Comparative Kinematic Analysis of Patellar vs. Hamstring Autografts in ACL Reconstruction on Side-Hop Test Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection Equipment
2.3. Data Processing
2.4. Statistical Analysis
3. Results
3.1. Recruited Groups
3.2. Side-Hop Kinematics
3.3. Post Hoc Power Analysis
4. Discussion
Limitations
5. Conclusions
Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACL | Anterior Cruciate Ligament |
ACLR | Anterior Cruciate Ligament Reconstruction |
HT | Four-Strand Hamstring Tendon |
PT | Bone–patellar tendon–bone |
References
- Xie, X.; Liu, X.; Chen, Z.; Yu, Y.; Peng, S.; Li, Q. A meta-analysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee 2015, 22, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.; Marappa-Ganeshan, R. Anatomy, Bony Pelvis and Lower Limb, Knee Anterior Cruciate Ligament; National Institutes of Health: Bethesda, MD, USA, 2024. [Google Scholar]
- Giummarra, M.; Vocale, L.; King, M. Efficacy of non-surgical management and functional outcomes of partial ACL tears. A systematic review of randomised trials. BMC Musculoskelet. Disord. 2022, 23, 332. [Google Scholar] [CrossRef]
- Kaeding, C.C.; Leger-St-Jean, B.; Magnussen, R.A. Epidemiology and Diagnosis of Anterior Cruciate Ligament Injuries. Clin. Sports Med. 2017, 36, 1–8. [Google Scholar] [CrossRef]
- Lentz, T.A.; Zeppieri, G., Jr.; Tillman, S.M.; Indelicato, P.A.; Moser, M.W.; George, S.Z.; Chmielewski, T.L. Return to preinjury sports participation following anterior cruciate ligament reconstruction: Contributions of demographic, knee impairment, and self-report measures. J. Orthop. Sports Phys. Ther. 2012, 42, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Buerba, R.A.; Zaffagnini, S.; Kuroda, R.; Musahl, V. ACL reconstruction in the professional or elite athlete: State of the art. J. ISAKOS 2021, 6, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Paschos, N.K.; Howell, S.M. Anterior cruciate ligament reconstruction: Principles of treatment. EFORT Open Rev. 2016, 1, 398–408. [Google Scholar] [CrossRef]
- Mihelic, R.; Jurdana, H.; Jotanovic, Z.; Madjarevic, T.; Tudor, A. Long-term results of anterior cruciate ligament reconstruction: A comparison with non-operative treatment with a follow-up of 17–20 years. Int. Orthop. 2011, 35, 1093–1097. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, M.; Deng, M.; Xing, J.; He, L.; Wang, C. Outcome of bone-patellar tendon-bone vs hamstring tendon autograft for anterior cruciate ligament reconstruction: A meta-analysis of randomized controlled trials with a 5-year minimum follow-up. Medicine 2020, 99, e23476. [Google Scholar] [CrossRef]
- Cristiani, R.; Sarakatsianos, V.; Engstrom, B.; Samuelsson, K.; Forssblad, M.; Stalman, A. Increased knee laxity with hamstring tendon autograft compared to patellar tendon autograft: A cohort study of 5462 patients with primary anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 381–388. [Google Scholar] [CrossRef]
- Andrade, D.; Fonseca, P.; Sousa, F.; Gutierres, M. Does Anterior Cruciate Ligament Reconstruction with a Hamstring Tendon Autograft Predispose to a Knee Valgus Alignment on Initial Contact during Landing? A Drop Vertical Jump Movement Analysis. Appl. Sci. 2023, 13, 7363. [Google Scholar] [CrossRef]
- Asaeda, M.; Nakamae, A.; Hirata, K.; Kono, Y.; Uenishi, H.; Adachi, N. Factors associated with dynamic knee valgus angle during single-leg forward landing in patients after anterior cruciate ligament reconstruction. Asia-Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2020, 22, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Duchman, K.R.; Lynch, T.S.; Spindler, K.P. Graft Selection in Anterior Cruciate Ligament Surgery: Who gets What and Why? Clin. Sports Med. 2017, 36, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, Y.; Lin, Z.; Cui, W.; Zhao, J.; Su, W. A systematic review of randomized controlled clinical trials comparing hamstring autografts versus bone-patellar tendon-bone autografts for the reconstruction of the anterior cruciate ligament. Arch. Orthop. Trauma. Surg. 2012, 132, 1287–1297. [Google Scholar] [CrossRef] [PubMed]
- Tuca, M.; Valderrama, I.; Eriksson, K.; Tapasvi, S. Current trends in anterior cruciate ligament surgery. A worldwide benchmark study. J. ISAKOS 2023, 8, 2–10. [Google Scholar] [CrossRef]
- Ardern, C.L.; Glasgow, P.; Schneiders, A.; Witvrouw, E.; Clarsen, B.; Cools, A.; Gojanovic, B.; Griffin, S.; Khan, K.M.; Moksnes, H.; et al. 2016 Consensus statement on return to sport from the First World Congress in Sports Physical Therapy, Bern. Br. J. Sports Med. 2016, 50, 853–864. [Google Scholar] [CrossRef]
- Rivera-Brown, A.M.; Frontera, W.R.; Fontanez, R.; Micheo, W.F. Evidence for isokinetic and functional testing in return to sport decisions following ACL surgery. PM R 2022, 14, 678–690. [Google Scholar] [CrossRef]
- Davies, G.J.; McCarty, E.; Provencher, M.; Manske, R.C. ACL Return to Sport Guidelines and Criteria. Curr. Rev. Musculoskelet. Med. 2017, 10, 307–314. [Google Scholar] [CrossRef]
- Kaplan, Y.; Witvrouw, E. When Is It Safe to Return to Sport After ACL Reconstruction? Reviewing the Criteria. Sports Health 2019, 11, 301–305. [Google Scholar] [CrossRef]
- Waldron, K.; Brown, M.; Calderon, A.; Feldman, M. Anterior Cruciate Ligament Rehabilitation and Return to Sport: How Fast Is Too Fast? Arthrosc. Sports Med. Rehabil. 2022, 4, e175–e179. [Google Scholar] [CrossRef]
- Faltstrom, A.; Hagglund, M.; Hedevik, H.; Lindblom, H.; Kvist, J. The side hop test: Validity, reliability, and quality aspects in relation to sex, age and anterior cruciate ligament reconstruction, in soccer players. Phys. Ther. Sport. 2023, 62, 39–45. [Google Scholar] [CrossRef]
- Stitelmann, A.; Allet, L.; Armand, S.; Tscholl, P. Reliability and Validity of Temporal Parameters during the Side Hop Test in Patients after Anterior Cruciate Ligament Reconstruction. J. Clin. Med. 2024, 13, 3407. [Google Scholar] [CrossRef]
- Markstrom, J.L.; Tengman, E.; Hager, C.K. Side-hops challenge knee control in the frontal and transversal plane more than hops for distance or height among ACL-reconstructed individuals. Sports Biomech. 2023, 22, 142–159. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Ford, K.R.; Xu, Y.Y.; Khoury, J.; Myer, G.D. Utilization of ACL Injury Biomechanical and Neuromuscular Risk Profile Analysis to Determine the Effectiveness of Neuromuscular Training. Am. J. Sports Med. 2016, 44, 3146–3151. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.A.G.; Gette, P.; Mouton, C.; Seil, R.; Theisen, D. Side-to-side asymmetries in landing mechanics from a drop vertical jump test are not related to asymmetries in knee joint laxity following anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Hullfish, T.J.; Scattone Silva, R.; Silbernagel, K.G.; Baxter, J.R. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements. J. Biomech. 2023, 157, 111751. [Google Scholar] [CrossRef]
- Carvalho, A.; Vanrenterghem, J.; Cabral, S.; d’Assunção, A.M.; Carnide, F.; Veloso, A.P.; Moniz-Pereira, V. Construct validity of markerless three-dimensional gait biomechanics in healthy older adults. Gait Posture 2025, 120, 217–225. [Google Scholar] [CrossRef]
- Riazati, S.; McGuirk, T.E.; Perry, E.S.; Sihanath, W.B.; Patten, C. Absolute Reliability of Gait Parameters Acquired With Markerless Motion Capture in Living Domains. Front. Hum. Neurosci. 2022, 16, 867474. [Google Scholar] [CrossRef]
- Chaumeil, A.; Lahkar, B.K.; Dumas, R.; Muller, A.; Robert, T. Agreement between a markerless and a marker-based motion capture systems for balance related quantities. J. Biomech. 2024, 165, 112018. [Google Scholar] [CrossRef]
- Lichtwark, G.A.; Schuster, R.W.; Kelly, L.A.; Trost, S.G.; Bialkowski, A. Markerless motion capture provides accurate predictions of ground reaction forces across a range of movement tasks. J. Biomech. 2024, 166, 112051. [Google Scholar] [CrossRef]
- Scataglini, S.; Abts, E.; Van Bocxlaer, C.; Van den Bussche, M.; Meletani, S.; Truijen, S. Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis. Sensors 2024, 24, 3686. [Google Scholar] [CrossRef]
- Briggs, K.K.; Lysholm, J.; Tegner, Y.; Rodkey, W.G.; Kocher, M.S.; Steadman, J.R. The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. Am. J. Sports Med. 2009, 37, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Freedman, K.B.; D’Amato, M.J.; Nedeff, D.D.; Kaz, A.; Bach, B.R., Jr. Arthroscopic anterior cruciate ligament reconstruction: A metaanalysis comparing patellar tendon and hamstring tendon autografts. Am. J. Sports Med. 2003, 31, 2–11. [Google Scholar] [CrossRef]
- DeFazio, M.W.; Curry, E.J.; Gustin, M.J.; Sing, D.C.; Abdul-Rassoul, H.; Ma, R.; Fu, F.; Li, X. Return to Sport After ACL Reconstruction With a BTB Versus Hamstring Tendon Autograft: A Systematic Review and Meta-analysis. Orthop. J. Sports Med. 2020, 8, 2325967120964919. [Google Scholar] [CrossRef]
- Welling, W.; Benjaminse, A.; Seil, R.; Lemmink, K.; Gokeler, A. Altered movement during single leg hop test after ACL reconstruction: Implications to incorporate 2-D video movement analysis for hop tests. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3012–3019. [Google Scholar] [CrossRef]
- Burland, J.P.; Toonstra, J.L.; Howard, J.S. Psychosocial Barriers After Anterior Cruciate Ligament Reconstruction: A Clinical Review of Factors Influencing Postoperative Success. Sports Health 2019, 11, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Augustine, S.; Foster, R.; Barton, G.; Lake, M.J.; Sharir, R.; Robinson, M.A. The inter-trial and inter-session reliability of Theia3D-derived markerless gait analysis in tight versus loose clothing. PeerJ 2025, 13, e18613. [Google Scholar] [CrossRef]
- Larson, D.; Vu, V.; Ness, B.M.; Wellsandt, E.; Morrison, S. A Multi-Systems Approach to Human Movement after ACL Reconstruction: The Musculoskeletal System. Int. J. Sports Phys. Ther. 2022, 17, 27–46. [Google Scholar] [CrossRef]
- Needle, A.R.; Lepley, A.S.; Grooms, D.R. Central Nervous System Adaptation After Ligamentous Injury: A Summary of Theories, Evidence, and Clinical Interpretation. Sports Med. 2017, 47, 1271–1288. [Google Scholar] [CrossRef]
- Relph, N.; Herrington, L.; Tyson, S. The effects of ACL injury on knee proprioception: A meta-analysis. Physiotherapy 2014, 100, 187–195. [Google Scholar] [CrossRef]
- Palmieri-Smith, R.M.; Thomas, A.C.; Wojtys, E.M. Maximizing quadriceps strength after ACL reconstruction. Clin. Sports Med. 2008, 27, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Bryant, A.L.; Kelly, J.; Hohmann, E. Neuromuscular adaptations and correlates of knee functionality following ACL reconstruction. J. Orthop. Res. 2008, 26, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Naderi, A.; Fallah Mohammadi, M.; Dehghan, A.; Baker, J.S. Psychosocial interventions seem redact kinesiophobia after anterior cruciate ligament reconstruction but higher level of evidence is needed: A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 5848–5855. [Google Scholar] [CrossRef] [PubMed]
- Nwachukwu, B.U.; Adjei, J.; Rauck, R.C.; Chahla, J.; Okoroha, K.R.; Verma, N.N.; Allen, A.A.; Williams, R.J., 3rd. How Much Do Psychological Factors Affect Lack of Return to Play After Anterior Cruciate Ligament Reconstruction? A Systematic Review. Orthop. J. Sports Med. 2019, 7, 2325967119845313. [Google Scholar] [CrossRef]
- Bandodkar, S.; Koohestani, M.; Schwartz, A.; Chaput, M.; Norte, G. Kinesiophobia Associates With Physical Performance in Patients With ACL Reconstruction: A Critically Appraised Topic. J. Sport. Rehabil. 2025, 1–7. [Google Scholar] [CrossRef]
- Norte, G.E.; Solaas, H.; Saliba, S.A.; Goetschius, J.; Slater, L.V.; Hart, J.M. The relationships between kinesiophobia and clinical outcomes after ACL reconstruction differ by self-reported physical activity engagement. Phys. Ther. Sport. 2019, 40, 1–9. [Google Scholar] [CrossRef]
- Marok, E.; Soundy, A. The effect of kinesiophobia on functional outcomes following anterior cruciate ligament reconstruction surgery: An integrated literature review. Disabil. Rehabil. 2022, 44, 7378–7389. [Google Scholar] [CrossRef]
- Wade, L.; Needham, L.; McGuigan, P.; Bilzon, J. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. PeerJ 2022, 10, e12995. [Google Scholar] [CrossRef]
- Ito, N.; Sigurethsson, H.B.; Seymore, K.D.; Arhos, E.K.; Buchanan, T.S.; Snyder-Mackler, L.; Silbernagel, K.G. Markerless motion capture: What clinician-scientists need to know right now. JSAMS Plus 2022, 1, 100001. [Google Scholar] [CrossRef]
- Reis, D.A.E.; Sousa, M.V.; Fonseca, P.; Chaffaut, A.A.d.; Sousa, J.; Pires, J.; Moreira, F.; Alves, F.; Barroso, J.; Vilas-Boas, J.P. Analysis of Spatiotemporal Gait Variables before and after Unilateral Total Knee Arthroplasty. Appl. Sci. 2024, 14, 8901. [Google Scholar] [CrossRef]
Parameter | Case Group n = 28 | Control Group n = 18 | p-Value |
---|---|---|---|
Gender | 0.29 | ||
Female | 5 (18%) | 6 (33%) | |
Male | 23 (82%) | 12 (67%) | |
Age (years) | 32.5 (18.25) | 31.50 (12.50) | 0.12 |
Body mass (kg) | 82.0 (20.83) | 75.0 (21.45) | 0.04 * |
Height (m) | 1.77 (0.09) | 1.71 (0.12) | 0.16 |
Limb dominance | 0.99 | ||
Right | 22 (79%) | 15 (83%) | |
Left | 6 (21%) | 3 (17%) |
Parameter | HT n = 15 | PT n = 13 | p-Value |
---|---|---|---|
Gender | 0.64 | ||
Female | 2 (13%) | 3 (23%) | |
Male | 13 (87%) | 10 (77%) | |
Age (years) | 37.00 (15.00) | 29.00 (9.50) | 0.09 |
TAS variation | 0.00 (−4.50) | −2.00 (−3.00) | 0.88 |
Body mass (kg) | 84.30 (21.60) | 75.00 (23.60) | 0.49 |
Height (m) | 1.77 (0.08) | 1.75 (0.16) | 0.98 |
Limb dominance | 0.65 | ||
Right | 11 (73%) | 11 (85%) | |
Left | 4 (27%) | 2 (15%) | |
Injured Limb | 0.04 * | ||
Right | 2 (13%) | 7 (54%) | |
Left | 13 (87%) | 6 (46%) |
Parameter | Units | Control Group | Autograft Group | |
---|---|---|---|---|
HT | PT | |||
CTG | S | −0.57 ± 0.11 [−0.68; −0.46] | −0.46 ± 0.19 a [−0.65; −0.27] | −0.46 ± 0.20 a [−0.66; −0.26] |
Max Valgus | Deg | 3.88 ± 3.17 [0.71; 7.05] | 2.27 ± 3.89 [−1.62; 6.16] | 4.55 ± 3.34 [1.21; 7.89] |
Max Varus | Deg | 0.68 ± 3.07 [−2.39; 3.75] | 2.54 ± 3.40 [−0.86; 5.94] | 0.97 ± 2.75 [−1.78; 3.72] |
Flexion in Max Valgus | Deg | 31.80 ± 8.51 [23.29; 40.31] | 30.90 ± 6.24 [24.66; 37.14] | 34.90 ± 5.45 [29.45; 40.35] |
Flexion in Max Varus | Deg | 27.70 ± 6.64 [21.06; 34.34] | 27.10 ± 8.47 [18.63; 35.57] | 25.80 ± 8.45 [17.35; 34.25] |
Parameter | Effect Size (g) | Power (1-β) |
---|---|---|
CTG | 0.10 | 0.06 |
Max Valgus | 0.60 | 0.34 |
Max Varus | 0.48 | 0.23 |
Flexion in Max Valgus | 0.65 | 0.38 |
Flexion in Max Varus | 0.15 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, A.; Fonseca, P.; Correia, M.; Barros, A.; Sousa, F.; Gutierres, M. Comparative Kinematic Analysis of Patellar vs. Hamstring Autografts in ACL Reconstruction on Side-Hop Test Performance. Appl. Sci. 2025, 15, 5569. https://doi.org/10.3390/app15105569
Costa A, Fonseca P, Correia M, Barros A, Sousa F, Gutierres M. Comparative Kinematic Analysis of Patellar vs. Hamstring Autografts in ACL Reconstruction on Side-Hop Test Performance. Applied Sciences. 2025; 15(10):5569. https://doi.org/10.3390/app15105569
Chicago/Turabian StyleCosta, Ana, Pedro Fonseca, Maria Correia, António Barros, Filipa Sousa, and Manuel Gutierres. 2025. "Comparative Kinematic Analysis of Patellar vs. Hamstring Autografts in ACL Reconstruction on Side-Hop Test Performance" Applied Sciences 15, no. 10: 5569. https://doi.org/10.3390/app15105569
APA StyleCosta, A., Fonseca, P., Correia, M., Barros, A., Sousa, F., & Gutierres, M. (2025). Comparative Kinematic Analysis of Patellar vs. Hamstring Autografts in ACL Reconstruction on Side-Hop Test Performance. Applied Sciences, 15(10), 5569. https://doi.org/10.3390/app15105569