Pfurtscheller, G. BCI Competition 2008–Graz data set A. Inst. Knowl. Discov. (Laboratory Brain-Comput. Interfaces) Graz Univ. Technol. 2008, 16, 34. [Google Scholar]
- Kim, H.; Luo, J.; Chu, S.; Cannard, C.; Hoffmann, S.; Miyakoshi, M. ICA’s bug: How ghost ICs emerge from effective rank deficiency caused by EEG electrode interpolation and incorrect re-referencing. Front. Signal Process. 2023, 3, 1064138. [Google Scholar] [CrossRef]
- Miladinović, A.; Ajčević, M.; Jarmolowska, J.; Marusic, U.; Silveri, G.; Battaglini, P.P.; Accardo, A. Performance of EEG motor-imagery based spatial filtering methods: A BCI study on stroke patients. Procedia Comput. Sci. 2020, 176, 2840–2848. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, G.; Jin, J.; Wang, X.; Cichocki, A. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface. J. Neurosci. Methods 2015, 255, 85–91. [Google Scholar] [CrossRef]
- Izzuddin, T.A.; Safri, N.M.; Othman, M.A. Compact convolutional neural network (CNN) based on SincNet for end-to-end motor imagery decoding and analysis. Biocybern. Biomed. Eng. 2021, 41, 1629–1645. [Google Scholar] [CrossRef]
- She, Q.; Hu, B.; Luo, Z.; Nguyen, T.; Zhang, Y. A hierarchical semi-supervised extreme learning machine method for EEG recognition. Med. Biol. Eng. Comput. 2019, 57, 147–157. [Google Scholar] [CrossRef]
- Wang, J.; Yao, L.; Wang, Y. IFNet: An interactive frequency convolutional neural network for enhancing motor imagery decoding from EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1900–1911. [Google Scholar] [CrossRef]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 2012, 59, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.-J. Parallel genetic algorithm-based common spatial patterns selection on time-frequency decomposed EEG signals for motor imagery brain-computer interface. Biomed. Signal Process. Control 2023, 80, 104397. [Google Scholar] [CrossRef]
- Fang, H.; Jin, J.; Daly, I.; Wang, X.Y. Feature extraction method based on filter banks and Riemannian tangent space in motor-imagery BCI. IEEE J. Biomed. Health Inf. 2022, 26, 2504–2514. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tan, X.; Li, X.; Yin, L. Multiclass motor imagery classification with Riemannian geometry and temporal-spectral selection. Med. Biol. Eng. Comput. 2024, 62, 2961–2973. [Google Scholar] [CrossRef]
- Hersche, M.; Rellstab, T.; Schiavone, P.D.; Cavigelli, L.; Benini, L.; Rahimi, A. Fast and accurate multiclass inference for MI-BCIs using large multiscale temporal and spectral features. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; IEEE: New York, NY, USA; pp. 1690–1694. [Google Scholar]
1st FD | 2nd FD | 3rd FD |
---|---|---|
Petrosian | Box-Counting | DFA |
Petrosian | MFDFA | DFA |
Petrosian | Correlation Dimension | MFDFA |
Higuchi | Correlation Dimension | DFA |
Katz | Petrosian | Higuchi |
Katz | Petrosian | Box-Counting |
Katz | Correlation Dimension | MFDFA |
Katz | Petrosian | Correlation Dimension |
Katz | Box-Counting | Correlation Dimension |
Parameter | Related to | Value |
---|---|---|
notch_filter_fs | Notch Filter | 250.0 |
notch_filter_powerline_freq | Notch Filter | 50 |
notch_filter_q | Notch Filter | 30.0 |
high_pass_filter_fs | High-Pass Filter | 250 |
high_pass_cutoff | High-Pass Filter | 0.5 |
car_montage_filter_axis | CAR Montage Filter | 1 |
car_montage_filter_keep_dims | CAR Montage Filter | True |
higuchi_k_max_value | Higuchi Fractal Dimension | 10 |
box_counting_n_scales | Box-Counting Fractal Dimension | 10 |
box_counting_min_box_size | Box-Counting Fractal Dimension | 1 |
box_counting_max_box_size | Box-Counting Fractal Dimension | 874 |
correlation_dimension_emb_dim | Correlation Dimension Fractal Dimension | 5 |
correlation_delay | Correlation Dimension Fractal Dimension | 5 |
correlation_dimension_r_values | Correlation Dimension Fractal Dimension | np.logspace(−3, 0, 30) |
correlation_dimension_epsilon | Correlation Dimension Fractal Dimension | 1 × 10−12 |
mfdfa_q_values | MFDFA Fractal Dimension | [−5, −4, …, 4, 5] |
mfdfa_min_scale | MFDFA Fractal Dimension | 4 |
mfdfa_max_scale | MFDFA Fractal Dimension | 437 |
mfdfa_scale_ratio | MFDFA Fractal Dimension | 2.0 |
dfa_min_scale | DFA Fractal Dimension | 4 |
dfa_max_scale | DFA Fractal Dimension | 437 |
dfa_scale_ratio | DFA Fractal Dimension | 2.0 |
filter_bank_type | Filters Bank Coefficients | butter |
filter_bank_order | Filters Bank Coefficients | 2 |
filter_bank_max_freq | Filters Bank Coefficients | 40 |
time_windows_flt | Filters Bank Coefficients | [2.5, 3.5] … [2.5, 6] |
bw | Bandwidth of Filtered Signals | [2, 4, 8, 16, 32] |
no_csp | No. of CSP Features | 24 |
cart_max_depth | CART | 10 |
cart_random_state | CART | 1 |
cart_criterion | CART | Gini |
cart_splitter | CART | best |
cart_min_samples_split | CART | 2 |
cart_min_samples_leaf | CART | 1 |
linear_svc_c | LinearSVM | 0.1 |
linear_svc_intercept_scaling | LinearSVM | 1 |
linear_svc_loss | LinearSVM | hinge |
linear_svc_max_iter | LinearSVM | 1000 |
linear_multi_class | LinearSVM | ovr |
linear_svc_penalty | LinearSVM | l2 |
linear_svc_random_state | LinearSVM | 1 |
linear_svc_tol | LinearSVM | 0.00001 |
svc_w_poly_kernel_c | SVM Polynomial Kernel | 0.1 |
svc_w_poly_kernel_type | SVM Polynomial Kernel | poly |
svc_w_poly_kernel_degree | SVM Polynomial Kernel | 10 |
svc_w_poly_kernel_gamma | SVM Polynomial Kernel | auto |
svc_w_poly_kernel_coef0 | SVM Polynomial Kernel | 0.0 |
svc_w_poly_kernel_tol | SVM Polynomial Kernel | 0.001 |
svc_w_poly_kernel_cache_size | SVM Polynomial Kernel | 10,000 |
svc_w_poly_kernel_max_iter | SVM Polynomial Kernel | −1 |
svc_w_poly_kernel_decision_fx | SVM Polynomial Kernel | ovr |
gsvm_c | GSVM | 20 |
gsvm_kernel_type | GSVM | rbf |
gsvm_degree | GSVM | 10 |
gsvm_gamma | GSVM | auto |
gsvm_coef0 | GSVM | 0.0 |
gsvm_tol | GSVM | 0.001 |
gsvm_cache_size | GSVM | 10,000 |
gsvm_max_iter | GSVM | −1 |
gsvm_decision_fx | GSVM | ovr |
sgd_loss | SGD | hinge |
sgd_penalty | SGD | l2 |
sgd_max_iter | SGD | 1000 |
sgd_tol | SGD | 0.001 |
sgd_alpha | SGD | 0.1 |
sgd_random_state | SGD | 1 |
fs | BCI IV 2a Set Sampling Frequency | 250.0 |
no_channels | No. of EEG Channels | 22 |
no_subjects | No. of Subjects | 9 |
no_classes | No. of Classes | 4 |
no_splits | No. of Folds in Cross-Validation | 5 |
Fractal Dimensions | Classifier | Sub. 1 | Sub. 2 | Sub. 3 | Sub. 4 | Sub. 5 | Sub. 6 | Sub. 7 | Sub. 8 | Sub. 9 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
PFD vs. BCFD vs. DFA | LinearSVM | 84.95 | 70 | 90 | 62.58 | 81.69 | 47.88 | 92.59 | 90.13 | 87.31 | 78.57 |
GSVM | 84.61 | 69.25 | 90.74 | 63.33 | 79.78 | 48.35 | 91.11 | 89.37 | 86.87 | 78.16 | |
CART | 64.90 | 45.55 | 74.44 | 39.29 | 53.05 | 31.03 | 84.16 | 62.90 | 77.20 | 59.17 | |
SVM Poly | 83.14 | 62.59 | 84.81 | 56.40 | 79.76 | 51.07 | 86.70 | 89.37 | 84.76 | 75.40 | |
SGD | 82.09 | 63.70 | 84.07 | 53.73 | 59.55 | 36.51 | 78.20 | 87.08 | 78.44 | 69.26 | |
PFD vs. MFDFA vs. DFA | LinearSVM | 84.95 | 70 | 90 | 62.58 | 82.07 | 47.88 | 92.59 | 90.13 | 87.31 | 78.61 |
GSVM | 84.61 | 69.25 | 90.74 | 63.33 | 79.78 | 48.35 | 91.11 | 89.37 | 86.87 | 78.16 | |
CART | 64.90 | 45.55 | 74.44 | 39.29 | 52.67 | 31.03 | 84.16 | 62.52 | 77.20 | 59.08 | |
SVM Poly | 83.14 | 62.59 | 84.81 | 56.40 | 79.76 | 51.07 | 86.33 | 89.37 | 84.76 | 75.36 | |
SGD | 81.73 | 63.70 | 84.07 | 49.51 | 56.90 | 34.21 | 80.80 | 73.12 | 80.55 | 67.18 | |
PFD vs. CDFD vs. MFDFA | LinearSVM | 84.95 | 69.62 | 90 | 62.96 | 82.46 | 47.88 | 92.59 | 90.13 | 87.31 | 78.66 |
GSVM | 84.61 | 70 | 90.74 | 64.84 | 80.18 | 48.35 | 90.74 | 89.37 | 86.87 | 78.41 | |
CART | 65.62 | 42.22 | 74.07 | 35.10 | 54.97 | 31.03 | 84.16 | 59.48 | 78.45 | 58.34 | |
SVM Poly | 83.51 | 62.59 | 84.81 | 56.79 | 79.76 | 51.07 | 85.96 | 89.37 | 84.76 | 75.40 | |
SGD | 80.63 | 57.03 | 85.18 | 49.89 | 58.38 | 37.42 | 79.67 | 87.46 | 79.75 | 68.38 | |
HFD vs. CDFD vs. DFA | LinearSVM | 84.95 | 69.62 | 90 | 63.73 | 82.08 | 47.88 | 92.59 | 90.13 | 87.31 | 78.70 |
GSVM | 84.61 | 70 | 90.74 | 64.84 | 80.18 | 48.35 | 90.74 | 89.37 | 86.87 | 78.41 | |
CART | 64.89 | 42.22 | 73.70 | 35.10 | 54.97 | 31.03 | 84.16 | 59.48 | 78.45 | 58.22 | |
SVM Poly | 83.51 | 62.22 | 84.81 | 56.79 | 79.76 | 51.07 | 85.96 | 89.37 | 84.76 | 75.36 | |
SGD | 83.91 | 59.25 | 83.70 | 51.43 | 58.39 | 36.05 | 82.26 | 87.83 | 80.59 | 69.27 | |
KFD vs. PFD vs. HFD | LinearSVM | 84.96 | 69.25 | 90.37 | 64.88 | 82.07 | 47.88 | 92.96 | 90.88 | 87.31 | 78.95 |
GSVM | 84.24 | 69.25 | 90.37 | 63.32 | 79.41 | 47.89 | 91.48 | 89.75 | 86.87 | 78.07 | |
CART | 64.90 | 45.55 | 74.44 | 38.91 | 53.05 | 31.03 | 84.16 | 62.52 | 77.20 | 59.08 | |
SVM Poly | 83.50 | 62.59 | 85.18 | 56.04 | 79.38 | 50.62 | 86.70 | 88.99 | 84.76 | 75.31 | |
SGD | 78.43 | 58.88 | 87.40 | 46.93 | 62.24 | 35.13 | 76.34 | 83.33 | 83.08 | 67.97 | |
KFD vs. PFD vs. BCFD | LinearSVM | 84.96 | 69.62 | 90.37 | 65.26 | 82.07 | 47.88 | 92.96 | 90.88 | 87.31 | 79.04 |
GSVM | 84.24 | 69.62 | 90.37 | 63.32 | 79.41 | 47.89 | 91.48 | 89.75 | 86.87 | 78.11 | |
CART | 64.90 | 45.55 | 74.44 | 38.52 | 53.05 | 31.03 | 84.16 | 62.52 | 77.20 | 59.04 | |
SVM Poly | 83.50 | 62.59 | 85.18 | 56.04 | 79.38 | 50.62 | 86.70 | 88.99 | 84.76 | 75.31 | |
SGD | 79.17 | 60.74 | 85.92 | 45.02 | 63.76 | 32.41 | 83.00 | 81.05 | 82.23 | 68.14 | |
KFD vs. CDFD vs. MFDFA | LinearSVM | 84.96 | 70 | 90 | 65.65 | 81.70 | 47.88 | 92.96 | 91.26 | 87.31 | 79.08 |
GSVM | 84.24 | 69.62 | 90 | 64.47 | 79.80 | 47.89 | 91.48 | 89.75 | 86.87 | 78.24 | |
CART | 64.89 | 42.22 | 74.07 | 35.10 | 54.97 | 31.03 | 84.16 | 59.48 | 78.45 | 58.26 | |
SVM Poly | 83.51 | 62.96 | 85.18 | 56.03 | 79.76 | 50.62 | 86.33 | 89.37 | 84.76 | 75.39 | |
SGD | 80.97 | 64.07 | 85.18 | 43.82 | 58.84 | 32.86 | 76.75 | 84.84 | 83.51 | 67.87 | |
KFD vs. PFD vs. CDFD | LinearSVM | 84.96 | 70 | 90.37 | 65.65 | 82.08 | 47.88 | 92.96 | 90.88 | 87.31 | 79.12 |
GSVM | 84.24 | 69.62 | 90 | 64.47 | 79.80 | 47.89 | 91.48 | 89.75 | 86.87 | 78.24 | |
CART | 66.72 | 42.96 | 70.37 | 38.55 | 54.95 | 32.38 | 84.16 | 64.02 | 77.61 | 59.08 | |
SVM Poly | 83.51 | 62.96 | 85.18 | 56.03 | 79.76 | 50.62 | 86.33 | 89.37 | 84.76 | 75.39 | |
SGD | 80.98 | 58.51 | 83.70 | 48.84 | 57.33 | 32.86 | 78.20 | 82.20 | 80.53 | 67.02 | |
KFD vs. BCFD vs. CDFD | LinearSVM | 84.96 | 70 | 90.37 | 65.65 | 82.08 | 47.88 | 92.96 | 91.26 | 87.31 | 79.16 |
GSVM | 84.24 | 69.62 | 90 | 64.47 | 79.80 | 47.89 | 91.48 | 89.75 | 86.87 | 78.24 | |
CART | 66.72 | 42.96 | 70.37 | 38.17 | 54.95 | 33.78 | 84.16 | 64.39 | 77.61 | 59.23 | |
SVM Poly | 83.51 | 62.96 | 85.18 | 56.03 | 79.76 | 50.62 | 86.33 | 89.37 | 84.76 | 75.39 | |
SGD | 80.61 | 58.51 | 82.96 | 45.38 | 57.33 | 32.41 | 78.94 | 81.42 | 80.53 | 66.46 |
Fractal Dimensions | LinearSVM | GSVM | CART | SVM “Poly” | SGD |
---|---|---|---|---|---|
PFD vs. BCFD vs. DFA | 78.57 | 78.16 | 59.17 | 75.4 | 69.26 |
PFD vs. MFDFA vs. DFA | 78.61 | 78.16 | 59.08 | 75.36 | 67.18 |
PFD vs. CDFD vs. MFDFA | 78.66 | 78.41 | 58.34 | 75.4 | 68.38 |
HFD vs. CDFD vs. DFA | 78.7 | 78.41 | 58.22 | 75.36 | 69.27 |
KFD vs. PFD vs. HFD | 78.95 | 78.07 | 59.08 | 75.31 | 67.97 |
KFD vs. PFD vs. BCFD | 79.04 | 78.11 | 59.04 | 75.31 | 68.14 |
KFD vs. CDFD vs. MFDFA | 79.08 | 78.24 | 58.26 | 75.39 | 67.87 |
KFD vs. PFD vs. CDFD | 79.12 | 78.24 | 59.08 | 75.39 | 67.02 |
KFD vs. BCFD vs. CDFD | 79.16 | 78.24 | 59.23 | 75.39 | 66.46 |
Mean | 78.88 | 78.23 | 58.83 | 75.37 | 67.95 |
Method | Year | A01 | A02 | A03 | A04 | A05 | A06 | A07 | A08 | A09 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
TSLDA | 2012 | 80.5 | 51.3 | 87.5 | 59.3 | 45.0 | 55.3 | 82.1 | 84.8 | 86.1 | 70.2 |
Multi-Scale CSP | 2018 | 86.8 | 57.2 | 86.5 | 61.4 | 61.2 | 50.7 | 92.4 | 87.8 | 79.1 | 73.7 |
Multi-Scale Riemannian | 2018 | 90.0 | 55.4 | 81.3 | 71.9 | 69.6 | 56.7 | 85.6 | 83.8 | 84.9 | 75.5 |
HSS-ELM | 2019 | 81.1 | 49.9 | 78.0 | 63.3 | 44.0 | 49.4 | 81.1 | 81.5 | 81.4 | 67.8 |
SincNet | 2021 | 75.2 | 39.5 | 79.4 | 49.1 | 62.7 | 39.3 | 64.4 | 74.9 | 64.1 | 63.1 |
FBRTS | 2022 | 86.1 | 65.2 | 90.0 | 63.8 | 75.6 | 52.4 | 91.1 | 89.0 | 86.5 | 77.7 |
TSFBCSP-GA | 2023 | 86.5 | 59.0 | 89.2 | 69.4 | 63.2 | 54.5 | 87.2 | 80.2 | 81.6 | 74.5 |
IFNet | 2023 | 88.5 | 56.4 | 91.8 | 73.8 | 69.7 | 60.4 | 89.2 | 85.4 | 88.7 | 78.2 |
TWSB | 2024 | 89.3 | 66.9 | 89.3 | 69.3 | 74.1 | 60.1 | 89.4 | 88.0 | 85.6 | 79.1 |
KFD vs. PFD vs. HFD (Updated) | 2024 | 85.0 | 69.3 | 90.4 | 64.9 | 82.1 | 47.9 | 93.0 | 90.9 | 87.3 | 79.0 |
KFD vs. BCFD vs. CDFD | 85.0 | 70.0 | 90.4 | 65.7 | 82.1 | 47.9 | 93.0 | 91.3 | 87.3 | 79.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, A.F.; Jusas, V. Advancing Fractal Dimension Techniques to Enhance Motor Imagery Tasks Using EEG for Brain–Computer Interface Applications. Appl. Sci. 2025, 15, 6021. https://doi.org/10.3390/app15116021
Mohamed AF, Jusas V. Advancing Fractal Dimension Techniques to Enhance Motor Imagery Tasks Using EEG for Brain–Computer Interface Applications. Applied Sciences. 2025; 15(11):6021. https://doi.org/10.3390/app15116021
Chicago/Turabian StyleMohamed, Amr F., and Vacius Jusas. 2025. "Advancing Fractal Dimension Techniques to Enhance Motor Imagery Tasks Using EEG for Brain–Computer Interface Applications" Applied Sciences 15, no. 11: 6021. https://doi.org/10.3390/app15116021
APA StyleMohamed, A. F., & Jusas, V. (2025). Advancing Fractal Dimension Techniques to Enhance Motor Imagery Tasks Using EEG for Brain–Computer Interface Applications. Applied Sciences, 15(11), 6021. https://doi.org/10.3390/app15116021