Determination of Intrinsic Sodium in Grass-Fed Bonsmara (Bos taurus indicus) Meat
Abstract
:1. Introduction
Rationale of the Study
2. Materials and Methods
2.1. Study Area
2.2. Sampling Process and Sites
2.3. Sample Preparation and Digestion
2.4. Data Analysis
2.5. Ethical Statement
3. Results
3.1. Intrinsic Sodium in Different Meat Cuts Used in Processed Beef Products
3.2. Correlation of Sodium Concentrations in Different Meat Cuts
3.3. Intrinsic Saline Minerals in Different Carcass Meat Cuts
4. Discussion
4.1. Intrinsic Sodium in Grass-Fed Beef Meat Used in Processed Beef Products
4.2. Profile of Intrinsic Sodium in Grass-Fed Beef Meat Cuts
4.3. Minerals with Saline Properties Inherent in Grass-Fed Beef in Relation to Intrinsic Sodium
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, R.S.; Imran, A.; Hussain, M.B. Nutritional composition of meat. Meat Sci. Nutr. 2018, 61, 61–75. [Google Scholar] [CrossRef]
- Capper, J.L. Is the grass always greener? Comparing the environmental impact of conventional, natural and grass-fed beef production systems. Animals 2012, 2, 127. [Google Scholar] [CrossRef] [PubMed]
- Klopatek, S.C.; Marvinney, E.; Duarte, T.; Kendall, A.; Yang, X.; Oltjen, J.W. Grass-fed vs. grain-fed beef systems: Performance, economic, and environmental trade-offs. J. Anim. Sci. 2022, 100, skab374. [Google Scholar] [CrossRef]
- Hayek, M.N.; Garrett, R.D. Nationwide shift to grass-fed beef requires larger cattle population. Environ. Res. Lett. 2018, 13, 084005. [Google Scholar] [CrossRef]
- Patel, N.; Bergamaschi, M.; Magro, L.; Petrini, A.; Bittante, G. Relationships of a detailed mineral profile of meat with animal performance and beef quality. Animals 2019, 9, 1073. [Google Scholar] [CrossRef] [PubMed]
- Arthington, J.D.; Ranches, J. Trace mineral nutrition of grazing beef cattle. Animals 2021, 11, 2767. [Google Scholar] [CrossRef]
- Baj, J.; Flieger, W.; Teresiński, G.; Buszewicz, G.; Sitarz, R.; Forma, A.; Karakuła, K.; Maciejewski, R. Magnesium, calcium, potassium, sodium, phosphorus, selenium, zinc, and chromium levels in alcohol use disorder: A review. J. Clin. Med. 2020, 9, 1901. [Google Scholar] [CrossRef]
- Rossi, C.A.S.; Grossi, S.; Compiani, R.; Baldi, G.; Agovino, M.; Rossi, L. Effects of different mineral supplementation programs on beef cattle serum Se, Zn, Cu, Mn concentration, health, growth performance and meat quality. Large Anim. Rev. 2020, 26, 57–64. [Google Scholar]
- Barcenilla, C.; Álvarez-Ordóñez, A.; López, M.; Alvseike, O.; Prieto, M. Microbiological safety and shelf-life of low-salt meat products—A Review. Foods 2022, 11, 2331. [Google Scholar] [CrossRef]
- Nogoy, K.M.C.; Sun, B.; Shin, S.; Lee, Y.; Li, X.Z.; Choi, S.H.; Park, S. Fatty acid composition of grain-and grass-fed beef and their nutritional value and health implication. Food Sci. Anim. Resour. 2022, 42, 18. [Google Scholar] [CrossRef]
- Smith, S.B.; Gotoh, T.; Greenwood, P.L. Current Situation and Future Prospects for Global Beef Production: An Overview of the Special Issue. Asian-Australas. J. Anim. Sci. 2018, 31, 927. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Jo, C.; Tariq, M.R. Meat flavor precursors and factors influencing flavor precursors—A systematic review. Meat Sci. 2015, 110, 278–284. [Google Scholar] [CrossRef]
- Jurado-Guerra, P.; Velázquez-Martínez, M.; Sánchez-Gutiérrez, R.A.; Álvarez-Holguín, A.; Domínguez-Martínez, P.A.; Gutiérrez-Luna, R.; Garza-Cedillo, R.D.; Luna-Luna, M.; Chávez-Ruiz, M.G. The grasslands and scrublands of arid and semi-arid zones of Mexico: Current status, challenges and perspectives. Rev. Mex. Cienc. Pecu. 2021, 12, 261–285. [Google Scholar] [CrossRef]
- Korish, M.A.; Attia, Y.A. Evaluation of heavy metal content in feed, litter, meat, meat products, liver, and table eggs of chickens. Animals 2020, 10, 727. [Google Scholar] [CrossRef] [PubMed]
- Juárez, M.; Lam, S.; Bohrer, B.M.; Dugan, M.E.; Vahmani, P.; Aalhus, J.; Juárez, A.; López-Campos, O.; Prieto, N.; Segura, J. Enhancing the nutritional value of red meat through genetic and feeding strategies. Foods 2021, 10, 872. [Google Scholar] [CrossRef]
- Sánchez, D.; Marti, S.; Verdú, M.; González, J.; Font-i-Furnols, M.; Devant, M. Characterization of three different Mediterranean beef fattening systems: Performance, behavior, and carcass and meat quality. Animals 2022, 12, 1960. [Google Scholar] [CrossRef]
- Rinklebe, J.; Antoniadis, V.; Shaheen, S.M.; Rosche, O.; Altermann, M. Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environ. Int. 2019, 126, 76–88. [Google Scholar] [CrossRef]
- Shi, Y.; Zou, Y.; Shen, Z.; Xiong, Y.; Zhang, W.; Liu, C.; Chen, S. Trace elements, PPARs, and metabolic syndrome. Int. J. Mol. Sci. 2020, 21, 2612. [Google Scholar] [CrossRef]
- Cashman, K.D.; Hayes, A. Red meat’s role in addressing ‘nutrients of public health concern’. Meat Sci. 2017, 132, 196–203. [Google Scholar] [CrossRef]
- Mkhwebane, E.; Bekker, J.; Mokgalaka-Fleischmann, N.S. Sodium reduction in processed foods, including processed meats, in Africa: A systemic review. Afr. J. Food Agric. Nutr. Dev. 2023, 23, 22730–22750. [Google Scholar] [CrossRef]
- Ding, Z.; Li, Y.; Sun, Q.; Zhang, H. Trace elements in soils and selected agricultural plants in the Tongling mining area of China. Int. J. Environ. Res. Public Health 2018, 15, 202. [Google Scholar] [CrossRef]
- Lescinsky, H.; Afshin, A.; Ashbaugh, C.; Bisignano, C.; Brauer, M.; Ferrara, G.; Hay, S.I.; He, J.; Iannucci, V.; Marczak, L.B. Health effects associated with consumption of unprocessed red meat: A burden of proof study. Nat. Med. 2022, 28, 2075–2082. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; La Vignera, S.; Condorelli, R.A.; Godos, J.; Marventano, S.; Tieri, M.; Ghelfi, F.; Titta, L.; Lafranconi, A.; Gambera, A. Total, red and processed meat consumption and human health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2022, 73, 726–737. [Google Scholar] [CrossRef]
- Moraes, E.H.B.K.d.; Paulino, M.F.; Moraes, K.A.K.d.; Valadares Filho, S.d.C.; Lazzarini, I.; Monnerat, J.P.I.d.S.; Couto, V.R.M.; Souza, M.G.d. Macro mineral requirements by grazing zebu bovines. Rev. Bras. Zootec. 2012, 41, 392–397. [Google Scholar] [CrossRef]
- Ghaffari, H.; Grant, S.C.; Petzold, L.R.; Harrington, M.G. Regulation of CSF and brain tissue sodium levels by the blood-CSF and blood-brain barriers during migraine. Front. Comput. Neurosci. 2020, 14, 4. [Google Scholar] [CrossRef]
- Xu, P.; Luo, S.; Song, J.; Dai, Z.; Li, D.; Wu, C. Effect of sodium alginate-based hydrogel loaded with lutein on gut microbiota and inflammatory response in DSS-induced colitis mice. Food Sci. Hum. Wellness 2023, 12, 2428–2439. [Google Scholar] [CrossRef]
- Ali, A.A.H. Overview of the vital roles of macro minerals in the human body. J. Trace Elem. Miner. 2023, 4, 100076. [Google Scholar] [CrossRef]
- Brand, T.S.; Terblanche, I.; Van der Merwe, D.A.; Jordaan, J.; Dreyer, O. Predicting the growth and feed intake of Bonsmara cattle on forage based rearing systems. Res. Sq. 2021. preprint. [Google Scholar] [CrossRef]
- Theron, H. The Bonsmara: Selection for meat quality. Dié Rooi Ras. 2022, 6, 61–85. Available online: https://hdl.handle.net/10520/ejc-vp_rooi-v6-n2-a16 (accessed on 16 April 2025).
- Macharáčková, B.; Saláková, A.; Bogdanovičová, K.; Haruštiaková, D.; Kameník, J. Changes in the concentrations of selected mineral elements in pork meat after sous-vide cooking. J. Food Compos. Anal. 2021, 96, 103752. [Google Scholar] [CrossRef]
- Kryzhova, Y.; Slobodianiuk, N.; Moskalenko, I. Application of modern technologies to improve the quality of sausage products. Anim. Sci. Food Technol. 2023, 14, 49–64. [Google Scholar] [CrossRef]
- Yoo, Y.; Bae, S.M.; Jeong, J.Y. Zinc Protoporphyrin IX in Meat and Meat Products: Formation, Application, and Future Perspectives—A review. Food Sci. Anim. Resour. 2025, 45, 663–687. [Google Scholar] [CrossRef]
- Nkosi, D.V.; Bekker, J.L.; Hoffman, L.C. Toxic metals in meat contributed by helicopter and rifle thoracic killing of game meat animals. Appl. Sci. 2022, 12, 8095. [Google Scholar] [CrossRef]
- AOAC. Analytical Method for Testing of Trace Elements in Foods; AOAC International: Rockville, MD, USA, 2023. Available online: https://www.aoac.org/ (accessed on 16 March 2025).
- NIST-SRM®-1577c-2018; Bovine liver Standard Reference Materials. NIST: Gaithersburg, MD, USA, 2018. Available online: http://www.nist.gov/srm (accessed on 22 February 2025).
- Patel, N.; Bergamaschi, M.; Cagnin, M.; Bittante, G. Exploration of the effect of farm, breed, sex and animal on detailed mineral profile of beef and their latent explanatory factors. Int. J. Food Sci. Technol. 2020, 55, 1046–1056. [Google Scholar] [CrossRef]
- Farionik, T.; Yaremchuk, O.; Razanova, O.; Ohorodnichuk, G.; Holubenko, T.; Glavatchuk, V. Effects of mineral supplementation on qualitative beef parameters. Regul. Mech. Biosyst. 2023, 14, 64–69. [Google Scholar] [CrossRef]
- Majeed, T.; Maqbool, N.; Sajad, A.; Aijaz, T.; Khan, Z.S. Meat as a functional food for health. In Functional Foods; CRC Press: Boca Raton, FL, USA, 2023; pp. 177–205. [Google Scholar] [CrossRef]
- Domínguez, R.; Lorenzo, J.M.; Pateiro, M.; Munekata, P.E.; Alves dos Santos, B.; Basso Pinton, M.; Cichoski, A.J.; Bastianello Campagnol, P.C. Main animal fat replacers for the manufacture of healthy processed meat products. Crit. Rev. Food Sci. Nutr. 2024, 64, 2513–2532. [Google Scholar] [CrossRef]
- Zhang, R.; Wei, M.; Zhou, J.; Yang, Z.; Xiao, M.; Du, L.; Bao, M.; Ju, J.; Dong, C.; Zheng, Y. Effects of organic trace minerals chelated with oligosaccharides on growth performance, blood parameters, slaughter performance and meat quality in sheep. Front. Vet. Sci. 2024, 11, 1366314. [Google Scholar] [CrossRef]
- Al-Fartusie, F.S.; Mohssan, S.N. Essential trace elements and their vital roles in the human body. Indian J. Adv. Chem. Sci. 2017, 5, 127–136. [Google Scholar] [CrossRef]
- Holman, B.W.; Hayes, R.C.; Newell, M.T.; Refshauge, G.; McGrath, S.R.; Fowler, S.M.; Shanley, A.R.; Hopkins, D.L. The quality and mineral composition of the longissimus lumborum and semimembranosus muscles from lambs fed perennial or annual wheat forage with or without lucerne. Meat Sci. 2021, 180, 108564. [Google Scholar] [CrossRef]
- Frassetto, L.A.; Goas, A.; Gannon, R.; Lanham-New, S.A.; Lambert, H. Potassium. Adv. Nutr. 2023, 14, 1237–1240. [Google Scholar] [CrossRef]
- Nouri-Majd, S.; Ebrahimzadeh, A.; Mousavi, S.M.; Zargarzadeh, N.; Eslami, M.; Santos, H.O.; Taghizadeh, M.; Milajerdi, A. Higher intake of dietary magnesium is inversely associated with COVID-19 severity and symptoms in hospitalized patients: A cross-sectional study. Front. Nutr. 2022, 9, 873162. [Google Scholar] [CrossRef]
- Yang, S.; Ma, X.; Huang, Y.; Lin, B.; Zhang, L.; Miao, S.; Zheng, B.; Deng, K. Comprehensive Effects of Potassium Lactate, Calcium Ascorbate and Magnesium Chloride as Alternative Salts on Physicochemical Properties, Sensory Characteristics and Volatile Compounds in Low-Sodium Marinated Beef. Foods 2024, 13, 291. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, S.; Bain, J.R.; Muehlbauer, M.J.; Provenza, F.D.; Kronberg, S.L.; Pieper, C.F.; Huffman, K.M. A metabolomics comparison of plant-based meat and grass-fed meat indicates large nutritional differences despite comparable Nutrition Facts panels. Sci. Rep. 2021, 11, 13828. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.H.; Hu, W.; Nayga, R.M. Consumer Preference for Grass-Fed Beef. J. Agric. Resour. Econ. 2021, 46, 447–463. [Google Scholar] [CrossRef]
- Wang, Y.; Isengildina-Massa, O.; Stewart, S. US grass-fed beef premiums. Agribusiness 2023, 39, 664–690. [Google Scholar] [CrossRef]
- Apaoblaza, A.; Gerrard, S.D.; Matarneh, S.K.; Wicks, J.C.; Kirkpatrick, L.; England, E.M.; Scheffler, T.L.; Duckett, S.K.; Shi, H.; Silva, S.L.; et al. Muscle from grass-and grain-fed cattle differs energetically. Meat Sci. 2020, 161, 107996. [Google Scholar] [CrossRef] [PubMed]
- Matarneh, S.K.; Scheffler, T.L.; Gerrard, D.E. The conversion of muscle to meat. In Lawrie’s Meat Science; Woodhead Publishing: Sawston, UK, 2023; pp. 159–194. [Google Scholar] [CrossRef]
- Santana, E.O.; Silva, R.R.; Simionato, J.I.; Trindade Júnior, G.; Lins, T.O.D.A.; da Costa, G.D.; Mesquita, B.M.D.C.; Alba, H.D.; de Carvalho, G.G. Sex effect on the fatty acid profile and chemical composition of meat from beef cattle fed a whole shelled corn diet. Arch. Anim. Breed. 2023, 66, 51–60. [Google Scholar] [CrossRef]
- Hinton, J.H.; Legako, J.F.; Vierck, K.R.; Engle, T.E.; Brooks, J.C.; Belk, K.E.; Woerner, D.R. Muscle Source Influences Ground Beef Quality. Meat Muscle Biol. 2024, 8, 17751. [Google Scholar] [CrossRef]
- Rosa, M.S.d.C.; Pinto-e-Silva, M.E.M.; Simoni, N.K. Can umami taste be an adequate tool for reducing sodium in food preparations? Int. J. Food Sci. Technol. 2021, 56, 5315–5324. [Google Scholar] [CrossRef]
- Gagaoua, M.; Duffy, G.; Álvarez García, C.; Burgess, C.; Hamill, R.; Crofton, E.C.; Botinestean, C.; Ferragina, A.; Cafferky, J.; Mullen, A.M. Current research and emerging tools to improve fresh red meat quality. Ir. J. Agric. Food Res. 2022, 61, 147–167. [Google Scholar] [CrossRef]
- Thangavelu, K.P.; Kerry, J.P.; Tiwari, B.K.; McDonnell, C.K. Novel processing technologies and ingredient strategies for the reduction of phosphate additives in processed meat. Trends Food Sci. Technol. 2019, 94, 43–53. [Google Scholar] [CrossRef]
- Meng, X.; Wu, D.; Zhang, Z.; Wang, H.; Wu, P.; Xu, Z.; Gao, Z.; Mintah, B.K.; Dabbour, M. An overview of factors affecting the quality of beef meatballs: Processing and preservation. Food Sci. Nutr. 2022, 10, 1961–1974. [Google Scholar] [CrossRef] [PubMed]
- Circuncisão, A.R.; Catarino, M.D.; Cardoso, S.M.; Silva, A.M. Minerals from macroalgae origin: Health benefits and risks for consumers. Mar. Drugs 2018, 16, 400. [Google Scholar] [CrossRef]
- Lopes, M.M.; Brito, T.R.; Lage, J.F.; Costa, T.C.; Fontes, M.M.d.S.; Serão, N.V.L.; Mendes, T.A.d.O.; Reis, R.A.; Veroneze, R.; e Silva, F.F. Proteomic analysis of liver from finishing beef cattle supplemented with a rumen-protected B-vitamin blend and hydroxy trace minerals. Animals 2021, 11, 1934. [Google Scholar] [CrossRef] [PubMed]
- Kerth, C.R.; Harbison, A.L.; Smith, S.B.; Miller, R.K. Consumer sensory evaluation, fatty acid composition, and shelf-life of ground beef with subcutaneous fat trimmings from different carcass locations. Meat Sci. 2015, 104, 30–36. [Google Scholar] [CrossRef]
- Nogalski, Z.; Pogorzelska-Przybyłek, P.; Sobczuk-Szul, M.; Nogalska, A.; Modzelewska-Kapituła, M.; Purwin, C. Carcass characteristics and meat quality of bulls and steers slaughtered at two different ages. Ital. J. Anim. Sci. 2018, 17, 279–288. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Hu, R.; Peng, Q.; Xue, B.; Wang, L. Comparison of carcass characteristics and meat quality between Simmental crossbred cattle, cattle-yaks and Xuanhan yellow cattle. J. Sci. Food Agric. 2021, 101, 3927–3932. [Google Scholar] [CrossRef]
- Statham, T.E. From Pasture to Plate: Striking an Omega Balance Between Grass-Fed and Grain-Fed Beef Ribeyes-Fatty Acid Composition, Minerals, Soil and Forage Analysis. Master’s Thesis, Utah State University, Logan, UT, USA, 2024. [Google Scholar] [CrossRef]
- El-Dars, F.M.; Abou-Arab, A.A.; Mansor, A.A.; Ali, O.I. A Comparative Evaluation of Some Heavy and Trace Elements in Canned Tuna and Processed Meat in the Egyptian Local Market. Curr. Sci. Int. 2022, 11, 108–118. [Google Scholar] [CrossRef]
- Pistón, M.; Suárez, A.; Bühl, V.; Tissot, F.; Silva, J.; Panizzolo, L. Influence of cooking processes on Cu, Fe, Mn, Ni, and Zn levels in beef cuts. J. Food Compost. Anal. 2020, 94, 103624. [Google Scholar] [CrossRef]
- McLean, R.M.; Wang, N.X. Potassium. Adv. Food Nutr. Res. 2021, 96, 89–121. [Google Scholar] [CrossRef]
- Vidal, V.A.; Paglarini, C.S.; Lorenzo, J.M.; Munekata, P.E.; Pollonio, M.A. Salted meat products: Nutritional characteristics, processing and strategies for sodium reduction. Food Rev. Int. 2023, 39, 2183–2202. [Google Scholar] [CrossRef]
- Eger, M.; Kern, E.; Carvalho, S.; Carvalho, P.; Genova, J.; Grando, M. Influence of graded level of salt and maturation times on quality traits of beef and pork sun-dried meat: A test pilot. S. Afr. J. Anim. Sci. 2022, 52, 134–141. Available online: https://hdl.handle.net/10520/ejc-sajas_v52_n2_a2 (accessed on 22 April 2025).
- Groff-Urayama, P.M.; Cruvinel, J.M.; Oura, C.Y.; Dos Santos, T.S.; de Lima-Krenchinski, F.K.; Batistioli, J.S.; Rodrigues, P.A.; Augusto, K.V.; Han, Y.; Sartori, J.R. Sources and levels of copper and manganese supplementation influence performance, carcass traits, meat quality, tissue mineral content, and ileal absorption of broiler chickens. Poult. Sci. J. 2023, 102, 102–330. [Google Scholar] [CrossRef] [PubMed]
- Menezes, E.A.; Oliveira, A.F.; França, C.J.; Souza, G.B.; Nogueira, A.R.A. Bioaccessibility of Ca, Cu, Fe, Mg, Zn, and crude protein in beef, pork and chicken after thermal processing. Food Chem. 2018, 240, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Shewal, A.S.; Shaltout, F.; Gerges, T. Impact of some organic acids their salts on microbial quality shelf life of beef. Assiut Vet. Med. J. 2018, 64, 164–177. [Google Scholar] [CrossRef]
Intrinsic Sodium (mg/100 g) | |||||
---|---|---|---|---|---|
Raw Meat Sample Types | No. of Samples | Df | Range | Mean (SD) | p-Value |
Ts (n) | 14 | 13 | 49–74 | 59.6 (7.1) | 0.4019 |
Ss (n) | 14 | 13 | 54–67 | 59.2 (5.6) | 0.2251 |
Tf (n) | 14 | 13 | 62–83 | 71.9 (5.8) | 0.2309 |
T80/20 (n) | 14 | 13 | 58–70 | 63.5 (3.8) | 0.7349 |
T60/40 (n) | 14 | 13 | 45–64 | 51.7 (5.9) | 0.5492 |
Overall carcass (N) | 70 | 69 | 45–83 | 61.2 (20.4) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mkhwebane, E.J.; Mokgobu, I.M.; Nkosi, D.V.; Bekker, J.L. Determination of Intrinsic Sodium in Grass-Fed Bonsmara (Bos taurus indicus) Meat. Appl. Sci. 2025, 15, 6612. https://doi.org/10.3390/app15126612
Mkhwebane EJ, Mokgobu IM, Nkosi DV, Bekker JL. Determination of Intrinsic Sodium in Grass-Fed Bonsmara (Bos taurus indicus) Meat. Applied Sciences. 2025; 15(12):6612. https://doi.org/10.3390/app15126612
Chicago/Turabian StyleMkhwebane, Elphus J., Ingrid M. Mokgobu, Davies V. Nkosi, and Johan L. Bekker. 2025. "Determination of Intrinsic Sodium in Grass-Fed Bonsmara (Bos taurus indicus) Meat" Applied Sciences 15, no. 12: 6612. https://doi.org/10.3390/app15126612
APA StyleMkhwebane, E. J., Mokgobu, I. M., Nkosi, D. V., & Bekker, J. L. (2025). Determination of Intrinsic Sodium in Grass-Fed Bonsmara (Bos taurus indicus) Meat. Applied Sciences, 15(12), 6612. https://doi.org/10.3390/app15126612