Investigation of Salt and Water Diffusion During Dry Salting, Wet Curing, and Ultrasonic Wet Curing
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Curing Methods
2.2.1. Control Samples
2.2.2. Dry Salting
2.2.3. Wet Curing
2.2.4. Wet Curing + Ultrasound
2.3. Measurement of the Salt and Water Content
2.4. Diffusion Modeling
2.4.1. Model of Martuscelli
2.4.2. Model of Abbasi
2.4.3. Model of Telis
2.4.4. Model Fitting
2.5. Statistical Analysis
2.5.1. Selection of Statistical Method
2.5.2. Assumption Tests
2.5.3. POST HOC Test
3. Results and Discussion
3.1. Statistical Condition Test
3.2. Salt Content
3.3. Determination of Water Content
3.4. Diffusion Constants
3.4.1. Diffusion Constant for Salt
3.4.2. Diffusion Constant for Water
- The movement of water is not characterized by pure diffusion as salt is, but as described above, it is a two-way process, the result of which provides the driving force for the movement of water.
- The binding of water does not only occur based on the principle of diffusion but surface binding must also be taken into account. We were prepared for this phenomenon during the measurement, which is why the removal of moisture from the surface of the cured samples was an important step. However, the removal of surface moisture cannot be carried out perfectly. On the one hand, this is because water molecules can bind more strongly to molecular chains with polar groups on the surface of the meat than to the material of the blotting paper. On the other hand, the surface of the meat cut in the direction of the grain contains a ribbed surface and grooves, due to which, some of the surface water does not even come into contact with the blotting paper during the soaking.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DS | Dry salting |
WP | Wet curing |
US | Wet curing + ultrasound |
References
- Baska, F.; Zukál, E. A hús ipari feldolgozása. A hús ipari feldolgozása. In Húsipari Kézikönyv; Lőrincz, F., Lencsepeti, J., Eds.; Mezőgazda Kiadó: Budapest, Hungary, 1973; pp. 583–584. [Google Scholar]
- Sabadini, E.; Carvalho, B.C., Jr.; Sobral, P.J.; Hubinger, M.D. Mass transfer and diffusion coefficient determination in salted and dried meat. Dry. Technol. 1998, 16, 2095–2115. [Google Scholar] [CrossRef]
- Firouz, M.S.; Sardari, H.; Chamgordani, P.A.; Behjati, M. Power ultrasound in the meat industry (freezing, cooking and fermentation): Mechanisms, advances and challenges. Ultrason. Sonochem. 2022, 86, 106027. [Google Scholar] [CrossRef] [PubMed]
- Flórik, G.I. Mechanika. In Fizika, 2nd ed.; Holics, L., Ed.; Műszaki Könyvkiadó: Budapest, Hungary, 1992; Volume 1, p. 401. [Google Scholar]
- Yao, Y.; Pan, Y.; Liu, S. Power ultrasound and its applications: A state-of-the-art review. Ultrason. Sonochem. 2020, 62, 104722. [Google Scholar] [CrossRef] [PubMed]
- Somogyi, T.; Madácsi, C.; Lovas-Bíró, B.; Zsom, T.; Zsom-Muha, V. Investigation of soaking water produced by ultrasound-assisted chickpea soaking process. Prog. Agric. Eng. Sci. 2023, 19, 123–130. [Google Scholar] [CrossRef]
- Friedrich, L. Ultrahang Alkalmazása Húskészítmények Minősítésében és Gyártástechnológiájában. Ph.D. Dissertation, Budapesti Corvinus Egyetem, Budapest, Hungary, 2008. [Google Scholar]
- Cruz-Garibaldi, B.Y.; Alarcon-Rojo, A.D.; Huerta-Jimenez, M.; Garcia-Galicia, I.A.; Carrillo-Lopez, L.M. Efficacy of ultrasonic-assisted curing is dependent on muscle size and ultrasonication system. Processes 2020, 8, 1015. [Google Scholar] [CrossRef]
- Alarcon-Rojo, A.D.; Carrillo-Lopez, L.M.; Reyes-Villagrana, R.; Huerta-Jiménez, M.; Garcia-Galicia, I.A. Ultrasound and meat quality: A review. Ultrason. Sonochem. 2019, 55, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Zhu, Q.; Zhou, Y.; Wan, J.; Liu, L.; Zhou, Y.; Chen, D.; Huang, Y.; Chen, L.; Zhong, X. Effect of Ultrasound Combined with Glycerol-Mediated Low-Sodium Curing on the Quality and Protein Structure of Pork Tenderloin. Foods 2022, 11, 3798. [Google Scholar] [CrossRef] [PubMed]
- Latoch, A.; Stasiak, D.M.; Junkuszew, A. Combined Effect of Acid Whey Addition and Ultrasonic Treatment on the Chemical and Microbiological Stability of Lamb Stuffing. Foods 2023, 12, 1379. [Google Scholar] [CrossRef] [PubMed]
- Shu, Z.W.; Wang, S.M.; Xu, W.W.; Wang, N.; Pan, Z.Q.; Xu, Y.D.; Wu, N.N. Research progress of ultrasound technology and its combined application in fruit and vegetable storage. Acta Aliment. 2024, 53, 513–536. [Google Scholar] [CrossRef]
- Visy, A.; Jónás, G.; Szakos, D.; Horváth-Mezőfi, Z.; Hidas, K.I.; Barkó, A.; Friedrich, L. Evaluation of ultrasound and microbubbles effect on pork meat during brining process. Ultrason. Sonochem. 2021, 75, 105589. [Google Scholar] [CrossRef] [PubMed]
- Telis, V.R.N.; Murari, R.C.B.D.L.; Yamashita, F. Diffusion coefficients during osmotic dehydration of tomatoes in ternary solutions. J. Food Eng. 2004, 61, 253–259. [Google Scholar] [CrossRef]
- Martuscelli, M.; Lupieri, L.; Sacchetti, G.; Mastrocola, D.; Pittia, P. Prediction of the salt content from water activity analysis in dry-cured ham. J. Food Eng. 2017, 200, 29–39. [Google Scholar] [CrossRef]
- Abbasi Souraki, B.; Ghaffari, A.; Bayat, Y. Mathematical modeling of moisture and solute diffusion in the cylindrical green bean during osmotic dehydration in salt solution. Food Bioprod. Process. 2012, 90, 64–71. [Google Scholar] [CrossRef]
- Marabi, A.; Livings, S.; Jacobson, M.; Saguy, I.S. Normalized Weibull distribution for modeling rehydration of food particulates. Eur. Food Res. Technol. 2003, 217, 311–318. [Google Scholar] [CrossRef]
- Kang, D.; Wang, A.; Zhou, G.; Zhang, W.; Xu, S.; Guo, G. Power ultrasonic on mass transport of beef: Effects of ultrasound intensity and NaCl concentration. Innov. Food Sci. Emerg. Technol. 2016, 35, 36–44. [Google Scholar] [CrossRef]
- IBM SPSS Statistics for Windows 29.0.2.0; IBM Corp.: Armonk, NY, USA, 2023.
- Inguglia, E.S.; Zhang, Z.; Burgess, C.; Kerry, J.P.; Tiwari, B.K. Influence of extrinsic operational parameters on salt diffusion during ultrasound assisted meat curing. Ultrasonics 2018, 83, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Telis, V.R.N.; Romanelli, P.F.; Gabas, A.L.; Telis-Romero, J. Salting kinetics and salt diffusivities in farmed Pantanal caiman muscle. Food Technol. 2003, 38, 529–535. [Google Scholar] [CrossRef]
- Siró, I.; Vén, C.; Balla, C.; Jónás, G.; Zeke, I.; Friedrich, L. Application of an ultrasonic assisted curing technique for improving the diffusion of sodium chloride in porcine meat. J. Food Eng. 2009, 91, 353–362. [Google Scholar] [CrossRef]
Treatment | Time | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 min | 15 min | 30 min | 60 min | 90 min | 120 min | 150 min | 180 min | ~2 days | |
control-raw | 3 | ||||||||
control-equalized | 3 | ||||||||
DS | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||
WP | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||
US | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Treatment | Average Water Content [m/m%] and Tukey Group * |
---|---|
Dry salting | 0.582 A |
Wet curing | 0.610 B |
Wet curing + ultrasound | 0.622 B |
Diffusion Constant—D × 10−10 [m2/s] | RMSE | |||||
---|---|---|---|---|---|---|
M | A | T | M | A | T | |
DS | 4.42 | 4.22 | 3.36 | 0.0225 | 0.0048 | 0.0102 |
WP | 5.84 | 5.75 | 4.45 | 0.0244 | 0.0098 | 0.0152 |
US | 8.53 | 8.55 | 6.3 | 0.0304 | 0.0105 | 0.0265 |
Diffusion Constant—D × 10−9 [m2/s] | RMSE | |||||
---|---|---|---|---|---|---|
M | A | T | M | A | T | |
DS | 2.18 | 2.42 | 1.63 | 0.1375 | 0.1426 | 0.1283 |
WP | 0.48 | 0.50 | 0.40 | 0.1023 | 0.1199 | 0.1091 |
US | 0.73 | 0.79 | 0.59 | 0.0923 | 0.0962 | 0.0906 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fekete, S.; Jónás, G.; Felföldi, J.; Kovacs, Z.; Friedrich, L. Investigation of Salt and Water Diffusion During Dry Salting, Wet Curing, and Ultrasonic Wet Curing. Appl. Sci. 2025, 15, 5939. https://doi.org/10.3390/app15115939
Fekete S, Jónás G, Felföldi J, Kovacs Z, Friedrich L. Investigation of Salt and Water Diffusion During Dry Salting, Wet Curing, and Ultrasonic Wet Curing. Applied Sciences. 2025; 15(11):5939. https://doi.org/10.3390/app15115939
Chicago/Turabian StyleFekete, Sándor, Gábor Jónás, József Felföldi, Zoltan Kovacs, and László Friedrich. 2025. "Investigation of Salt and Water Diffusion During Dry Salting, Wet Curing, and Ultrasonic Wet Curing" Applied Sciences 15, no. 11: 5939. https://doi.org/10.3390/app15115939
APA StyleFekete, S., Jónás, G., Felföldi, J., Kovacs, Z., & Friedrich, L. (2025). Investigation of Salt and Water Diffusion During Dry Salting, Wet Curing, and Ultrasonic Wet Curing. Applied Sciences, 15(11), 5939. https://doi.org/10.3390/app15115939